1/******************************************************************** 2 * * 3 * THIS FILE IS PART OF THE OggVorbis SOFTWARE CODEC SOURCE CODE. * 4 * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS * 5 * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE * 6 * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. * 7 * * 8 * THE OggVorbis SOURCE CODE IS (C) COPYRIGHT 1994-2009 * 9 * by the Xiph.Org Foundation http://www.xiph.org/ * 10 * * 11 ******************************************************************** 12 13 function: LSP (also called LSF) conversion routines 14 last mod: $Id: lsp.c 16227 2009-07-08 06:58:46Z xiphmont $ 15 16 The LSP generation code is taken (with minimal modification and a 17 few bugfixes) from "On the Computation of the LSP Frequencies" by 18 Joseph Rothweiler (see http://www.rothweiler.us for contact info). 19 The paper is available at: 20 21 http://www.myown1.com/joe/lsf 22 23 ********************************************************************/ 24 25/* Note that the lpc-lsp conversion finds the roots of polynomial with 26 an iterative root polisher (CACM algorithm 283). It *is* possible 27 to confuse this algorithm into not converging; that should only 28 happen with absurdly closely spaced roots (very sharp peaks in the 29 LPC f response) which in turn should be impossible in our use of 30 the code. If this *does* happen anyway, it's a bug in the floor 31 finder; find the cause of the confusion (probably a single bin 32 spike or accidental near-float-limit resolution problems) and 33 correct it. */ 34 35#include <math.h> 36#include <string.h> 37#include <stdlib.h> 38#include "lsp.h" 39#include "os.h" 40#include "misc.h" 41#include "lookup.h" 42#include "scales.h" 43 44/* three possible LSP to f curve functions; the exact computation 45 (float), a lookup based float implementation, and an integer 46 implementation. The float lookup is likely the optimal choice on 47 any machine with an FPU. The integer implementation is *not* fixed 48 point (due to the need for a large dynamic range and thus a 49 seperately tracked exponent) and thus much more complex than the 50 relatively simple float implementations. It's mostly for future 51 work on a fully fixed point implementation for processors like the 52 ARM family. */ 53 54/* define either of these (preferably FLOAT_LOOKUP) to have faster 55 but less precise implementation. */ 56#undef FLOAT_LOOKUP 57#undef INT_LOOKUP 58 59#ifdef FLOAT_LOOKUP 60#include "lookup.c" /* catch this in the build system; we #include for 61 compilers (like gcc) that can't inline across 62 modules */ 63 64/* side effect: changes *lsp to cosines of lsp */ 65void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m, 66 float amp,float ampoffset){ 67 int i; 68 float wdel=M_PI/ln; 69 vorbis_fpu_control fpu; 70 71 vorbis_fpu_setround(&fpu); 72 for(i=0;i<m;i++)lsp[i]=vorbis_coslook(lsp[i]); 73 74 i=0; 75 while(i<n){ 76 int k=map[i]; 77 int qexp; 78 float p=.7071067812f; 79 float q=.7071067812f; 80 float w=vorbis_coslook(wdel*k); 81 float *ftmp=lsp; 82 int c=m>>1; 83 84 do{ 85 q*=ftmp[0]-w; 86 p*=ftmp[1]-w; 87 ftmp+=2; 88 }while(--c); 89 90 if(m&1){ 91 /* odd order filter; slightly assymetric */ 92 /* the last coefficient */ 93 q*=ftmp[0]-w; 94 q*=q; 95 p*=p*(1.f-w*w); 96 }else{ 97 /* even order filter; still symmetric */ 98 q*=q*(1.f+w); 99 p*=p*(1.f-w); 100 } 101 102 q=frexp(p+q,&qexp); 103 q=vorbis_fromdBlook(amp* 104 vorbis_invsqlook(q)* 105 vorbis_invsq2explook(qexp+m)- 106 ampoffset); 107 108 do{ 109 curve[i++]*=q; 110 }while(map[i]==k); 111 } 112 vorbis_fpu_restore(fpu); 113} 114 115#else 116 117#ifdef INT_LOOKUP 118#include "lookup.c" /* catch this in the build system; we #include for 119 compilers (like gcc) that can't inline across 120 modules */ 121 122static const int MLOOP_1[64]={ 123 0,10,11,11, 12,12,12,12, 13,13,13,13, 13,13,13,13, 124 14,14,14,14, 14,14,14,14, 14,14,14,14, 14,14,14,14, 125 15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15, 126 15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15, 127}; 128 129static const int MLOOP_2[64]={ 130 0,4,5,5, 6,6,6,6, 7,7,7,7, 7,7,7,7, 131 8,8,8,8, 8,8,8,8, 8,8,8,8, 8,8,8,8, 132 9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9, 133 9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9, 134}; 135 136static const int MLOOP_3[8]={0,1,2,2,3,3,3,3}; 137 138 139/* side effect: changes *lsp to cosines of lsp */ 140void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m, 141 float amp,float ampoffset){ 142 143 /* 0 <= m < 256 */ 144 145 /* set up for using all int later */ 146 int i; 147 int ampoffseti=rint(ampoffset*4096.f); 148 int ampi=rint(amp*16.f); 149 long *ilsp=alloca(m*sizeof(*ilsp)); 150 for(i=0;i<m;i++)ilsp[i]=vorbis_coslook_i(lsp[i]/M_PI*65536.f+.5f); 151 152 i=0; 153 while(i<n){ 154 int j,k=map[i]; 155 unsigned long pi=46341; /* 2**-.5 in 0.16 */ 156 unsigned long qi=46341; 157 int qexp=0,shift; 158 long wi=vorbis_coslook_i(k*65536/ln); 159 160 qi*=labs(ilsp[0]-wi); 161 pi*=labs(ilsp[1]-wi); 162 163 for(j=3;j<m;j+=2){ 164 if(!(shift=MLOOP_1[(pi|qi)>>25])) 165 if(!(shift=MLOOP_2[(pi|qi)>>19])) 166 shift=MLOOP_3[(pi|qi)>>16]; 167 qi=(qi>>shift)*labs(ilsp[j-1]-wi); 168 pi=(pi>>shift)*labs(ilsp[j]-wi); 169 qexp+=shift; 170 } 171 if(!(shift=MLOOP_1[(pi|qi)>>25])) 172 if(!(shift=MLOOP_2[(pi|qi)>>19])) 173 shift=MLOOP_3[(pi|qi)>>16]; 174 175 /* pi,qi normalized collectively, both tracked using qexp */ 176 177 if(m&1){ 178 /* odd order filter; slightly assymetric */ 179 /* the last coefficient */ 180 qi=(qi>>shift)*labs(ilsp[j-1]-wi); 181 pi=(pi>>shift)<<14; 182 qexp+=shift; 183 184 if(!(shift=MLOOP_1[(pi|qi)>>25])) 185 if(!(shift=MLOOP_2[(pi|qi)>>19])) 186 shift=MLOOP_3[(pi|qi)>>16]; 187 188 pi>>=shift; 189 qi>>=shift; 190 qexp+=shift-14*((m+1)>>1); 191 192 pi=((pi*pi)>>16); 193 qi=((qi*qi)>>16); 194 qexp=qexp*2+m; 195 196 pi*=(1<<14)-((wi*wi)>>14); 197 qi+=pi>>14; 198 199 }else{ 200 /* even order filter; still symmetric */ 201 202 /* p*=p(1-w), q*=q(1+w), let normalization drift because it isn't 203 worth tracking step by step */ 204 205 pi>>=shift; 206 qi>>=shift; 207 qexp+=shift-7*m; 208 209 pi=((pi*pi)>>16); 210 qi=((qi*qi)>>16); 211 qexp=qexp*2+m; 212 213 pi*=(1<<14)-wi; 214 qi*=(1<<14)+wi; 215 qi=(qi+pi)>>14; 216 217 } 218 219 220 /* we've let the normalization drift because it wasn't important; 221 however, for the lookup, things must be normalized again. We 222 need at most one right shift or a number of left shifts */ 223 224 if(qi&0xffff0000){ /* checks for 1.xxxxxxxxxxxxxxxx */ 225 qi>>=1; qexp++; 226 }else 227 while(qi && !(qi&0x8000)){ /* checks for 0.0xxxxxxxxxxxxxxx or less*/ 228 qi<<=1; qexp--; 229 } 230 231 amp=vorbis_fromdBlook_i(ampi* /* n.4 */ 232 vorbis_invsqlook_i(qi,qexp)- 233 /* m.8, m+n<=8 */ 234 ampoffseti); /* 8.12[0] */ 235 236 curve[i]*=amp; 237 while(map[++i]==k)curve[i]*=amp; 238 } 239} 240 241#else 242 243/* old, nonoptimized but simple version for any poor sap who needs to 244 figure out what the hell this code does, or wants the other 245 fraction of a dB precision */ 246 247/* side effect: changes *lsp to cosines of lsp */ 248void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m, 249 float amp,float ampoffset){ 250 int i; 251 float wdel=M_PI/ln; 252 for(i=0;i<m;i++)lsp[i]=2.f*cos(lsp[i]); 253 254 i=0; 255 while(i<n){ 256 int j,k=map[i]; 257 float p=.5f; 258 float q=.5f; 259 float w=2.f*cos(wdel*k); 260 for(j=1;j<m;j+=2){ 261 q *= w-lsp[j-1]; 262 p *= w-lsp[j]; 263 } 264 if(j==m){ 265 /* odd order filter; slightly assymetric */ 266 /* the last coefficient */ 267 q*=w-lsp[j-1]; 268 p*=p*(4.f-w*w); 269 q*=q; 270 }else{ 271 /* even order filter; still symmetric */ 272 p*=p*(2.f-w); 273 q*=q*(2.f+w); 274 } 275 276 q=fromdB(amp/sqrt(p+q)-ampoffset); 277 278 curve[i]*=q; 279 while(map[++i]==k)curve[i]*=q; 280 } 281} 282 283#endif 284#endif 285 286static void cheby(float *g, int ord) { 287 int i, j; 288 289 g[0] *= .5f; 290 for(i=2; i<= ord; i++) { 291 for(j=ord; j >= i; j--) { 292 g[j-2] -= g[j]; 293 g[j] += g[j]; 294 } 295 } 296} 297 298static int comp(const void *a,const void *b){ 299 return (*(float *)a<*(float *)b)-(*(float *)a>*(float *)b); 300} 301 302/* Newton-Raphson-Maehly actually functioned as a decent root finder, 303 but there are root sets for which it gets into limit cycles 304 (exacerbated by zero suppression) and fails. We can't afford to 305 fail, even if the failure is 1 in 100,000,000, so we now use 306 Laguerre and later polish with Newton-Raphson (which can then 307 afford to fail) */ 308 309#define EPSILON 10e-7 310static int Laguerre_With_Deflation(float *a,int ord,float *r){ 311 int i,m; 312 double lastdelta=0.f; 313 double *defl=alloca(sizeof(*defl)*(ord+1)); 314 for(i=0;i<=ord;i++)defl[i]=a[i]; 315 316 for(m=ord;m>0;m--){ 317 double new=0.f,delta; 318 319 /* iterate a root */ 320 while(1){ 321 double p=defl[m],pp=0.f,ppp=0.f,denom; 322 323 /* eval the polynomial and its first two derivatives */ 324 for(i=m;i>0;i--){ 325 ppp = new*ppp + pp; 326 pp = new*pp + p; 327 p = new*p + defl[i-1]; 328 } 329 330 /* Laguerre's method */ 331 denom=(m-1) * ((m-1)*pp*pp - m*p*ppp); 332 if(denom<0) 333 return(-1); /* complex root! The LPC generator handed us a bad filter */ 334 335 if(pp>0){ 336 denom = pp + sqrt(denom); 337 if(denom<EPSILON)denom=EPSILON; 338 }else{ 339 denom = pp - sqrt(denom); 340 if(denom>-(EPSILON))denom=-(EPSILON); 341 } 342 343 delta = m*p/denom; 344 new -= delta; 345 346 if(delta<0.f)delta*=-1; 347 348 if(fabs(delta/new)<10e-12)break; 349 lastdelta=delta; 350 } 351 352 r[m-1]=new; 353 354 /* forward deflation */ 355 356 for(i=m;i>0;i--) 357 defl[i-1]+=new*defl[i]; 358 defl++; 359 360 } 361 return(0); 362} 363 364 365/* for spit-and-polish only */ 366static int Newton_Raphson(float *a,int ord,float *r){ 367 int i, k, count=0; 368 double error=1.f; 369 double *root=alloca(ord*sizeof(*root)); 370 371 for(i=0; i<ord;i++) root[i] = r[i]; 372 373 while(error>1e-20){ 374 error=0; 375 376 for(i=0; i<ord; i++) { /* Update each point. */ 377 double pp=0.,delta; 378 double rooti=root[i]; 379 double p=a[ord]; 380 for(k=ord-1; k>= 0; k--) { 381 382 pp= pp* rooti + p; 383 p = p * rooti + a[k]; 384 } 385 386 delta = p/pp; 387 root[i] -= delta; 388 error+= delta*delta; 389 } 390 391 if(count>40)return(-1); 392 393 count++; 394 } 395 396 /* Replaced the original bubble sort with a real sort. With your 397 help, we can eliminate the bubble sort in our lifetime. --Monty */ 398 399 for(i=0; i<ord;i++) r[i] = root[i]; 400 return(0); 401} 402 403 404/* Convert lpc coefficients to lsp coefficients */ 405int vorbis_lpc_to_lsp(float *lpc,float *lsp,int m){ 406 int order2=(m+1)>>1; 407 int g1_order,g2_order; 408 float *g1=alloca(sizeof(*g1)*(order2+1)); 409 float *g2=alloca(sizeof(*g2)*(order2+1)); 410 float *g1r=alloca(sizeof(*g1r)*(order2+1)); 411 float *g2r=alloca(sizeof(*g2r)*(order2+1)); 412 int i; 413 414 /* even and odd are slightly different base cases */ 415 g1_order=(m+1)>>1; 416 g2_order=(m) >>1; 417 418 /* Compute the lengths of the x polynomials. */ 419 /* Compute the first half of K & R F1 & F2 polynomials. */ 420 /* Compute half of the symmetric and antisymmetric polynomials. */ 421 /* Remove the roots at +1 and -1. */ 422 423 g1[g1_order] = 1.f; 424 for(i=1;i<=g1_order;i++) g1[g1_order-i] = lpc[i-1]+lpc[m-i]; 425 g2[g2_order] = 1.f; 426 for(i=1;i<=g2_order;i++) g2[g2_order-i] = lpc[i-1]-lpc[m-i]; 427 428 if(g1_order>g2_order){ 429 for(i=2; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+2]; 430 }else{ 431 for(i=1; i<=g1_order;i++) g1[g1_order-i] -= g1[g1_order-i+1]; 432 for(i=1; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+1]; 433 } 434 435 /* Convert into polynomials in cos(alpha) */ 436 cheby(g1,g1_order); 437 cheby(g2,g2_order); 438 439 /* Find the roots of the 2 even polynomials.*/ 440 if(Laguerre_With_Deflation(g1,g1_order,g1r) || 441 Laguerre_With_Deflation(g2,g2_order,g2r)) 442 return(-1); 443 444 Newton_Raphson(g1,g1_order,g1r); /* if it fails, it leaves g1r alone */ 445 Newton_Raphson(g2,g2_order,g2r); /* if it fails, it leaves g2r alone */ 446 447 qsort(g1r,g1_order,sizeof(*g1r),comp); 448 qsort(g2r,g2_order,sizeof(*g2r),comp); 449 450 for(i=0;i<g1_order;i++) 451 lsp[i*2] = acos(g1r[i]); 452 453 for(i=0;i<g2_order;i++) 454 lsp[i*2+1] = acos(g2r[i]); 455 return(0); 456} 457