ssim.c revision 7ce0a1d1337c01056ba24006efab21f00e179e04
1/*
2 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 *  Use of this source code is governed by a BSD-style license
5 *  that can be found in the LICENSE file in the root of the source
6 *  tree. An additional intellectual property rights grant can be found
7 *  in the file PATENTS.  All contributing project authors may
8 *  be found in the AUTHORS file in the root of the source tree.
9 */
10
11#include <math.h>
12#include "./vpx_dsp_rtcd.h"
13#include "vpx_dsp/ssim.h"
14#include "vpx_ports/mem.h"
15#include "vpx_ports/system_state.h"
16
17void vpx_ssim_parms_16x16_c(const uint8_t *s, int sp, const uint8_t *r,
18                            int rp, uint32_t *sum_s, uint32_t *sum_r,
19                            uint32_t *sum_sq_s, uint32_t *sum_sq_r,
20                            uint32_t *sum_sxr) {
21  int i, j;
22  for (i = 0; i < 16; i++, s += sp, r += rp) {
23    for (j = 0; j < 16; j++) {
24      *sum_s += s[j];
25      *sum_r += r[j];
26      *sum_sq_s += s[j] * s[j];
27      *sum_sq_r += r[j] * r[j];
28      *sum_sxr += s[j] * r[j];
29    }
30  }
31}
32void vpx_ssim_parms_8x8_c(const uint8_t *s, int sp, const uint8_t *r, int rp,
33                          uint32_t *sum_s, uint32_t *sum_r,
34                          uint32_t *sum_sq_s, uint32_t *sum_sq_r,
35                          uint32_t *sum_sxr) {
36  int i, j;
37  for (i = 0; i < 8; i++, s += sp, r += rp) {
38    for (j = 0; j < 8; j++) {
39      *sum_s += s[j];
40      *sum_r += r[j];
41      *sum_sq_s += s[j] * s[j];
42      *sum_sq_r += r[j] * r[j];
43      *sum_sxr += s[j] * r[j];
44    }
45  }
46}
47
48#if CONFIG_VP9_HIGHBITDEPTH
49void vpx_highbd_ssim_parms_8x8_c(const uint16_t *s, int sp,
50                                 const uint16_t *r, int rp,
51                                 uint32_t *sum_s, uint32_t *sum_r,
52                                 uint32_t *sum_sq_s, uint32_t *sum_sq_r,
53                                 uint32_t *sum_sxr) {
54  int i, j;
55  for (i = 0; i < 8; i++, s += sp, r += rp) {
56    for (j = 0; j < 8; j++) {
57      *sum_s += s[j];
58      *sum_r += r[j];
59      *sum_sq_s += s[j] * s[j];
60      *sum_sq_r += r[j] * r[j];
61      *sum_sxr += s[j] * r[j];
62    }
63  }
64}
65#endif  // CONFIG_VP9_HIGHBITDEPTH
66
67static const int64_t cc1 =  26634;  // (64^2*(.01*255)^2
68static const int64_t cc2 = 239708;  // (64^2*(.03*255)^2
69
70static double similarity(uint32_t sum_s, uint32_t sum_r,
71                         uint32_t sum_sq_s, uint32_t sum_sq_r,
72                         uint32_t sum_sxr, int count) {
73  int64_t ssim_n, ssim_d;
74  int64_t c1, c2;
75
76  // scale the constants by number of pixels
77  c1 = (cc1 * count * count) >> 12;
78  c2 = (cc2 * count * count) >> 12;
79
80  ssim_n = (2 * sum_s * sum_r + c1) * ((int64_t) 2 * count * sum_sxr -
81                                       (int64_t) 2 * sum_s * sum_r + c2);
82
83  ssim_d = (sum_s * sum_s + sum_r * sum_r + c1) *
84           ((int64_t)count * sum_sq_s - (int64_t)sum_s * sum_s +
85            (int64_t)count * sum_sq_r - (int64_t) sum_r * sum_r + c2);
86
87  return ssim_n * 1.0 / ssim_d;
88}
89
90static double ssim_8x8(const uint8_t *s, int sp, const uint8_t *r, int rp) {
91  uint32_t sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0;
92  vpx_ssim_parms_8x8(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r,
93                     &sum_sxr);
94  return similarity(sum_s, sum_r, sum_sq_s, sum_sq_r, sum_sxr, 64);
95}
96
97#if CONFIG_VP9_HIGHBITDEPTH
98static double highbd_ssim_8x8(const uint16_t *s, int sp, const uint16_t *r,
99                              int rp, unsigned int bd) {
100  uint32_t sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0;
101  const int oshift = bd - 8;
102  vpx_highbd_ssim_parms_8x8(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r,
103                            &sum_sxr);
104  return similarity(sum_s >> oshift,
105                    sum_r >> oshift,
106                    sum_sq_s >> (2 * oshift),
107                    sum_sq_r >> (2 * oshift),
108                    sum_sxr >> (2 * oshift),
109                    64);
110}
111#endif  // CONFIG_VP9_HIGHBITDEPTH
112
113// We are using a 8x8 moving window with starting location of each 8x8 window
114// on the 4x4 pixel grid. Such arrangement allows the windows to overlap
115// block boundaries to penalize blocking artifacts.
116static double vpx_ssim2(const uint8_t *img1, const uint8_t *img2,
117                        int stride_img1, int stride_img2, int width,
118                        int height) {
119  int i, j;
120  int samples = 0;
121  double ssim_total = 0;
122
123  // sample point start with each 4x4 location
124  for (i = 0; i <= height - 8;
125       i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) {
126    for (j = 0; j <= width - 8; j += 4) {
127      double v = ssim_8x8(img1 + j, stride_img1, img2 + j, stride_img2);
128      ssim_total += v;
129      samples++;
130    }
131  }
132  ssim_total /= samples;
133  return ssim_total;
134}
135
136#if CONFIG_VP9_HIGHBITDEPTH
137static double vpx_highbd_ssim2(const uint8_t *img1, const uint8_t *img2,
138                               int stride_img1, int stride_img2, int width,
139                               int height, unsigned int bd) {
140  int i, j;
141  int samples = 0;
142  double ssim_total = 0;
143
144  // sample point start with each 4x4 location
145  for (i = 0; i <= height - 8;
146       i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) {
147    for (j = 0; j <= width - 8; j += 4) {
148      double v = highbd_ssim_8x8(CONVERT_TO_SHORTPTR(img1 + j), stride_img1,
149                                 CONVERT_TO_SHORTPTR(img2 + j), stride_img2,
150                                 bd);
151      ssim_total += v;
152      samples++;
153    }
154  }
155  ssim_total /= samples;
156  return ssim_total;
157}
158#endif  // CONFIG_VP9_HIGHBITDEPTH
159
160double vpx_calc_ssim(const YV12_BUFFER_CONFIG *source,
161                     const YV12_BUFFER_CONFIG *dest,
162                     double *weight) {
163  double a, b, c;
164  double ssimv;
165
166  a = vpx_ssim2(source->y_buffer, dest->y_buffer,
167                source->y_stride, dest->y_stride,
168                source->y_crop_width, source->y_crop_height);
169
170  b = vpx_ssim2(source->u_buffer, dest->u_buffer,
171                source->uv_stride, dest->uv_stride,
172                source->uv_crop_width, source->uv_crop_height);
173
174  c = vpx_ssim2(source->v_buffer, dest->v_buffer,
175                source->uv_stride, dest->uv_stride,
176                source->uv_crop_width, source->uv_crop_height);
177
178  ssimv = a * .8 + .1 * (b + c);
179
180  *weight = 1;
181
182  return ssimv;
183}
184
185double vpx_calc_ssimg(const YV12_BUFFER_CONFIG *source,
186                      const YV12_BUFFER_CONFIG *dest,
187                      double *ssim_y, double *ssim_u, double *ssim_v) {
188  double ssim_all = 0;
189  double a, b, c;
190
191  a = vpx_ssim2(source->y_buffer, dest->y_buffer,
192                source->y_stride, dest->y_stride,
193                source->y_crop_width, source->y_crop_height);
194
195  b = vpx_ssim2(source->u_buffer, dest->u_buffer,
196                source->uv_stride, dest->uv_stride,
197                source->uv_crop_width, source->uv_crop_height);
198
199  c = vpx_ssim2(source->v_buffer, dest->v_buffer,
200                source->uv_stride, dest->uv_stride,
201                source->uv_crop_width, source->uv_crop_height);
202  *ssim_y = a;
203  *ssim_u = b;
204  *ssim_v = c;
205  ssim_all = (a * 4 + b + c) / 6;
206
207  return ssim_all;
208}
209
210// traditional ssim as per: http://en.wikipedia.org/wiki/Structural_similarity
211//
212// Re working out the math ->
213//
214// ssim(x,y) =  (2*mean(x)*mean(y) + c1)*(2*cov(x,y)+c2) /
215//   ((mean(x)^2+mean(y)^2+c1)*(var(x)+var(y)+c2))
216//
217// mean(x) = sum(x) / n
218//
219// cov(x,y) = (n*sum(xi*yi)-sum(x)*sum(y))/(n*n)
220//
221// var(x) = (n*sum(xi*xi)-sum(xi)*sum(xi))/(n*n)
222//
223// ssim(x,y) =
224//   (2*sum(x)*sum(y)/(n*n) + c1)*(2*(n*sum(xi*yi)-sum(x)*sum(y))/(n*n)+c2) /
225//   (((sum(x)*sum(x)+sum(y)*sum(y))/(n*n) +c1) *
226//    ((n*sum(xi*xi) - sum(xi)*sum(xi))/(n*n)+
227//     (n*sum(yi*yi) - sum(yi)*sum(yi))/(n*n)+c2)))
228//
229// factoring out n*n
230//
231// ssim(x,y) =
232//   (2*sum(x)*sum(y) + n*n*c1)*(2*(n*sum(xi*yi)-sum(x)*sum(y))+n*n*c2) /
233//   (((sum(x)*sum(x)+sum(y)*sum(y)) + n*n*c1) *
234//    (n*sum(xi*xi)-sum(xi)*sum(xi)+n*sum(yi*yi)-sum(yi)*sum(yi)+n*n*c2))
235//
236// Replace c1 with n*n * c1 for the final step that leads to this code:
237// The final step scales by 12 bits so we don't lose precision in the constants.
238
239static double ssimv_similarity(const Ssimv *sv, int64_t n) {
240  // Scale the constants by number of pixels.
241  const int64_t c1 = (cc1 * n * n) >> 12;
242  const int64_t c2 = (cc2 * n * n) >> 12;
243
244  const double l = 1.0 * (2 * sv->sum_s * sv->sum_r + c1) /
245      (sv->sum_s * sv->sum_s + sv->sum_r * sv->sum_r + c1);
246
247  // Since these variables are unsigned sums, convert to double so
248  // math is done in double arithmetic.
249  const double v = (2.0 * n * sv->sum_sxr - 2 * sv->sum_s * sv->sum_r + c2)
250      / (n * sv->sum_sq_s - sv->sum_s * sv->sum_s + n * sv->sum_sq_r
251         - sv->sum_r * sv->sum_r + c2);
252
253  return l * v;
254}
255
256// The first term of the ssim metric is a luminance factor.
257//
258// (2*mean(x)*mean(y) + c1)/ (mean(x)^2+mean(y)^2+c1)
259//
260// This luminance factor is super sensitive to the dark side of luminance
261// values and completely insensitive on the white side.  check out 2 sets
262// (1,3) and (250,252) the term gives ( 2*1*3/(1+9) = .60
263// 2*250*252/ (250^2+252^2) => .99999997
264//
265// As a result in this tweaked version of the calculation in which the
266// luminance is taken as percentage off from peak possible.
267//
268// 255 * 255 - (sum_s - sum_r) / count * (sum_s - sum_r) / count
269//
270static double ssimv_similarity2(const Ssimv *sv, int64_t n) {
271  // Scale the constants by number of pixels.
272  const int64_t c1 = (cc1 * n * n) >> 12;
273  const int64_t c2 = (cc2 * n * n) >> 12;
274
275  const double mean_diff = (1.0 * sv->sum_s - sv->sum_r) / n;
276  const double l = (255 * 255 - mean_diff * mean_diff + c1) / (255 * 255 + c1);
277
278  // Since these variables are unsigned, sums convert to double so
279  // math is done in double arithmetic.
280  const double v = (2.0 * n * sv->sum_sxr - 2 * sv->sum_s * sv->sum_r + c2)
281      / (n * sv->sum_sq_s - sv->sum_s * sv->sum_s +
282         n * sv->sum_sq_r - sv->sum_r * sv->sum_r + c2);
283
284  return l * v;
285}
286static void ssimv_parms(uint8_t *img1, int img1_pitch, uint8_t *img2,
287                        int img2_pitch, Ssimv *sv) {
288  vpx_ssim_parms_8x8(img1, img1_pitch, img2, img2_pitch,
289                     &sv->sum_s, &sv->sum_r, &sv->sum_sq_s, &sv->sum_sq_r,
290                     &sv->sum_sxr);
291}
292
293double vpx_get_ssim_metrics(uint8_t *img1, int img1_pitch,
294                            uint8_t *img2, int img2_pitch,
295                            int width, int height,
296                            Ssimv *sv2, Metrics *m,
297                            int do_inconsistency) {
298  double dssim_total = 0;
299  double ssim_total = 0;
300  double ssim2_total = 0;
301  double inconsistency_total = 0;
302  int i, j;
303  int c = 0;
304  double norm;
305  double old_ssim_total = 0;
306  vpx_clear_system_state();
307  // We can sample points as frequently as we like start with 1 per 4x4.
308  for (i = 0; i < height; i += 4,
309       img1 += img1_pitch * 4, img2 += img2_pitch * 4) {
310    for (j = 0; j < width; j += 4, ++c) {
311      Ssimv sv = {0};
312      double ssim;
313      double ssim2;
314      double dssim;
315      uint32_t var_new;
316      uint32_t var_old;
317      uint32_t mean_new;
318      uint32_t mean_old;
319      double ssim_new;
320      double ssim_old;
321
322      // Not sure there's a great way to handle the edge pixels
323      // in ssim when using a window. Seems biased against edge pixels
324      // however you handle this. This uses only samples that are
325      // fully in the frame.
326      if (j + 8 <= width && i + 8 <= height) {
327        ssimv_parms(img1 + j, img1_pitch, img2 + j, img2_pitch, &sv);
328      }
329
330      ssim = ssimv_similarity(&sv, 64);
331      ssim2 = ssimv_similarity2(&sv, 64);
332
333      sv.ssim = ssim2;
334
335      // dssim is calculated to use as an actual error metric and
336      // is scaled up to the same range as sum square error.
337      // Since we are subsampling every 16th point maybe this should be
338      // *16 ?
339      dssim = 255 * 255 * (1 - ssim2) / 2;
340
341      // Here I introduce a new error metric: consistency-weighted
342      // SSIM-inconsistency.  This metric isolates frames where the
343      // SSIM 'suddenly' changes, e.g. if one frame in every 8 is much
344      // sharper or blurrier than the others. Higher values indicate a
345      // temporally inconsistent SSIM. There are two ideas at work:
346      //
347      // 1) 'SSIM-inconsistency': the total inconsistency value
348      // reflects how much SSIM values are changing between this
349      // source / reference frame pair and the previous pair.
350      //
351      // 2) 'consistency-weighted': weights de-emphasize areas in the
352      // frame where the scene content has changed. Changes in scene
353      // content are detected via changes in local variance and local
354      // mean.
355      //
356      // Thus the overall measure reflects how inconsistent the SSIM
357      // values are, over consistent regions of the frame.
358      //
359      // The metric has three terms:
360      //
361      // term 1 -> uses change in scene Variance to weight error score
362      //  2 * var(Fi)*var(Fi-1) / (var(Fi)^2+var(Fi-1)^2)
363      //  larger changes from one frame to the next mean we care
364      //  less about consistency.
365      //
366      // term 2 -> uses change in local scene luminance to weight error
367      //  2 * avg(Fi)*avg(Fi-1) / (avg(Fi)^2+avg(Fi-1)^2)
368      //  larger changes from one frame to the next mean we care
369      //  less about consistency.
370      //
371      // term3 -> measures inconsistency in ssim scores between frames
372      //   1 - ( 2 * ssim(Fi)*ssim(Fi-1)/(ssim(Fi)^2+sssim(Fi-1)^2).
373      //
374      // This term compares the ssim score for the same location in 2
375      // subsequent frames.
376      var_new = sv.sum_sq_s - sv.sum_s * sv.sum_s / 64;
377      var_old = sv2[c].sum_sq_s - sv2[c].sum_s * sv2[c].sum_s / 64;
378      mean_new = sv.sum_s;
379      mean_old = sv2[c].sum_s;
380      ssim_new = sv.ssim;
381      ssim_old = sv2[c].ssim;
382
383      if (do_inconsistency) {
384        // We do the metric once for every 4x4 block in the image. Since
385        // we are scaling the error to SSE for use in a psnr calculation
386        // 1.0 = 4x4x255x255 the worst error we can possibly have.
387        static const double kScaling = 4. * 4 * 255 * 255;
388
389        // The constants have to be non 0 to avoid potential divide by 0
390        // issues other than that they affect kind of a weighting between
391        // the terms.  No testing of what the right terms should be has been
392        // done.
393        static const double c1 = 1, c2 = 1, c3 = 1;
394
395        // This measures how much consistent variance is in two consecutive
396        // source frames. 1.0 means they have exactly the same variance.
397        const double variance_term = (2.0 * var_old * var_new + c1) /
398            (1.0 * var_old * var_old + 1.0 * var_new * var_new + c1);
399
400        // This measures how consistent the local mean are between two
401        // consecutive frames. 1.0 means they have exactly the same mean.
402        const double mean_term = (2.0 * mean_old * mean_new + c2) /
403            (1.0 * mean_old * mean_old + 1.0 * mean_new * mean_new + c2);
404
405        // This measures how consistent the ssims of two
406        // consecutive frames is. 1.0 means they are exactly the same.
407        double ssim_term = pow((2.0 * ssim_old * ssim_new + c3) /
408                               (ssim_old * ssim_old + ssim_new * ssim_new + c3),
409                               5);
410
411        double this_inconsistency;
412
413        // Floating point math sometimes makes this > 1 by a tiny bit.
414        // We want the metric to scale between 0 and 1.0 so we can convert
415        // it to an snr scaled value.
416        if (ssim_term > 1)
417          ssim_term = 1;
418
419        // This converts the consistency metric to an inconsistency metric
420        // ( so we can scale it like psnr to something like sum square error.
421        // The reason for the variance and mean terms is the assumption that
422        // if there are big changes in the source we shouldn't penalize
423        // inconsistency in ssim scores a bit less as it will be less visible
424        // to the user.
425        this_inconsistency = (1 - ssim_term) * variance_term * mean_term;
426
427        this_inconsistency *= kScaling;
428        inconsistency_total += this_inconsistency;
429      }
430      sv2[c] = sv;
431      ssim_total += ssim;
432      ssim2_total += ssim2;
433      dssim_total += dssim;
434
435      old_ssim_total += ssim_old;
436    }
437    old_ssim_total += 0;
438  }
439
440  norm = 1. / (width / 4) / (height / 4);
441  ssim_total *= norm;
442  ssim2_total *= norm;
443  m->ssim2 = ssim2_total;
444  m->ssim = ssim_total;
445  if (old_ssim_total == 0)
446    inconsistency_total = 0;
447
448  m->ssimc = inconsistency_total;
449
450  m->dssim = dssim_total;
451  return inconsistency_total;
452}
453
454
455#if CONFIG_VP9_HIGHBITDEPTH
456double vpx_highbd_calc_ssim(const YV12_BUFFER_CONFIG *source,
457                            const YV12_BUFFER_CONFIG *dest,
458                            double *weight, unsigned int bd) {
459  double a, b, c;
460  double ssimv;
461
462  a = vpx_highbd_ssim2(source->y_buffer, dest->y_buffer,
463                       source->y_stride, dest->y_stride,
464                       source->y_crop_width, source->y_crop_height, bd);
465
466  b = vpx_highbd_ssim2(source->u_buffer, dest->u_buffer,
467                       source->uv_stride, dest->uv_stride,
468                       source->uv_crop_width, source->uv_crop_height, bd);
469
470  c = vpx_highbd_ssim2(source->v_buffer, dest->v_buffer,
471                       source->uv_stride, dest->uv_stride,
472                       source->uv_crop_width, source->uv_crop_height, bd);
473
474  ssimv = a * .8 + .1 * (b + c);
475
476  *weight = 1;
477
478  return ssimv;
479}
480
481double vpx_highbd_calc_ssimg(const YV12_BUFFER_CONFIG *source,
482                             const YV12_BUFFER_CONFIG *dest, double *ssim_y,
483                             double *ssim_u, double *ssim_v, unsigned int bd) {
484  double ssim_all = 0;
485  double a, b, c;
486
487  a = vpx_highbd_ssim2(source->y_buffer, dest->y_buffer,
488                       source->y_stride, dest->y_stride,
489                       source->y_crop_width, source->y_crop_height, bd);
490
491  b = vpx_highbd_ssim2(source->u_buffer, dest->u_buffer,
492                       source->uv_stride, dest->uv_stride,
493                       source->uv_crop_width, source->uv_crop_height, bd);
494
495  c = vpx_highbd_ssim2(source->v_buffer, dest->v_buffer,
496                       source->uv_stride, dest->uv_stride,
497                       source->uv_crop_width, source->uv_crop_height, bd);
498  *ssim_y = a;
499  *ssim_u = b;
500  *ssim_v = c;
501  ssim_all = (a * 4 + b + c) / 6;
502
503  return ssim_all;
504}
505#endif  // CONFIG_VP9_HIGHBITDEPTH
506