vpx_subpixel_8t_intrin_avx2.c revision 7ce0a1d1337c01056ba24006efab21f00e179e04
1/*
2 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 *  Use of this source code is governed by a BSD-style license
5 *  that can be found in the LICENSE file in the root of the source
6 *  tree. An additional intellectual property rights grant can be found
7 *  in the file PATENTS.  All contributing project authors may
8 *  be found in the AUTHORS file in the root of the source tree.
9 */
10
11// Due to a header conflict between math.h and intrinsics includes with ceil()
12// in certain configurations under vs9 this include needs to precede
13// immintrin.h.
14
15#include <immintrin.h>
16
17#include "./vpx_dsp_rtcd.h"
18#include "vpx_dsp/x86/convolve.h"
19#include "vpx_ports/mem.h"
20
21// filters for 16_h8 and 16_v8
22DECLARE_ALIGNED(32, static const uint8_t, filt1_global_avx2[32]) = {
23  0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8,
24  0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8
25};
26
27DECLARE_ALIGNED(32, static const uint8_t, filt2_global_avx2[32]) = {
28  2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10,
29  2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10
30};
31
32DECLARE_ALIGNED(32, static const uint8_t, filt3_global_avx2[32]) = {
33  4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12,
34  4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12
35};
36
37DECLARE_ALIGNED(32, static const uint8_t, filt4_global_avx2[32]) = {
38  6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14,
39  6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14
40};
41
42#if defined(__clang__)
43# if __clang_major__ < 3 || (__clang_major__ == 3 && __clang_minor__ <= 3) || \
44      (defined(__APPLE__) && __clang_major__ == 5 && __clang_minor__ == 0)
45#  define MM256_BROADCASTSI128_SI256(x) \
46       _mm_broadcastsi128_si256((__m128i const *)&(x))
47# else  // clang > 3.3, and not 5.0 on macosx.
48#  define MM256_BROADCASTSI128_SI256(x) _mm256_broadcastsi128_si256(x)
49# endif  // clang <= 3.3
50#elif defined(__GNUC__)
51# if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 6)
52#  define MM256_BROADCASTSI128_SI256(x) \
53       _mm_broadcastsi128_si256((__m128i const *)&(x))
54# elif __GNUC__ == 4 && __GNUC_MINOR__ == 7
55#  define MM256_BROADCASTSI128_SI256(x) _mm_broadcastsi128_si256(x)
56# else  // gcc > 4.7
57#  define MM256_BROADCASTSI128_SI256(x) _mm256_broadcastsi128_si256(x)
58# endif  // gcc <= 4.6
59#else  // !(gcc || clang)
60# define MM256_BROADCASTSI128_SI256(x) _mm256_broadcastsi128_si256(x)
61#endif  // __clang__
62
63static void vpx_filter_block1d16_h8_avx2(const uint8_t *src_ptr,
64                                         ptrdiff_t src_pixels_per_line,
65                                         uint8_t *output_ptr,
66                                         ptrdiff_t output_pitch,
67                                         uint32_t output_height,
68                                         const int16_t *filter) {
69  __m128i filtersReg;
70  __m256i addFilterReg64, filt1Reg, filt2Reg, filt3Reg, filt4Reg;
71  __m256i firstFilters, secondFilters, thirdFilters, forthFilters;
72  __m256i srcRegFilt32b1_1, srcRegFilt32b2_1, srcRegFilt32b2, srcRegFilt32b3;
73  __m256i srcReg32b1, srcReg32b2, filtersReg32;
74  unsigned int i;
75  ptrdiff_t src_stride, dst_stride;
76
77  // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
78  addFilterReg64 = _mm256_set1_epi32((int)0x0400040u);
79  filtersReg = _mm_loadu_si128((const __m128i *)filter);
80  // converting the 16 bit (short) to 8 bit (byte) and have the same data
81  // in both lanes of 128 bit register.
82  filtersReg =_mm_packs_epi16(filtersReg, filtersReg);
83  // have the same data in both lanes of a 256 bit register
84  filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg);
85
86  // duplicate only the first 16 bits (first and second byte)
87  // across 256 bit register
88  firstFilters = _mm256_shuffle_epi8(filtersReg32,
89                 _mm256_set1_epi16(0x100u));
90  // duplicate only the second 16 bits (third and forth byte)
91  // across 256 bit register
92  secondFilters = _mm256_shuffle_epi8(filtersReg32,
93                  _mm256_set1_epi16(0x302u));
94  // duplicate only the third 16 bits (fifth and sixth byte)
95  // across 256 bit register
96  thirdFilters = _mm256_shuffle_epi8(filtersReg32,
97                 _mm256_set1_epi16(0x504u));
98  // duplicate only the forth 16 bits (seventh and eighth byte)
99  // across 256 bit register
100  forthFilters = _mm256_shuffle_epi8(filtersReg32,
101                 _mm256_set1_epi16(0x706u));
102
103  filt1Reg = _mm256_load_si256((__m256i const *)filt1_global_avx2);
104  filt2Reg = _mm256_load_si256((__m256i const *)filt2_global_avx2);
105  filt3Reg = _mm256_load_si256((__m256i const *)filt3_global_avx2);
106  filt4Reg = _mm256_load_si256((__m256i const *)filt4_global_avx2);
107
108  // multiple the size of the source and destination stride by two
109  src_stride = src_pixels_per_line << 1;
110  dst_stride = output_pitch << 1;
111  for (i = output_height; i > 1; i-=2) {
112    // load the 2 strides of source
113    srcReg32b1 = _mm256_castsi128_si256(
114                 _mm_loadu_si128((const __m128i *)(src_ptr - 3)));
115    srcReg32b1 = _mm256_inserti128_si256(srcReg32b1,
116                 _mm_loadu_si128((const __m128i *)
117                 (src_ptr+src_pixels_per_line-3)), 1);
118
119    // filter the source buffer
120    srcRegFilt32b1_1= _mm256_shuffle_epi8(srcReg32b1, filt1Reg);
121    srcRegFilt32b2= _mm256_shuffle_epi8(srcReg32b1, filt4Reg);
122
123    // multiply 2 adjacent elements with the filter and add the result
124    srcRegFilt32b1_1 = _mm256_maddubs_epi16(srcRegFilt32b1_1, firstFilters);
125    srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, forthFilters);
126
127    // add and saturate the results together
128    srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, srcRegFilt32b2);
129
130    // filter the source buffer
131    srcRegFilt32b3= _mm256_shuffle_epi8(srcReg32b1, filt2Reg);
132    srcRegFilt32b2= _mm256_shuffle_epi8(srcReg32b1, filt3Reg);
133
134    // multiply 2 adjacent elements with the filter and add the result
135    srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters);
136    srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters);
137
138    // add and saturate the results together
139    srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1,
140                       _mm256_min_epi16(srcRegFilt32b3, srcRegFilt32b2));
141
142    // reading 2 strides of the next 16 bytes
143    // (part of it was being read by earlier read)
144    srcReg32b2 = _mm256_castsi128_si256(
145                 _mm_loadu_si128((const __m128i *)(src_ptr + 5)));
146    srcReg32b2 = _mm256_inserti128_si256(srcReg32b2,
147                 _mm_loadu_si128((const __m128i *)
148                 (src_ptr+src_pixels_per_line+5)), 1);
149
150    // add and saturate the results together
151    srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1,
152                       _mm256_max_epi16(srcRegFilt32b3, srcRegFilt32b2));
153
154    // filter the source buffer
155    srcRegFilt32b2_1 = _mm256_shuffle_epi8(srcReg32b2, filt1Reg);
156    srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b2, filt4Reg);
157
158    // multiply 2 adjacent elements with the filter and add the result
159    srcRegFilt32b2_1 = _mm256_maddubs_epi16(srcRegFilt32b2_1, firstFilters);
160    srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, forthFilters);
161
162    // add and saturate the results together
163    srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1, srcRegFilt32b2);
164
165    // filter the source buffer
166    srcRegFilt32b3= _mm256_shuffle_epi8(srcReg32b2, filt2Reg);
167    srcRegFilt32b2= _mm256_shuffle_epi8(srcReg32b2, filt3Reg);
168
169    // multiply 2 adjacent elements with the filter and add the result
170    srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters);
171    srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters);
172
173    // add and saturate the results together
174    srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1,
175                       _mm256_min_epi16(srcRegFilt32b3, srcRegFilt32b2));
176    srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1,
177                       _mm256_max_epi16(srcRegFilt32b3, srcRegFilt32b2));
178
179
180    srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, addFilterReg64);
181
182    srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1, addFilterReg64);
183
184    // shift by 7 bit each 16 bit
185    srcRegFilt32b1_1 = _mm256_srai_epi16(srcRegFilt32b1_1, 7);
186    srcRegFilt32b2_1 = _mm256_srai_epi16(srcRegFilt32b2_1, 7);
187
188    // shrink to 8 bit each 16 bits, the first lane contain the first
189    // convolve result and the second lane contain the second convolve
190    // result
191    srcRegFilt32b1_1 = _mm256_packus_epi16(srcRegFilt32b1_1,
192                                           srcRegFilt32b2_1);
193
194    src_ptr+=src_stride;
195
196    // save 16 bytes
197    _mm_store_si128((__m128i*)output_ptr,
198    _mm256_castsi256_si128(srcRegFilt32b1_1));
199
200    // save the next 16 bits
201    _mm_store_si128((__m128i*)(output_ptr+output_pitch),
202    _mm256_extractf128_si256(srcRegFilt32b1_1, 1));
203    output_ptr+=dst_stride;
204  }
205
206  // if the number of strides is odd.
207  // process only 16 bytes
208  if (i > 0) {
209    __m128i srcReg1, srcReg2, srcRegFilt1_1, srcRegFilt2_1;
210    __m128i srcRegFilt2, srcRegFilt3;
211
212    srcReg1 = _mm_loadu_si128((const __m128i *)(src_ptr - 3));
213
214    // filter the source buffer
215    srcRegFilt1_1 = _mm_shuffle_epi8(srcReg1,
216                    _mm256_castsi256_si128(filt1Reg));
217    srcRegFilt2 = _mm_shuffle_epi8(srcReg1,
218                  _mm256_castsi256_si128(filt4Reg));
219
220    // multiply 2 adjacent elements with the filter and add the result
221    srcRegFilt1_1 = _mm_maddubs_epi16(srcRegFilt1_1,
222                    _mm256_castsi256_si128(firstFilters));
223    srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2,
224                  _mm256_castsi256_si128(forthFilters));
225
226    // add and saturate the results together
227    srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, srcRegFilt2);
228
229    // filter the source buffer
230    srcRegFilt3= _mm_shuffle_epi8(srcReg1,
231                 _mm256_castsi256_si128(filt2Reg));
232    srcRegFilt2= _mm_shuffle_epi8(srcReg1,
233                 _mm256_castsi256_si128(filt3Reg));
234
235    // multiply 2 adjacent elements with the filter and add the result
236    srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3,
237                  _mm256_castsi256_si128(secondFilters));
238    srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2,
239                  _mm256_castsi256_si128(thirdFilters));
240
241    // add and saturate the results together
242    srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1,
243                    _mm_min_epi16(srcRegFilt3, srcRegFilt2));
244
245    // reading the next 16 bytes
246    // (part of it was being read by earlier read)
247    srcReg2 = _mm_loadu_si128((const __m128i *)(src_ptr + 5));
248
249    // add and saturate the results together
250    srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1,
251                    _mm_max_epi16(srcRegFilt3, srcRegFilt2));
252
253    // filter the source buffer
254    srcRegFilt2_1 = _mm_shuffle_epi8(srcReg2,
255                    _mm256_castsi256_si128(filt1Reg));
256    srcRegFilt2 = _mm_shuffle_epi8(srcReg2,
257                  _mm256_castsi256_si128(filt4Reg));
258
259    // multiply 2 adjacent elements with the filter and add the result
260    srcRegFilt2_1 = _mm_maddubs_epi16(srcRegFilt2_1,
261                    _mm256_castsi256_si128(firstFilters));
262    srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2,
263                  _mm256_castsi256_si128(forthFilters));
264
265    // add and saturate the results together
266    srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, srcRegFilt2);
267
268    // filter the source buffer
269    srcRegFilt3 = _mm_shuffle_epi8(srcReg2,
270                  _mm256_castsi256_si128(filt2Reg));
271    srcRegFilt2 = _mm_shuffle_epi8(srcReg2,
272                  _mm256_castsi256_si128(filt3Reg));
273
274    // multiply 2 adjacent elements with the filter and add the result
275    srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3,
276                  _mm256_castsi256_si128(secondFilters));
277    srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2,
278                  _mm256_castsi256_si128(thirdFilters));
279
280    // add and saturate the results together
281    srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1,
282                    _mm_min_epi16(srcRegFilt3, srcRegFilt2));
283    srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1,
284                    _mm_max_epi16(srcRegFilt3, srcRegFilt2));
285
286
287    srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1,
288                    _mm256_castsi256_si128(addFilterReg64));
289
290    srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1,
291                    _mm256_castsi256_si128(addFilterReg64));
292
293    // shift by 7 bit each 16 bit
294    srcRegFilt1_1 = _mm_srai_epi16(srcRegFilt1_1, 7);
295    srcRegFilt2_1 = _mm_srai_epi16(srcRegFilt2_1, 7);
296
297    // shrink to 8 bit each 16 bits, the first lane contain the first
298    // convolve result and the second lane contain the second convolve
299    // result
300    srcRegFilt1_1 = _mm_packus_epi16(srcRegFilt1_1, srcRegFilt2_1);
301
302    // save 16 bytes
303    _mm_store_si128((__m128i*)output_ptr, srcRegFilt1_1);
304  }
305}
306
307static void vpx_filter_block1d16_v8_avx2(const uint8_t *src_ptr,
308                                         ptrdiff_t src_pitch,
309                                         uint8_t *output_ptr,
310                                         ptrdiff_t out_pitch,
311                                         uint32_t output_height,
312                                         const int16_t *filter) {
313  __m128i filtersReg;
314  __m256i addFilterReg64;
315  __m256i srcReg32b1, srcReg32b2, srcReg32b3, srcReg32b4, srcReg32b5;
316  __m256i srcReg32b6, srcReg32b7, srcReg32b8, srcReg32b9, srcReg32b10;
317  __m256i srcReg32b11, srcReg32b12, filtersReg32;
318  __m256i firstFilters, secondFilters, thirdFilters, forthFilters;
319  unsigned int i;
320  ptrdiff_t src_stride, dst_stride;
321
322  // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
323  addFilterReg64 = _mm256_set1_epi32((int)0x0400040u);
324  filtersReg = _mm_loadu_si128((const __m128i *)filter);
325  // converting the 16 bit (short) to  8 bit (byte) and have the
326  // same data in both lanes of 128 bit register.
327  filtersReg =_mm_packs_epi16(filtersReg, filtersReg);
328  // have the same data in both lanes of a 256 bit register
329  filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg);
330
331  // duplicate only the first 16 bits (first and second byte)
332  // across 256 bit register
333  firstFilters = _mm256_shuffle_epi8(filtersReg32,
334                 _mm256_set1_epi16(0x100u));
335  // duplicate only the second 16 bits (third and forth byte)
336  // across 256 bit register
337  secondFilters = _mm256_shuffle_epi8(filtersReg32,
338                  _mm256_set1_epi16(0x302u));
339  // duplicate only the third 16 bits (fifth and sixth byte)
340  // across 256 bit register
341  thirdFilters = _mm256_shuffle_epi8(filtersReg32,
342                 _mm256_set1_epi16(0x504u));
343  // duplicate only the forth 16 bits (seventh and eighth byte)
344  // across 256 bit register
345  forthFilters = _mm256_shuffle_epi8(filtersReg32,
346                 _mm256_set1_epi16(0x706u));
347
348  // multiple the size of the source and destination stride by two
349  src_stride = src_pitch << 1;
350  dst_stride = out_pitch << 1;
351
352  // load 16 bytes 7 times in stride of src_pitch
353  srcReg32b1 = _mm256_castsi128_si256(
354               _mm_loadu_si128((const __m128i *)(src_ptr)));
355  srcReg32b2 = _mm256_castsi128_si256(
356               _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch)));
357  srcReg32b3 = _mm256_castsi128_si256(
358               _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 2)));
359  srcReg32b4 = _mm256_castsi128_si256(
360               _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 3)));
361  srcReg32b5 = _mm256_castsi128_si256(
362               _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 4)));
363  srcReg32b6 = _mm256_castsi128_si256(
364               _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 5)));
365  srcReg32b7 = _mm256_castsi128_si256(
366               _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 6)));
367
368  // have each consecutive loads on the same 256 register
369  srcReg32b1 = _mm256_inserti128_si256(srcReg32b1,
370               _mm256_castsi256_si128(srcReg32b2), 1);
371  srcReg32b2 = _mm256_inserti128_si256(srcReg32b2,
372               _mm256_castsi256_si128(srcReg32b3), 1);
373  srcReg32b3 = _mm256_inserti128_si256(srcReg32b3,
374               _mm256_castsi256_si128(srcReg32b4), 1);
375  srcReg32b4 = _mm256_inserti128_si256(srcReg32b4,
376               _mm256_castsi256_si128(srcReg32b5), 1);
377  srcReg32b5 = _mm256_inserti128_si256(srcReg32b5,
378               _mm256_castsi256_si128(srcReg32b6), 1);
379  srcReg32b6 = _mm256_inserti128_si256(srcReg32b6,
380               _mm256_castsi256_si128(srcReg32b7), 1);
381
382  // merge every two consecutive registers except the last one
383  srcReg32b10 = _mm256_unpacklo_epi8(srcReg32b1, srcReg32b2);
384  srcReg32b1 = _mm256_unpackhi_epi8(srcReg32b1, srcReg32b2);
385
386  // save
387  srcReg32b11 = _mm256_unpacklo_epi8(srcReg32b3, srcReg32b4);
388
389  // save
390  srcReg32b3 = _mm256_unpackhi_epi8(srcReg32b3, srcReg32b4);
391
392  // save
393  srcReg32b2 = _mm256_unpacklo_epi8(srcReg32b5, srcReg32b6);
394
395  // save
396  srcReg32b5 = _mm256_unpackhi_epi8(srcReg32b5, srcReg32b6);
397
398
399  for (i = output_height; i > 1; i-=2) {
400     // load the last 2 loads of 16 bytes and have every two
401     // consecutive loads in the same 256 bit register
402     srcReg32b8 = _mm256_castsi128_si256(
403     _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 7)));
404     srcReg32b7 = _mm256_inserti128_si256(srcReg32b7,
405     _mm256_castsi256_si128(srcReg32b8), 1);
406     srcReg32b9 = _mm256_castsi128_si256(
407     _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 8)));
408     srcReg32b8 = _mm256_inserti128_si256(srcReg32b8,
409     _mm256_castsi256_si128(srcReg32b9), 1);
410
411     // merge every two consecutive registers
412     // save
413     srcReg32b4 = _mm256_unpacklo_epi8(srcReg32b7, srcReg32b8);
414     srcReg32b7 = _mm256_unpackhi_epi8(srcReg32b7, srcReg32b8);
415
416     // multiply 2 adjacent elements with the filter and add the result
417     srcReg32b10 = _mm256_maddubs_epi16(srcReg32b10, firstFilters);
418     srcReg32b6 = _mm256_maddubs_epi16(srcReg32b4, forthFilters);
419
420     // add and saturate the results together
421     srcReg32b10 = _mm256_adds_epi16(srcReg32b10, srcReg32b6);
422
423     // multiply 2 adjacent elements with the filter and add the result
424     srcReg32b8 = _mm256_maddubs_epi16(srcReg32b11, secondFilters);
425     srcReg32b12 = _mm256_maddubs_epi16(srcReg32b2, thirdFilters);
426
427     // add and saturate the results together
428     srcReg32b10 = _mm256_adds_epi16(srcReg32b10,
429                   _mm256_min_epi16(srcReg32b8, srcReg32b12));
430     srcReg32b10 = _mm256_adds_epi16(srcReg32b10,
431                   _mm256_max_epi16(srcReg32b8, srcReg32b12));
432
433     // multiply 2 adjacent elements with the filter and add the result
434     srcReg32b1 = _mm256_maddubs_epi16(srcReg32b1, firstFilters);
435     srcReg32b6 = _mm256_maddubs_epi16(srcReg32b7, forthFilters);
436
437     srcReg32b1 = _mm256_adds_epi16(srcReg32b1, srcReg32b6);
438
439     // multiply 2 adjacent elements with the filter and add the result
440     srcReg32b8 = _mm256_maddubs_epi16(srcReg32b3, secondFilters);
441     srcReg32b12 = _mm256_maddubs_epi16(srcReg32b5, thirdFilters);
442
443     // add and saturate the results together
444     srcReg32b1 = _mm256_adds_epi16(srcReg32b1,
445                  _mm256_min_epi16(srcReg32b8, srcReg32b12));
446     srcReg32b1 = _mm256_adds_epi16(srcReg32b1,
447                  _mm256_max_epi16(srcReg32b8, srcReg32b12));
448
449     srcReg32b10 = _mm256_adds_epi16(srcReg32b10, addFilterReg64);
450     srcReg32b1 = _mm256_adds_epi16(srcReg32b1, addFilterReg64);
451
452     // shift by 7 bit each 16 bit
453     srcReg32b10 = _mm256_srai_epi16(srcReg32b10, 7);
454     srcReg32b1 = _mm256_srai_epi16(srcReg32b1, 7);
455
456     // shrink to 8 bit each 16 bits, the first lane contain the first
457     // convolve result and the second lane contain the second convolve
458     // result
459     srcReg32b1 = _mm256_packus_epi16(srcReg32b10, srcReg32b1);
460
461     src_ptr+=src_stride;
462
463     // save 16 bytes
464     _mm_store_si128((__m128i*)output_ptr,
465     _mm256_castsi256_si128(srcReg32b1));
466
467     // save the next 16 bits
468     _mm_store_si128((__m128i*)(output_ptr+out_pitch),
469     _mm256_extractf128_si256(srcReg32b1, 1));
470
471     output_ptr+=dst_stride;
472
473     // save part of the registers for next strides
474     srcReg32b10 = srcReg32b11;
475     srcReg32b1 = srcReg32b3;
476     srcReg32b11 = srcReg32b2;
477     srcReg32b3 = srcReg32b5;
478     srcReg32b2 = srcReg32b4;
479     srcReg32b5 = srcReg32b7;
480     srcReg32b7 = srcReg32b9;
481  }
482  if (i > 0) {
483    __m128i srcRegFilt1, srcRegFilt3, srcRegFilt4, srcRegFilt5;
484    __m128i srcRegFilt6, srcRegFilt7, srcRegFilt8;
485    // load the last 16 bytes
486    srcRegFilt8 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 7));
487
488    // merge the last 2 results together
489    srcRegFilt4 = _mm_unpacklo_epi8(
490                  _mm256_castsi256_si128(srcReg32b7), srcRegFilt8);
491    srcRegFilt7 = _mm_unpackhi_epi8(
492                  _mm256_castsi256_si128(srcReg32b7), srcRegFilt8);
493
494    // multiply 2 adjacent elements with the filter and add the result
495    srcRegFilt1 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b10),
496                  _mm256_castsi256_si128(firstFilters));
497    srcRegFilt4 = _mm_maddubs_epi16(srcRegFilt4,
498                  _mm256_castsi256_si128(forthFilters));
499    srcRegFilt3 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b1),
500                  _mm256_castsi256_si128(firstFilters));
501    srcRegFilt7 = _mm_maddubs_epi16(srcRegFilt7,
502                  _mm256_castsi256_si128(forthFilters));
503
504    // add and saturate the results together
505    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4);
506    srcRegFilt3 = _mm_adds_epi16(srcRegFilt3, srcRegFilt7);
507
508
509    // multiply 2 adjacent elements with the filter and add the result
510    srcRegFilt4 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b11),
511                  _mm256_castsi256_si128(secondFilters));
512    srcRegFilt5 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b3),
513                  _mm256_castsi256_si128(secondFilters));
514
515    // multiply 2 adjacent elements with the filter and add the result
516    srcRegFilt6 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b2),
517                  _mm256_castsi256_si128(thirdFilters));
518    srcRegFilt7 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b5),
519                  _mm256_castsi256_si128(thirdFilters));
520
521    // add and saturate the results together
522    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1,
523                  _mm_min_epi16(srcRegFilt4, srcRegFilt6));
524    srcRegFilt3 = _mm_adds_epi16(srcRegFilt3,
525                  _mm_min_epi16(srcRegFilt5, srcRegFilt7));
526
527    // add and saturate the results together
528    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1,
529                  _mm_max_epi16(srcRegFilt4, srcRegFilt6));
530    srcRegFilt3 = _mm_adds_epi16(srcRegFilt3,
531                  _mm_max_epi16(srcRegFilt5, srcRegFilt7));
532
533
534    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1,
535                  _mm256_castsi256_si128(addFilterReg64));
536    srcRegFilt3 = _mm_adds_epi16(srcRegFilt3,
537                  _mm256_castsi256_si128(addFilterReg64));
538
539    // shift by 7 bit each 16 bit
540    srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7);
541    srcRegFilt3 = _mm_srai_epi16(srcRegFilt3, 7);
542
543    // shrink to 8 bit each 16 bits, the first lane contain the first
544    // convolve result and the second lane contain the second convolve
545    // result
546    srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt3);
547
548    // save 16 bytes
549    _mm_store_si128((__m128i*)output_ptr, srcRegFilt1);
550  }
551}
552
553#if HAVE_AVX2 && HAVE_SSSE3
554filter8_1dfunction vpx_filter_block1d4_v8_ssse3;
555#if ARCH_X86_64
556filter8_1dfunction vpx_filter_block1d8_v8_intrin_ssse3;
557filter8_1dfunction vpx_filter_block1d8_h8_intrin_ssse3;
558filter8_1dfunction vpx_filter_block1d4_h8_intrin_ssse3;
559#define vpx_filter_block1d8_v8_avx2 vpx_filter_block1d8_v8_intrin_ssse3
560#define vpx_filter_block1d8_h8_avx2 vpx_filter_block1d8_h8_intrin_ssse3
561#define vpx_filter_block1d4_h8_avx2 vpx_filter_block1d4_h8_intrin_ssse3
562#else  // ARCH_X86
563filter8_1dfunction vpx_filter_block1d8_v8_ssse3;
564filter8_1dfunction vpx_filter_block1d8_h8_ssse3;
565filter8_1dfunction vpx_filter_block1d4_h8_ssse3;
566#define vpx_filter_block1d8_v8_avx2 vpx_filter_block1d8_v8_ssse3
567#define vpx_filter_block1d8_h8_avx2 vpx_filter_block1d8_h8_ssse3
568#define vpx_filter_block1d4_h8_avx2 vpx_filter_block1d4_h8_ssse3
569#endif  // ARCH_X86_64
570filter8_1dfunction vpx_filter_block1d16_v2_ssse3;
571filter8_1dfunction vpx_filter_block1d16_h2_ssse3;
572filter8_1dfunction vpx_filter_block1d8_v2_ssse3;
573filter8_1dfunction vpx_filter_block1d8_h2_ssse3;
574filter8_1dfunction vpx_filter_block1d4_v2_ssse3;
575filter8_1dfunction vpx_filter_block1d4_h2_ssse3;
576#define vpx_filter_block1d4_v8_avx2 vpx_filter_block1d4_v8_ssse3
577#define vpx_filter_block1d16_v2_avx2 vpx_filter_block1d16_v2_ssse3
578#define vpx_filter_block1d16_h2_avx2 vpx_filter_block1d16_h2_ssse3
579#define vpx_filter_block1d8_v2_avx2  vpx_filter_block1d8_v2_ssse3
580#define vpx_filter_block1d8_h2_avx2  vpx_filter_block1d8_h2_ssse3
581#define vpx_filter_block1d4_v2_avx2  vpx_filter_block1d4_v2_ssse3
582#define vpx_filter_block1d4_h2_avx2  vpx_filter_block1d4_h2_ssse3
583// void vpx_convolve8_horiz_avx2(const uint8_t *src, ptrdiff_t src_stride,
584//                                uint8_t *dst, ptrdiff_t dst_stride,
585//                                const int16_t *filter_x, int x_step_q4,
586//                                const int16_t *filter_y, int y_step_q4,
587//                                int w, int h);
588// void vpx_convolve8_vert_avx2(const uint8_t *src, ptrdiff_t src_stride,
589//                               uint8_t *dst, ptrdiff_t dst_stride,
590//                               const int16_t *filter_x, int x_step_q4,
591//                               const int16_t *filter_y, int y_step_q4,
592//                               int w, int h);
593FUN_CONV_1D(horiz, x_step_q4, filter_x, h, src, , avx2);
594FUN_CONV_1D(vert, y_step_q4, filter_y, v, src - src_stride * 3, , avx2);
595
596// void vpx_convolve8_avx2(const uint8_t *src, ptrdiff_t src_stride,
597//                          uint8_t *dst, ptrdiff_t dst_stride,
598//                          const int16_t *filter_x, int x_step_q4,
599//                          const int16_t *filter_y, int y_step_q4,
600//                          int w, int h);
601FUN_CONV_2D(, avx2);
602#endif  // HAVE_AX2 && HAVE_SSSE3
603