1//===-- DataExtractor.cpp ---------------------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include <assert.h>
11#include <stddef.h>
12
13#include <bitset>
14#include <limits>
15#include <sstream>
16#include <string>
17
18#include "clang/AST/ASTContext.h"
19
20#include "llvm/ADT/APFloat.h"
21#include "llvm/ADT/APInt.h"
22#include "llvm/ADT/ArrayRef.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/Support/MathExtras.h"
25
26
27#include "lldb/Core/DataBufferHeap.h"
28#include "lldb/Core/DataExtractor.h"
29#include "lldb/Core/DataBuffer.h"
30#include "lldb/Core/Disassembler.h"
31#include "lldb/Core/Log.h"
32#include "lldb/Core/Stream.h"
33#include "lldb/Core/StreamString.h"
34#include "lldb/Core/UUID.h"
35#include "lldb/Core/dwarf.h"
36#include "lldb/Host/Endian.h"
37#include "lldb/Symbol/ClangASTContext.h"
38#include "lldb/Target/ExecutionContext.h"
39#include "lldb/Target/ExecutionContextScope.h"
40#include "lldb/Target/Target.h"
41
42using namespace lldb;
43using namespace lldb_private;
44
45static inline uint16_t
46ReadInt16(const unsigned char* ptr, offset_t offset)
47{
48    return *(uint16_t *)(ptr + offset);
49}
50static inline uint32_t
51ReadInt32 (const unsigned char* ptr, offset_t offset)
52{
53    return *(uint32_t *)(ptr + offset);
54}
55
56static inline uint64_t
57ReadInt64(const unsigned char* ptr, offset_t offset)
58{
59    return *(uint64_t *)(ptr + offset);
60}
61
62static inline uint16_t
63ReadInt16(const void* ptr)
64{
65    return *(uint16_t *)(ptr);
66}
67static inline uint32_t
68ReadInt32 (const void* ptr)
69{
70    return *(uint32_t *)(ptr);
71}
72
73static inline uint64_t
74ReadInt64(const void* ptr)
75{
76    return *(uint64_t *)(ptr);
77}
78
79static inline uint16_t
80ReadSwapInt16(const unsigned char* ptr, offset_t offset)
81{
82    return llvm::ByteSwap_16(*(uint16_t *)(ptr + offset));
83}
84
85static inline uint32_t
86ReadSwapInt32 (const unsigned char* ptr, offset_t offset)
87{
88    return llvm::ByteSwap_32(*(uint32_t *)(ptr + offset));
89}
90static inline uint64_t
91ReadSwapInt64(const unsigned char* ptr, offset_t offset)
92{
93  return llvm::ByteSwap_64(*(uint64_t *)(ptr + offset));
94}
95
96static inline uint16_t
97ReadSwapInt16(const void* ptr)
98{
99    return llvm::ByteSwap_16(*(uint16_t *)(ptr));
100}
101
102static inline uint32_t
103ReadSwapInt32 (const void* ptr)
104{
105    return llvm::ByteSwap_32(*(uint32_t *)(ptr));
106}
107static inline uint64_t
108ReadSwapInt64(const void* ptr)
109{
110    return llvm::ByteSwap_64(*(uint64_t *)(ptr));
111}
112
113#define NON_PRINTABLE_CHAR '.'
114//----------------------------------------------------------------------
115// Default constructor.
116//----------------------------------------------------------------------
117DataExtractor::DataExtractor () :
118    m_start     (NULL),
119    m_end       (NULL),
120    m_byte_order(lldb::endian::InlHostByteOrder()),
121    m_addr_size (4),
122    m_data_sp   ()
123{
124}
125
126//----------------------------------------------------------------------
127// This constructor allows us to use data that is owned by someone else.
128// The data must stay around as long as this object is valid.
129//----------------------------------------------------------------------
130DataExtractor::DataExtractor (const void* data, offset_t length, ByteOrder endian, uint32_t addr_size) :
131    m_start     ((uint8_t*)data),
132    m_end       ((uint8_t*)data + length),
133    m_byte_order(endian),
134    m_addr_size (addr_size),
135    m_data_sp   ()
136{
137}
138
139//----------------------------------------------------------------------
140// Make a shared pointer reference to the shared data in "data_sp" and
141// set the endian swapping setting to "swap", and the address size to
142// "addr_size". The shared data reference will ensure the data lives
143// as long as any DataExtractor objects exist that have a reference to
144// this data.
145//----------------------------------------------------------------------
146DataExtractor::DataExtractor (const DataBufferSP& data_sp, ByteOrder endian, uint32_t addr_size) :
147    m_start     (NULL),
148    m_end       (NULL),
149    m_byte_order(endian),
150    m_addr_size (addr_size),
151    m_data_sp   ()
152{
153    SetData (data_sp);
154}
155
156//----------------------------------------------------------------------
157// Initialize this object with a subset of the data bytes in "data".
158// If "data" contains shared data, then a reference to this shared
159// data will added and the shared data will stay around as long
160// as any object contains a reference to that data. The endian
161// swap and address size settings are copied from "data".
162//----------------------------------------------------------------------
163DataExtractor::DataExtractor (const DataExtractor& data, offset_t offset, offset_t length) :
164    m_start(NULL),
165    m_end(NULL),
166    m_byte_order(data.m_byte_order),
167    m_addr_size(data.m_addr_size),
168    m_data_sp()
169{
170    if (data.ValidOffset(offset))
171    {
172        offset_t bytes_available = data.GetByteSize() - offset;
173        if (length > bytes_available)
174            length = bytes_available;
175        SetData(data, offset, length);
176    }
177}
178
179DataExtractor::DataExtractor (const DataExtractor& rhs) :
180    m_start (rhs.m_start),
181    m_end (rhs.m_end),
182    m_byte_order (rhs.m_byte_order),
183    m_addr_size (rhs.m_addr_size),
184    m_data_sp (rhs.m_data_sp)
185{
186}
187
188//----------------------------------------------------------------------
189// Assignment operator
190//----------------------------------------------------------------------
191const DataExtractor&
192DataExtractor::operator= (const DataExtractor& rhs)
193{
194    if (this != &rhs)
195    {
196        m_start = rhs.m_start;
197        m_end = rhs.m_end;
198        m_byte_order = rhs.m_byte_order;
199        m_addr_size = rhs.m_addr_size;
200        m_data_sp = rhs.m_data_sp;
201    }
202    return *this;
203}
204
205//----------------------------------------------------------------------
206// Destructor
207//----------------------------------------------------------------------
208DataExtractor::~DataExtractor ()
209{
210}
211
212//------------------------------------------------------------------
213// Clears the object contents back to a default invalid state, and
214// release any references to shared data that this object may
215// contain.
216//------------------------------------------------------------------
217void
218DataExtractor::Clear ()
219{
220    m_start = NULL;
221    m_end = NULL;
222    m_byte_order = lldb::endian::InlHostByteOrder();
223    m_addr_size = 4;
224    m_data_sp.reset();
225}
226
227//------------------------------------------------------------------
228// If this object contains shared data, this function returns the
229// offset into that shared data. Else zero is returned.
230//------------------------------------------------------------------
231size_t
232DataExtractor::GetSharedDataOffset () const
233{
234    if (m_start != NULL)
235    {
236        const DataBuffer * data = m_data_sp.get();
237        if (data != NULL)
238        {
239            const uint8_t * data_bytes = data->GetBytes();
240            if (data_bytes != NULL)
241            {
242                assert(m_start >= data_bytes);
243                return m_start - data_bytes;
244            }
245        }
246    }
247    return 0;
248}
249
250//----------------------------------------------------------------------
251// Set the data with which this object will extract from to data
252// starting at BYTES and set the length of the data to LENGTH bytes
253// long. The data is externally owned must be around at least as
254// long as this object points to the data. No copy of the data is
255// made, this object just refers to this data and can extract from
256// it. If this object refers to any shared data upon entry, the
257// reference to that data will be released. Is SWAP is set to true,
258// any data extracted will be endian swapped.
259//----------------------------------------------------------------------
260lldb::offset_t
261DataExtractor::SetData (const void *bytes, offset_t length, ByteOrder endian)
262{
263    m_byte_order = endian;
264    m_data_sp.reset();
265    if (bytes == NULL || length == 0)
266    {
267        m_start = NULL;
268        m_end = NULL;
269    }
270    else
271    {
272        m_start = (uint8_t *)bytes;
273        m_end = m_start + length;
274    }
275    return GetByteSize();
276}
277
278//----------------------------------------------------------------------
279// Assign the data for this object to be a subrange in "data"
280// starting "data_offset" bytes into "data" and ending "data_length"
281// bytes later. If "data_offset" is not a valid offset into "data",
282// then this object will contain no bytes. If "data_offset" is
283// within "data" yet "data_length" is too large, the length will be
284// capped at the number of bytes remaining in "data". If "data"
285// contains a shared pointer to other data, then a ref counted
286// pointer to that data will be made in this object. If "data"
287// doesn't contain a shared pointer to data, then the bytes referred
288// to in "data" will need to exist at least as long as this object
289// refers to those bytes. The address size and endian swap settings
290// are copied from the current values in "data".
291//----------------------------------------------------------------------
292lldb::offset_t
293DataExtractor::SetData (const DataExtractor& data, offset_t data_offset, offset_t data_length)
294{
295    m_addr_size = data.m_addr_size;
296    // If "data" contains shared pointer to data, then we can use that
297    if (data.m_data_sp.get())
298    {
299        m_byte_order = data.m_byte_order;
300        return SetData(data.m_data_sp, data.GetSharedDataOffset() + data_offset, data_length);
301    }
302
303    // We have a DataExtractor object that just has a pointer to bytes
304    if (data.ValidOffset(data_offset))
305    {
306        if (data_length > data.GetByteSize() - data_offset)
307            data_length = data.GetByteSize() - data_offset;
308        return SetData (data.GetDataStart() + data_offset, data_length, data.GetByteOrder());
309    }
310    return 0;
311}
312
313//----------------------------------------------------------------------
314// Assign the data for this object to be a subrange of the shared
315// data in "data_sp" starting "data_offset" bytes into "data_sp"
316// and ending "data_length" bytes later. If "data_offset" is not
317// a valid offset into "data_sp", then this object will contain no
318// bytes. If "data_offset" is within "data_sp" yet "data_length" is
319// too large, the length will be capped at the number of bytes
320// remaining in "data_sp". A ref counted pointer to the data in
321// "data_sp" will be made in this object IF the number of bytes this
322// object refers to in greater than zero (if at least one byte was
323// available starting at "data_offset") to ensure the data stays
324// around as long as it is needed. The address size and endian swap
325// settings will remain unchanged from their current settings.
326//----------------------------------------------------------------------
327lldb::offset_t
328DataExtractor::SetData (const DataBufferSP& data_sp, offset_t data_offset, offset_t data_length)
329{
330    m_start = m_end = NULL;
331
332    if (data_length > 0)
333    {
334        m_data_sp = data_sp;
335        if (data_sp.get())
336        {
337            const size_t data_size = data_sp->GetByteSize();
338            if (data_offset < data_size)
339            {
340                m_start = data_sp->GetBytes() + data_offset;
341                const size_t bytes_left = data_size - data_offset;
342                // Cap the length of we asked for too many
343                if (data_length <= bytes_left)
344                    m_end = m_start + data_length;  // We got all the bytes we wanted
345                else
346                    m_end = m_start + bytes_left;   // Not all the bytes requested were available in the shared data
347            }
348        }
349    }
350
351    size_t new_size = GetByteSize();
352
353    // Don't hold a shared pointer to the data buffer if we don't share
354    // any valid bytes in the shared buffer.
355    if (new_size == 0)
356        m_data_sp.reset();
357
358    return new_size;
359}
360
361//----------------------------------------------------------------------
362// Extract a single unsigned char from the binary data and update
363// the offset pointed to by "offset_ptr".
364//
365// RETURNS the byte that was extracted, or zero on failure.
366//----------------------------------------------------------------------
367uint8_t
368DataExtractor::GetU8 (offset_t *offset_ptr) const
369{
370    const uint8_t *data = (const uint8_t *)GetData (offset_ptr, 1);
371    if (data)
372        return *data;
373    return 0;
374}
375
376//----------------------------------------------------------------------
377// Extract "count" unsigned chars from the binary data and update the
378// offset pointed to by "offset_ptr". The extracted data is copied into
379// "dst".
380//
381// RETURNS the non-NULL buffer pointer upon successful extraction of
382// all the requested bytes, or NULL when the data is not available in
383// the buffer due to being out of bounds, or unsufficient data.
384//----------------------------------------------------------------------
385void *
386DataExtractor::GetU8 (offset_t *offset_ptr, void *dst, uint32_t count) const
387{
388    const uint8_t *data = (const uint8_t *)GetData (offset_ptr, count);
389    if (data)
390    {
391        // Copy the data into the buffer
392        memcpy (dst, data, count);
393        // Return a non-NULL pointer to the converted data as an indicator of success
394        return dst;
395    }
396    return NULL;
397}
398
399//----------------------------------------------------------------------
400// Extract a single uint16_t from the data and update the offset
401// pointed to by "offset_ptr".
402//
403// RETURNS the uint16_t that was extracted, or zero on failure.
404//----------------------------------------------------------------------
405uint16_t
406DataExtractor::GetU16 (offset_t *offset_ptr) const
407{
408    uint16_t val = 0;
409    const uint8_t *data = (const uint8_t *)GetData (offset_ptr, sizeof(val));
410    if (data)
411    {
412        if (m_byte_order != lldb::endian::InlHostByteOrder())
413            val = ReadSwapInt16(data);
414        else
415            val = ReadInt16 (data);
416    }
417    return val;
418}
419
420uint16_t
421DataExtractor::GetU16_unchecked (offset_t *offset_ptr) const
422{
423    uint16_t val;
424    if (m_byte_order == lldb::endian::InlHostByteOrder())
425        val = ReadInt16 (m_start, *offset_ptr);
426    else
427        val = ReadSwapInt16(m_start, *offset_ptr);
428    *offset_ptr += sizeof(val);
429    return val;
430}
431
432uint32_t
433DataExtractor::GetU32_unchecked (offset_t *offset_ptr) const
434{
435    uint32_t val;
436    if (m_byte_order == lldb::endian::InlHostByteOrder())
437        val = ReadInt32 (m_start, *offset_ptr);
438    else
439        val =  ReadSwapInt32 (m_start, *offset_ptr);
440    *offset_ptr += sizeof(val);
441    return val;
442}
443
444uint64_t
445DataExtractor::GetU64_unchecked (offset_t *offset_ptr) const
446{
447    uint64_t val;
448    if (m_byte_order == lldb::endian::InlHostByteOrder())
449        val = ReadInt64 (m_start, *offset_ptr);
450    else
451        val = ReadSwapInt64 (m_start, *offset_ptr);
452    *offset_ptr += sizeof(val);
453    return val;
454}
455
456
457//----------------------------------------------------------------------
458// Extract "count" uint16_t values from the binary data and update
459// the offset pointed to by "offset_ptr". The extracted data is
460// copied into "dst".
461//
462// RETURNS the non-NULL buffer pointer upon successful extraction of
463// all the requested bytes, or NULL when the data is not available
464// in the buffer due to being out of bounds, or unsufficient data.
465//----------------------------------------------------------------------
466void *
467DataExtractor::GetU16 (offset_t *offset_ptr, void *void_dst, uint32_t count) const
468{
469    const size_t src_size = sizeof(uint16_t) * count;
470    const uint16_t *src = (const uint16_t *)GetData (offset_ptr, src_size);
471    if (src)
472    {
473        if (m_byte_order != lldb::endian::InlHostByteOrder())
474        {
475            uint16_t *dst_pos = (uint16_t *)void_dst;
476            uint16_t *dst_end = dst_pos + count;
477            const uint16_t *src_pos = src;
478            while (dst_pos < dst_end)
479            {
480                *dst_pos = ReadSwapInt16 (src_pos);
481                ++dst_pos;
482                ++src_pos;
483            }
484        }
485        else
486        {
487            memcpy (void_dst, src, src_size);
488        }
489        // Return a non-NULL pointer to the converted data as an indicator of success
490        return void_dst;
491    }
492    return NULL;
493}
494
495//----------------------------------------------------------------------
496// Extract a single uint32_t from the data and update the offset
497// pointed to by "offset_ptr".
498//
499// RETURNS the uint32_t that was extracted, or zero on failure.
500//----------------------------------------------------------------------
501uint32_t
502DataExtractor::GetU32 (offset_t *offset_ptr) const
503{
504    uint32_t val = 0;
505    const uint32_t *data = (const uint32_t *)GetData (offset_ptr, sizeof(val));
506    if (data)
507    {
508        if (m_byte_order != lldb::endian::InlHostByteOrder())
509            val = ReadSwapInt32 (data);
510        else
511            val = *data;
512    }
513    return val;
514}
515
516//----------------------------------------------------------------------
517// Extract "count" uint32_t values from the binary data and update
518// the offset pointed to by "offset_ptr". The extracted data is
519// copied into "dst".
520//
521// RETURNS the non-NULL buffer pointer upon successful extraction of
522// all the requested bytes, or NULL when the data is not available
523// in the buffer due to being out of bounds, or unsufficient data.
524//----------------------------------------------------------------------
525void *
526DataExtractor::GetU32 (offset_t *offset_ptr, void *void_dst, uint32_t count) const
527{
528    const size_t src_size = sizeof(uint32_t) * count;
529    const uint32_t *src = (const uint32_t *)GetData (offset_ptr, src_size);
530    if (src)
531    {
532        if (m_byte_order != lldb::endian::InlHostByteOrder())
533        {
534            uint32_t *dst_pos = (uint32_t *)void_dst;
535            uint32_t *dst_end = dst_pos + count;
536            const uint32_t *src_pos = src;
537            while (dst_pos < dst_end)
538            {
539                *dst_pos = ReadSwapInt32 (src_pos);
540                ++dst_pos;
541                ++src_pos;
542            }
543        }
544        else
545        {
546            memcpy (void_dst, src, src_size);
547        }
548        // Return a non-NULL pointer to the converted data as an indicator of success
549        return void_dst;
550    }
551    return NULL;
552}
553
554//----------------------------------------------------------------------
555// Extract a single uint64_t from the data and update the offset
556// pointed to by "offset_ptr".
557//
558// RETURNS the uint64_t that was extracted, or zero on failure.
559//----------------------------------------------------------------------
560uint64_t
561DataExtractor::GetU64 (offset_t *offset_ptr) const
562{
563    uint64_t val = 0;
564    const uint64_t *data = (const uint64_t *)GetData (offset_ptr, sizeof(val));
565    if (data)
566    {
567        if (m_byte_order != lldb::endian::InlHostByteOrder())
568            val = ReadSwapInt64 (data);
569        else
570            val = *data;
571    }
572    return val;
573}
574
575//----------------------------------------------------------------------
576// GetU64
577//
578// Get multiple consecutive 64 bit values. Return true if the entire
579// read succeeds and increment the offset pointed to by offset_ptr, else
580// return false and leave the offset pointed to by offset_ptr unchanged.
581//----------------------------------------------------------------------
582void *
583DataExtractor::GetU64 (offset_t *offset_ptr, void *void_dst, uint32_t count) const
584{
585    const size_t src_size = sizeof(uint64_t) * count;
586    const uint64_t *src = (const uint64_t *)GetData (offset_ptr, src_size);
587    if (src)
588    {
589        if (m_byte_order != lldb::endian::InlHostByteOrder())
590        {
591            uint64_t *dst_pos = (uint64_t *)void_dst;
592            uint64_t *dst_end = dst_pos + count;
593            const uint64_t *src_pos = src;
594            while (dst_pos < dst_end)
595            {
596                *dst_pos = ReadSwapInt64 (src_pos);
597                ++dst_pos;
598                ++src_pos;
599            }
600        }
601        else
602        {
603            memcpy (void_dst, src, src_size);
604        }
605        // Return a non-NULL pointer to the converted data as an indicator of success
606        return void_dst;
607    }
608    return NULL;
609}
610
611//----------------------------------------------------------------------
612// Extract a single integer value from the data and update the offset
613// pointed to by "offset_ptr". The size of the extracted integer
614// is specified by the "byte_size" argument. "byte_size" should have
615// a value between 1 and 4 since the return value is only 32 bits
616// wide. Any "byte_size" values less than 1 or greater than 4 will
617// result in nothing being extracted, and zero being returned.
618//
619// RETURNS the integer value that was extracted, or zero on failure.
620//----------------------------------------------------------------------
621uint32_t
622DataExtractor::GetMaxU32 (offset_t *offset_ptr, size_t byte_size) const
623{
624    switch (byte_size)
625    {
626    case 1: return GetU8 (offset_ptr); break;
627    case 2: return GetU16(offset_ptr); break;
628    case 4: return GetU32(offset_ptr); break;
629    default:
630        assert("GetMaxU32 unhandled case!" == NULL);
631        break;
632    }
633    return 0;
634}
635
636//----------------------------------------------------------------------
637// Extract a single integer value from the data and update the offset
638// pointed to by "offset_ptr". The size of the extracted integer
639// is specified by the "byte_size" argument. "byte_size" should have
640// a value >= 1 and <= 8 since the return value is only 64 bits
641// wide. Any "byte_size" values less than 1 or greater than 8 will
642// result in nothing being extracted, and zero being returned.
643//
644// RETURNS the integer value that was extracted, or zero on failure.
645//----------------------------------------------------------------------
646uint64_t
647DataExtractor::GetMaxU64 (offset_t *offset_ptr, size_t size) const
648{
649    switch (size)
650    {
651    case 1: return GetU8 (offset_ptr); break;
652    case 2: return GetU16(offset_ptr); break;
653    case 4: return GetU32(offset_ptr); break;
654    case 8: return GetU64(offset_ptr); break;
655    default:
656        assert("GetMax64 unhandled case!" == NULL);
657        break;
658    }
659    return 0;
660}
661
662uint64_t
663DataExtractor::GetMaxU64_unchecked (offset_t *offset_ptr, size_t size) const
664{
665    switch (size)
666    {
667        case 1: return GetU8_unchecked  (offset_ptr); break;
668        case 2: return GetU16_unchecked (offset_ptr); break;
669        case 4: return GetU32_unchecked (offset_ptr); break;
670        case 8: return GetU64_unchecked (offset_ptr); break;
671        default:
672            assert("GetMax64 unhandled case!" == NULL);
673            break;
674    }
675    return 0;
676}
677
678int64_t
679DataExtractor::GetMaxS64 (offset_t *offset_ptr, size_t size) const
680{
681    switch (size)
682    {
683    case 1: return (int8_t)GetU8 (offset_ptr); break;
684    case 2: return (int16_t)GetU16(offset_ptr); break;
685    case 4: return (int32_t)GetU32(offset_ptr); break;
686    case 8: return (int64_t)GetU64(offset_ptr); break;
687    default:
688        assert("GetMax64 unhandled case!" == NULL);
689        break;
690    }
691    return 0;
692}
693
694uint64_t
695DataExtractor::GetMaxU64Bitfield (offset_t *offset_ptr, size_t size, uint32_t bitfield_bit_size, uint32_t bitfield_bit_offset) const
696{
697    uint64_t uval64 = GetMaxU64 (offset_ptr, size);
698    if (bitfield_bit_size > 0)
699    {
700        if (bitfield_bit_offset > 0)
701            uval64 >>= bitfield_bit_offset;
702        uint64_t bitfield_mask = ((1ul << bitfield_bit_size) - 1);
703        if (!bitfield_mask && bitfield_bit_offset == 0 && bitfield_bit_size == 64)
704            return uval64;
705        uval64 &= bitfield_mask;
706    }
707    return uval64;
708}
709
710int64_t
711DataExtractor::GetMaxS64Bitfield (offset_t *offset_ptr, size_t size, uint32_t bitfield_bit_size, uint32_t bitfield_bit_offset) const
712{
713    int64_t sval64 = GetMaxS64 (offset_ptr, size);
714    if (bitfield_bit_size > 0)
715    {
716        if (bitfield_bit_offset > 0)
717            sval64 >>= bitfield_bit_offset;
718        uint64_t bitfield_mask = (((uint64_t)1) << bitfield_bit_size) - 1;
719        sval64 &= bitfield_mask;
720        // sign extend if needed
721        if (sval64 & (((uint64_t)1) << (bitfield_bit_size - 1)))
722            sval64 |= ~bitfield_mask;
723    }
724    return sval64;
725}
726
727
728float
729DataExtractor::GetFloat (offset_t *offset_ptr) const
730{
731    typedef float float_type;
732    float_type val = 0.0;
733    const size_t src_size = sizeof(float_type);
734    const float_type *src = (const float_type *)GetData (offset_ptr, src_size);
735    if (src)
736    {
737        if (m_byte_order != lldb::endian::InlHostByteOrder())
738        {
739            const uint8_t *src_data = (const uint8_t *)src;
740            uint8_t *dst_data = (uint8_t *)&val;
741            for (size_t i=0; i<sizeof(float_type); ++i)
742                dst_data[sizeof(float_type) - 1 - i] = src_data[i];
743        }
744        else
745        {
746            val = *src;
747        }
748    }
749    return val;
750}
751
752double
753DataExtractor::GetDouble (offset_t *offset_ptr) const
754{
755    typedef double float_type;
756    float_type val = 0.0;
757    const size_t src_size = sizeof(float_type);
758    const float_type *src = (const float_type *)GetData (offset_ptr, src_size);
759    if (src)
760    {
761        if (m_byte_order != lldb::endian::InlHostByteOrder())
762        {
763            const uint8_t *src_data = (const uint8_t *)src;
764            uint8_t *dst_data = (uint8_t *)&val;
765            for (size_t i=0; i<sizeof(float_type); ++i)
766                dst_data[sizeof(float_type) - 1 - i] = src_data[i];
767        }
768        else
769        {
770            val = *src;
771        }
772    }
773    return val;
774}
775
776
777long double
778DataExtractor::GetLongDouble (offset_t *offset_ptr) const
779{
780    typedef long double float_type;
781    float_type val = 0.0;
782    const size_t src_size = sizeof(float_type);
783    const float_type *src = (const float_type *)GetData (offset_ptr, src_size);
784    if (src)
785    {
786        if (m_byte_order != lldb::endian::InlHostByteOrder())
787        {
788            const uint8_t *src_data = (const uint8_t *)src;
789            uint8_t *dst_data = (uint8_t *)&val;
790            for (size_t i=0; i<sizeof(float_type); ++i)
791                dst_data[sizeof(float_type) - 1 - i] = src_data[i];
792        }
793        else
794        {
795            val = *src;
796        }
797    }
798    return val;
799}
800
801
802//------------------------------------------------------------------
803// Extract a single address from the data and update the offset
804// pointed to by "offset_ptr". The size of the extracted address
805// comes from the "this->m_addr_size" member variable and should be
806// set correctly prior to extracting any address values.
807//
808// RETURNS the address that was extracted, or zero on failure.
809//------------------------------------------------------------------
810uint64_t
811DataExtractor::GetAddress (offset_t *offset_ptr) const
812{
813    return GetMaxU64 (offset_ptr, m_addr_size);
814}
815
816uint64_t
817DataExtractor::GetAddress_unchecked (offset_t *offset_ptr) const
818{
819    return GetMaxU64_unchecked (offset_ptr, m_addr_size);
820}
821
822//------------------------------------------------------------------
823// Extract a single pointer from the data and update the offset
824// pointed to by "offset_ptr". The size of the extracted pointer
825// comes from the "this->m_addr_size" member variable and should be
826// set correctly prior to extracting any pointer values.
827//
828// RETURNS the pointer that was extracted, or zero on failure.
829//------------------------------------------------------------------
830uint64_t
831DataExtractor::GetPointer (offset_t *offset_ptr) const
832{
833    return GetMaxU64 (offset_ptr, m_addr_size);
834}
835
836//----------------------------------------------------------------------
837// GetDwarfEHPtr
838//
839// Used for calls when the value type is specified by a DWARF EH Frame
840// pointer encoding.
841//----------------------------------------------------------------------
842
843uint64_t
844DataExtractor::GetGNUEHPointer (offset_t *offset_ptr, uint32_t eh_ptr_enc, lldb::addr_t pc_rel_addr, lldb::addr_t text_addr, lldb::addr_t data_addr)//, BSDRelocs *data_relocs) const
845{
846    if (eh_ptr_enc == DW_EH_PE_omit)
847        return ULLONG_MAX;  // Value isn't in the buffer...
848
849    uint64_t baseAddress = 0;
850    uint64_t addressValue = 0;
851    const uint32_t addr_size = GetAddressByteSize();
852
853    bool signExtendValue = false;
854    // Decode the base part or adjust our offset
855    switch (eh_ptr_enc & 0x70)
856    {
857    case DW_EH_PE_pcrel:
858        signExtendValue = true;
859        baseAddress = *offset_ptr;
860        if (pc_rel_addr != LLDB_INVALID_ADDRESS)
861            baseAddress += pc_rel_addr;
862//      else
863//          Log::GlobalWarning ("PC relative pointer encoding found with invalid pc relative address.");
864        break;
865
866    case DW_EH_PE_textrel:
867        signExtendValue = true;
868        if (text_addr != LLDB_INVALID_ADDRESS)
869            baseAddress = text_addr;
870//      else
871//          Log::GlobalWarning ("text relative pointer encoding being decoded with invalid text section address, setting base address to zero.");
872        break;
873
874    case DW_EH_PE_datarel:
875        signExtendValue = true;
876        if (data_addr != LLDB_INVALID_ADDRESS)
877            baseAddress = data_addr;
878//      else
879//          Log::GlobalWarning ("data relative pointer encoding being decoded with invalid data section address, setting base address to zero.");
880        break;
881
882    case DW_EH_PE_funcrel:
883        signExtendValue = true;
884        break;
885
886    case DW_EH_PE_aligned:
887        {
888            // SetPointerSize should be called prior to extracting these so the
889            // pointer size is cached
890            assert(addr_size != 0);
891            if (addr_size)
892            {
893                // Align to a address size boundary first
894                uint32_t alignOffset = *offset_ptr % addr_size;
895                if (alignOffset)
896                    offset_ptr += addr_size - alignOffset;
897            }
898        }
899        break;
900
901    default:
902    break;
903    }
904
905    // Decode the value part
906    switch (eh_ptr_enc & DW_EH_PE_MASK_ENCODING)
907    {
908    case DW_EH_PE_absptr    :
909        {
910            addressValue = GetAddress (offset_ptr);
911//          if (data_relocs)
912//              addressValue = data_relocs->Relocate(*offset_ptr - addr_size, *this, addressValue);
913        }
914        break;
915    case DW_EH_PE_uleb128   : addressValue = GetULEB128(offset_ptr);        break;
916    case DW_EH_PE_udata2    : addressValue = GetU16(offset_ptr);            break;
917    case DW_EH_PE_udata4    : addressValue = GetU32(offset_ptr);            break;
918    case DW_EH_PE_udata8    : addressValue = GetU64(offset_ptr);            break;
919    case DW_EH_PE_sleb128   : addressValue = GetSLEB128(offset_ptr);        break;
920    case DW_EH_PE_sdata2    : addressValue = (int16_t)GetU16(offset_ptr);   break;
921    case DW_EH_PE_sdata4    : addressValue = (int32_t)GetU32(offset_ptr);   break;
922    case DW_EH_PE_sdata8    : addressValue = (int64_t)GetU64(offset_ptr);   break;
923    default:
924    // Unhandled encoding type
925    assert(eh_ptr_enc);
926    break;
927    }
928
929    // Since we promote everything to 64 bit, we may need to sign extend
930    if (signExtendValue && addr_size < sizeof(baseAddress))
931    {
932        uint64_t sign_bit = 1ull << ((addr_size * 8ull) - 1ull);
933        if (sign_bit & addressValue)
934        {
935            uint64_t mask = ~sign_bit + 1;
936            addressValue |= mask;
937        }
938    }
939    return baseAddress + addressValue;
940}
941
942size_t
943DataExtractor::ExtractBytes (offset_t offset, offset_t length, ByteOrder dst_byte_order, void *dst) const
944{
945    const uint8_t *src = PeekData (offset, length);
946    if (src)
947    {
948        if (dst_byte_order != GetByteOrder())
949        {
950            for (uint32_t i=0; i<length; ++i)
951                ((uint8_t*)dst)[i] = src[length - i - 1];
952        }
953        else
954            ::memcpy (dst, src, length);
955        return length;
956    }
957    return 0;
958}
959
960// Extract data and swap if needed when doing the copy
961lldb::offset_t
962DataExtractor::CopyByteOrderedData (offset_t src_offset,
963                                    offset_t src_len,
964                                    void *dst_void_ptr,
965                                    offset_t dst_len,
966                                    ByteOrder dst_byte_order) const
967{
968    // Validate the source info
969    if (!ValidOffsetForDataOfSize(src_offset, src_len))
970        assert (ValidOffsetForDataOfSize(src_offset, src_len));
971    assert (src_len > 0);
972    assert (m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle);
973
974    // Validate the destination info
975    assert (dst_void_ptr != NULL);
976    assert (dst_len > 0);
977    assert (dst_byte_order == eByteOrderBig || dst_byte_order == eByteOrderLittle);
978
979    // Must have valid byte orders set in this object and for destination
980    if (!(dst_byte_order == eByteOrderBig || dst_byte_order == eByteOrderLittle) ||
981        !(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle))
982        return 0;
983
984    uint32_t i;
985    uint8_t* dst = (uint8_t*)dst_void_ptr;
986    const uint8_t* src = (const uint8_t *)PeekData (src_offset, src_len);
987    if (src)
988    {
989        if (dst_len >= src_len)
990        {
991            // We are copying the entire value from src into dst.
992            // Calculate how many, if any, zeroes we need for the most
993            // significant bytes if "dst_len" is greater than "src_len"...
994            const size_t num_zeroes = dst_len - src_len;
995            if (dst_byte_order == eByteOrderBig)
996            {
997                // Big endian, so we lead with zeroes...
998                if (num_zeroes > 0)
999                    ::memset (dst, 0, num_zeroes);
1000                // Then either copy or swap the rest
1001                if (m_byte_order == eByteOrderBig)
1002                {
1003                    ::memcpy (dst + num_zeroes, src, src_len);
1004                }
1005                else
1006                {
1007                    for (i=0; i<src_len; ++i)
1008                        dst[i+num_zeroes] = src[src_len - 1 - i];
1009                }
1010            }
1011            else
1012            {
1013                // Little endian destination, so we lead the value bytes
1014                if (m_byte_order == eByteOrderBig)
1015                {
1016                    for (i=0; i<src_len; ++i)
1017                        dst[i] = src[src_len - 1 - i];
1018                }
1019                else
1020                {
1021                    ::memcpy (dst, src, src_len);
1022                }
1023                // And zero the rest...
1024                if (num_zeroes > 0)
1025                    ::memset (dst + src_len, 0, num_zeroes);
1026            }
1027            return src_len;
1028        }
1029        else
1030        {
1031            // We are only copying some of the value from src into dst..
1032
1033            if (dst_byte_order == eByteOrderBig)
1034            {
1035                // Big endian dst
1036                if (m_byte_order == eByteOrderBig)
1037                {
1038                    // Big endian dst, with big endian src
1039                    ::memcpy (dst, src + (src_len - dst_len), dst_len);
1040                }
1041                else
1042                {
1043                    // Big endian dst, with little endian src
1044                    for (i=0; i<dst_len; ++i)
1045                        dst[i] = src[dst_len - 1 - i];
1046                }
1047            }
1048            else
1049            {
1050                // Little endian dst
1051                if (m_byte_order == eByteOrderBig)
1052                {
1053                    // Little endian dst, with big endian src
1054                    for (i=0; i<dst_len; ++i)
1055                        dst[i] = src[src_len - 1 - i];
1056                }
1057                else
1058                {
1059                    // Little endian dst, with big endian src
1060                    ::memcpy (dst, src, dst_len);
1061                }
1062            }
1063            return dst_len;
1064        }
1065
1066    }
1067    return 0;
1068}
1069
1070
1071//----------------------------------------------------------------------
1072// Extracts a variable length NULL terminated C string from
1073// the data at the offset pointed to by "offset_ptr".  The
1074// "offset_ptr" will be updated with the offset of the byte that
1075// follows the NULL terminator byte.
1076//
1077// If the offset pointed to by "offset_ptr" is out of bounds, or if
1078// "length" is non-zero and there aren't enough avaialable
1079// bytes, NULL will be returned and "offset_ptr" will not be
1080// updated.
1081//----------------------------------------------------------------------
1082const char*
1083DataExtractor::GetCStr (offset_t *offset_ptr) const
1084{
1085    const char *cstr = (const char *)PeekData (*offset_ptr, 1);
1086    if (cstr)
1087    {
1088        const char *cstr_end = cstr;
1089        const char *end = (const char *)m_end;
1090        while (cstr_end < end && *cstr_end)
1091            ++cstr_end;
1092
1093        // Now we are either at the end of the data or we point to the
1094        // NULL C string terminator with cstr_end...
1095        if (*cstr_end == '\0')
1096        {
1097            // Advance the offset with one extra byte for the NULL terminator
1098            *offset_ptr += (cstr_end - cstr + 1);
1099            return cstr;
1100        }
1101
1102        // We reached the end of the data without finding a NULL C string
1103        // terminator. Fall through and return NULL otherwise anyone that
1104        // would have used the result as a C string can wonder into
1105        // unknown memory...
1106    }
1107    return NULL;
1108}
1109
1110//----------------------------------------------------------------------
1111// Extracts a NULL terminated C string from the fixed length field of
1112// length "len" at the offset pointed to by "offset_ptr".
1113// The "offset_ptr" will be updated with the offset of the byte that
1114// follows the fixed length field.
1115//
1116// If the offset pointed to by "offset_ptr" is out of bounds, or if
1117// the offset plus the length of the field is out of bounds, or if the
1118// field does not contain a NULL terminator byte, NULL will be returned
1119// and "offset_ptr" will not be updated.
1120//----------------------------------------------------------------------
1121const char*
1122DataExtractor::GetCStr (offset_t *offset_ptr, offset_t len) const
1123{
1124    const char *cstr = (const char *)PeekData (*offset_ptr, len);
1125    if (cstr)
1126    {
1127        if (memchr (cstr, '\0', len) == NULL)
1128        {
1129            return NULL;
1130        }
1131        *offset_ptr += len;
1132        return cstr;
1133    }
1134    return NULL;
1135}
1136
1137//------------------------------------------------------------------
1138// Peeks at a string in the contained data. No verification is done
1139// to make sure the entire string lies within the bounds of this
1140// object's data, only "offset" is verified to be a valid offset.
1141//
1142// Returns a valid C string pointer if "offset" is a valid offset in
1143// this object's data, else NULL is returned.
1144//------------------------------------------------------------------
1145const char *
1146DataExtractor::PeekCStr (offset_t offset) const
1147{
1148    return (const char *)PeekData (offset, 1);
1149}
1150
1151//----------------------------------------------------------------------
1152// Extracts an unsigned LEB128 number from this object's data
1153// starting at the offset pointed to by "offset_ptr". The offset
1154// pointed to by "offset_ptr" will be updated with the offset of the
1155// byte following the last extracted byte.
1156//
1157// Returned the extracted integer value.
1158//----------------------------------------------------------------------
1159uint64_t
1160DataExtractor::GetULEB128 (offset_t *offset_ptr) const
1161{
1162    const uint8_t *src = (const uint8_t *)PeekData (*offset_ptr, 1);
1163    if (src == NULL)
1164        return 0;
1165
1166    const uint8_t *end = m_end;
1167
1168    if (src < end)
1169    {
1170        uint64_t result = *src++;
1171        if (result >= 0x80)
1172        {
1173            result &= 0x7f;
1174            int shift = 7;
1175            while (src < end)
1176            {
1177                uint8_t byte = *src++;
1178                result |= (byte & 0x7f) << shift;
1179                if ((byte & 0x80) == 0)
1180                    break;
1181                shift += 7;
1182            }
1183        }
1184        *offset_ptr = src - m_start;
1185        return result;
1186    }
1187
1188    return 0;
1189}
1190
1191//----------------------------------------------------------------------
1192// Extracts an signed LEB128 number from this object's data
1193// starting at the offset pointed to by "offset_ptr". The offset
1194// pointed to by "offset_ptr" will be updated with the offset of the
1195// byte following the last extracted byte.
1196//
1197// Returned the extracted integer value.
1198//----------------------------------------------------------------------
1199int64_t
1200DataExtractor::GetSLEB128 (offset_t *offset_ptr) const
1201{
1202    const uint8_t *src = (const uint8_t *)PeekData (*offset_ptr, 1);
1203    if (src == NULL)
1204        return 0;
1205
1206    const uint8_t *end = m_end;
1207
1208    if (src < end)
1209    {
1210        int64_t result = 0;
1211        int shift = 0;
1212        int size = sizeof (int64_t) * 8;
1213
1214        uint8_t byte = 0;
1215        int bytecount = 0;
1216
1217        while (src < end)
1218        {
1219            bytecount++;
1220            byte = *src++;
1221            result |= (byte & 0x7f) << shift;
1222            shift += 7;
1223            if ((byte & 0x80) == 0)
1224                break;
1225        }
1226
1227        // Sign bit of byte is 2nd high order bit (0x40)
1228        if (shift < size && (byte & 0x40))
1229            result |= - (1 << shift);
1230
1231        *offset_ptr += bytecount;
1232        return result;
1233    }
1234    return 0;
1235}
1236
1237//----------------------------------------------------------------------
1238// Skips a ULEB128 number (signed or unsigned) from this object's
1239// data starting at the offset pointed to by "offset_ptr". The
1240// offset pointed to by "offset_ptr" will be updated with the offset
1241// of the byte following the last extracted byte.
1242//
1243// Returns the number of bytes consumed during the extraction.
1244//----------------------------------------------------------------------
1245uint32_t
1246DataExtractor::Skip_LEB128 (offset_t *offset_ptr) const
1247{
1248    uint32_t bytes_consumed = 0;
1249    const uint8_t *src = (const uint8_t *)PeekData (*offset_ptr, 1);
1250    if (src == NULL)
1251        return 0;
1252
1253    const uint8_t *end = m_end;
1254
1255    if (src < end)
1256    {
1257        const uint8_t *src_pos = src;
1258        while ((src_pos < end) && (*src_pos++ & 0x80))
1259            ++bytes_consumed;
1260        *offset_ptr += src_pos - src;
1261    }
1262    return bytes_consumed;
1263}
1264
1265static bool
1266GetAPInt (const DataExtractor &data, lldb::offset_t *offset_ptr, lldb::offset_t byte_size, llvm::APInt &result)
1267{
1268    llvm::SmallVector<uint64_t, 2> uint64_array;
1269    lldb::offset_t bytes_left = byte_size;
1270    uint64_t u64;
1271    const lldb::ByteOrder byte_order = data.GetByteOrder();
1272    if (byte_order == lldb::eByteOrderLittle)
1273    {
1274        while (bytes_left > 0)
1275        {
1276            if (bytes_left >= 8)
1277            {
1278                u64 = data.GetU64(offset_ptr);
1279                bytes_left -= 8;
1280            }
1281            else
1282            {
1283                u64 = data.GetMaxU64(offset_ptr, (uint32_t)bytes_left);
1284                bytes_left = 0;
1285            }
1286            uint64_array.push_back(u64);
1287        }
1288        result = llvm::APInt(byte_size * 8, llvm::ArrayRef<uint64_t>(uint64_array));
1289        return true;
1290    }
1291    else if (byte_order == lldb::eByteOrderBig)
1292    {
1293        lldb::offset_t be_offset = *offset_ptr + byte_size;
1294        lldb::offset_t temp_offset;
1295        while (bytes_left > 0)
1296        {
1297            if (bytes_left >= 8)
1298            {
1299                be_offset -= 8;
1300                temp_offset = be_offset;
1301                u64 = data.GetU64(&temp_offset);
1302                bytes_left -= 8;
1303            }
1304            else
1305            {
1306                be_offset -= bytes_left;
1307                temp_offset = be_offset;
1308                u64 = data.GetMaxU64(&temp_offset, (uint32_t)bytes_left);
1309                bytes_left = 0;
1310            }
1311            uint64_array.push_back(u64);
1312        }
1313        *offset_ptr += byte_size;
1314        result = llvm::APInt(byte_size * 8, llvm::ArrayRef<uint64_t>(uint64_array));
1315        return true;
1316    }
1317    return false;
1318}
1319
1320static lldb::offset_t
1321DumpAPInt (Stream *s, const DataExtractor &data, lldb::offset_t offset, lldb::offset_t byte_size, bool is_signed, unsigned radix)
1322{
1323    llvm::APInt apint;
1324    if (GetAPInt (data, &offset, byte_size, apint))
1325    {
1326        std::string apint_str(apint.toString(radix, is_signed));
1327        switch (radix)
1328        {
1329            case 2:
1330                s->Write ("0b", 2);
1331                break;
1332            case 8:
1333                s->Write ("0", 1);
1334                break;
1335            case 10:
1336                break;
1337        }
1338        s->Write(apint_str.c_str(), apint_str.size());
1339    }
1340    return offset;
1341}
1342
1343static float half2float (uint16_t half)
1344{
1345    union{ float       f; uint32_t    u;}u;
1346    int32_t v = (int16_t) half;
1347
1348    if( 0 == (v & 0x7c00))
1349    {
1350        u.u = v & 0x80007FFFU;
1351        return u.f * 0x1.0p125f;
1352    }
1353
1354    v <<= 13;
1355    u.u = v | 0x70000000U;
1356    return u.f * 0x1.0p-112f;
1357}
1358
1359lldb::offset_t
1360DataExtractor::Dump (Stream *s,
1361                     offset_t start_offset,
1362                     lldb::Format item_format,
1363                     size_t item_byte_size,
1364                     size_t item_count,
1365                     size_t num_per_line,
1366                     uint64_t base_addr,
1367                     uint32_t item_bit_size,     // If zero, this is not a bitfield value, if non-zero, the value is a bitfield
1368                     uint32_t item_bit_offset,    // If "item_bit_size" is non-zero, this is the shift amount to apply to a bitfield
1369                     ExecutionContextScope *exe_scope) const
1370{
1371    if (s == NULL)
1372        return start_offset;
1373
1374    if (item_format == eFormatPointer)
1375    {
1376        if (item_byte_size != 4 && item_byte_size != 8)
1377            item_byte_size = s->GetAddressByteSize();
1378    }
1379
1380    offset_t offset = start_offset;
1381
1382    if (item_format == eFormatInstruction)
1383    {
1384        TargetSP target_sp;
1385        if (exe_scope)
1386            target_sp = exe_scope->CalculateTarget();
1387        if (target_sp)
1388        {
1389            DisassemblerSP disassembler_sp (Disassembler::FindPlugin(target_sp->GetArchitecture(), NULL,  NULL));
1390            if (disassembler_sp)
1391            {
1392                lldb::addr_t addr = base_addr + start_offset;
1393                lldb_private::Address so_addr;
1394				bool data_from_file = true;
1395                if (target_sp->GetSectionLoadList().ResolveLoadAddress(addr, so_addr))
1396                {
1397                    data_from_file = false;
1398                }
1399                else
1400                {
1401                    if (target_sp->GetSectionLoadList().IsEmpty() || !target_sp->GetImages().ResolveFileAddress(addr, so_addr))
1402                        so_addr.SetRawAddress(addr);
1403                }
1404
1405                size_t bytes_consumed = disassembler_sp->DecodeInstructions (so_addr, *this, start_offset, item_count, false, data_from_file);
1406
1407                if (bytes_consumed)
1408                {
1409                    offset += bytes_consumed;
1410                    const bool show_address = base_addr != LLDB_INVALID_ADDRESS;
1411                    const bool show_bytes = true;
1412                    ExecutionContext exe_ctx;
1413                    exe_scope->CalculateExecutionContext(exe_ctx);
1414                    disassembler_sp->GetInstructionList().Dump (s,  show_address, show_bytes, &exe_ctx);
1415
1416                    // FIXME: The DisassemblerLLVMC has a reference cycle and won't go away if it has any active instructions.
1417                    // I'll fix that but for now, just clear the list and it will go away nicely.
1418                    disassembler_sp->GetInstructionList().Clear();
1419                }
1420            }
1421        }
1422        else
1423            s->Printf ("invalid target");
1424
1425        return offset;
1426    }
1427
1428    if ((item_format == eFormatOSType || item_format == eFormatAddressInfo) && item_byte_size > 8)
1429        item_format = eFormatHex;
1430
1431    lldb::offset_t line_start_offset = start_offset;
1432    for (uint32_t count = 0; ValidOffset(offset) && count < item_count; ++count)
1433    {
1434        if ((count % num_per_line) == 0)
1435        {
1436            if (count > 0)
1437            {
1438                if (item_format == eFormatBytesWithASCII && offset > line_start_offset)
1439                {
1440                    s->Printf("%*s", static_cast<int>((num_per_line - (offset - line_start_offset)) * 3 + 2), "");
1441                    Dump(s, line_start_offset, eFormatCharPrintable, 1, offset - line_start_offset, LLDB_INVALID_OFFSET, LLDB_INVALID_ADDRESS, 0, 0);
1442                }
1443                s->EOL();
1444            }
1445            if (base_addr != LLDB_INVALID_ADDRESS)
1446                s->Printf ("0x%8.8" PRIx64 ": ", (uint64_t)(base_addr + (offset - start_offset)));
1447            line_start_offset = offset;
1448        }
1449        else
1450        if (item_format != eFormatChar &&
1451            item_format != eFormatCharPrintable &&
1452            item_format != eFormatCharArray &&
1453            count > 0)
1454        {
1455            s->PutChar(' ');
1456        }
1457
1458        uint32_t i;
1459        switch (item_format)
1460        {
1461        case eFormatBoolean:
1462            if (item_byte_size <= 8)
1463                s->Printf ("%s", GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset) ? "true" : "false");
1464            else
1465            {
1466                s->Printf("error: unsupported byte size (%zu) for boolean format", item_byte_size);
1467                return offset;
1468            }
1469            break;
1470
1471        case eFormatBinary:
1472            if (item_byte_size <= 8)
1473            {
1474                uint64_t uval64 = GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset);
1475                // Avoid std::bitset<64>::to_string() since it is missing in
1476                // earlier C++ libraries
1477                std::string binary_value(64, '0');
1478                std::bitset<64> bits(uval64);
1479                for (i = 0; i < 64; ++i)
1480                    if (bits[i])
1481                        binary_value[64 - 1 - i] = '1';
1482                if (item_bit_size > 0)
1483                    s->Printf("0b%s", binary_value.c_str() + 64 - item_bit_size);
1484                else if (item_byte_size > 0 && item_byte_size <= 8)
1485                    s->Printf("0b%s", binary_value.c_str() + 64 - item_byte_size * 8);
1486            }
1487            else
1488            {
1489                const bool is_signed = false;
1490                const unsigned radix = 2;
1491                offset = DumpAPInt (s, *this, offset, item_byte_size, is_signed, radix);
1492            }
1493            break;
1494
1495        case eFormatBytes:
1496        case eFormatBytesWithASCII:
1497            for (i=0; i<item_byte_size; ++i)
1498            {
1499                s->Printf ("%2.2x", GetU8(&offset));
1500            }
1501            // Put an extra space between the groups of bytes if more than one
1502            // is being dumped in a group (item_byte_size is more than 1).
1503            if (item_byte_size > 1)
1504                s->PutChar(' ');
1505            break;
1506
1507        case eFormatChar:
1508        case eFormatCharPrintable:
1509        case eFormatCharArray:
1510            {
1511                // If we are only printing one character surround it with single
1512                // quotes
1513                if (item_count == 1 && item_format == eFormatChar)
1514                    s->PutChar('\'');
1515
1516                const uint64_t ch = GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset);
1517                if (isprint(ch))
1518                    s->Printf ("%c", (char)ch);
1519                else if (item_format != eFormatCharPrintable)
1520                {
1521                    switch (ch)
1522                    {
1523                    case '\033': s->Printf ("\\e"); break;
1524                    case '\a': s->Printf ("\\a"); break;
1525                    case '\b': s->Printf ("\\b"); break;
1526                    case '\f': s->Printf ("\\f"); break;
1527                    case '\n': s->Printf ("\\n"); break;
1528                    case '\r': s->Printf ("\\r"); break;
1529                    case '\t': s->Printf ("\\t"); break;
1530                    case '\v': s->Printf ("\\v"); break;
1531                    case '\0': s->Printf ("\\0"); break;
1532                    default:
1533                        if (item_byte_size == 1)
1534                            s->Printf ("\\x%2.2x", (uint8_t)ch);
1535                        else
1536                            s->Printf ("%" PRIu64, ch);
1537                        break;
1538                    }
1539                }
1540                else
1541                {
1542                    s->PutChar(NON_PRINTABLE_CHAR);
1543                }
1544
1545                // If we are only printing one character surround it with single quotes
1546                if (item_count == 1 && item_format == eFormatChar)
1547                    s->PutChar('\'');
1548            }
1549            break;
1550
1551        case eFormatEnum:       // Print enum value as a signed integer when we don't get the enum type
1552        case eFormatDecimal:
1553            if (item_byte_size <= 8)
1554                s->Printf ("%" PRId64, GetMaxS64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset));
1555            else
1556            {
1557                const bool is_signed = true;
1558                const unsigned radix = 10;
1559                offset = DumpAPInt (s, *this, offset, item_byte_size, is_signed, radix);
1560            }
1561            break;
1562
1563        case eFormatUnsigned:
1564            if (item_byte_size <= 8)
1565                s->Printf ("%" PRIu64, GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset));
1566            else
1567            {
1568                const bool is_signed = false;
1569                const unsigned radix = 10;
1570                offset = DumpAPInt (s, *this, offset, item_byte_size, is_signed, radix);
1571            }
1572            break;
1573
1574        case eFormatOctal:
1575            if (item_byte_size <= 8)
1576                s->Printf ("0%" PRIo64, GetMaxS64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset));
1577            else
1578            {
1579                const bool is_signed = false;
1580                const unsigned radix = 8;
1581                offset = DumpAPInt (s, *this, offset, item_byte_size, is_signed, radix);
1582            }
1583            break;
1584
1585        case eFormatOSType:
1586            {
1587                uint64_t uval64 = GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset);
1588                s->PutChar('\'');
1589                for (i=0; i<item_byte_size; ++i)
1590                {
1591                    uint8_t ch = (uint8_t)(uval64 >> ((item_byte_size - i - 1) * 8));
1592                    if (isprint(ch))
1593                        s->Printf ("%c", ch);
1594                    else
1595                    {
1596                        switch (ch)
1597                        {
1598                        case '\033': s->Printf ("\\e"); break;
1599                        case '\a': s->Printf ("\\a"); break;
1600                        case '\b': s->Printf ("\\b"); break;
1601                        case '\f': s->Printf ("\\f"); break;
1602                        case '\n': s->Printf ("\\n"); break;
1603                        case '\r': s->Printf ("\\r"); break;
1604                        case '\t': s->Printf ("\\t"); break;
1605                        case '\v': s->Printf ("\\v"); break;
1606                        case '\0': s->Printf ("\\0"); break;
1607                        default:   s->Printf ("\\x%2.2x", ch); break;
1608                        }
1609                    }
1610                }
1611                s->PutChar('\'');
1612            }
1613            break;
1614
1615        case eFormatCString:
1616            {
1617                const char *cstr = GetCStr(&offset);
1618
1619                if (!cstr)
1620                {
1621                    s->Printf("NULL");
1622                    offset = LLDB_INVALID_OFFSET;
1623                }
1624                else
1625                {
1626                    s->PutChar('\"');
1627
1628                    while (const char c = *cstr)
1629                    {
1630                        if (isprint(c))
1631                        {
1632                            s->PutChar(c);
1633                        }
1634                        else
1635                        {
1636                            switch (c)
1637                            {
1638                            case '\033': s->Printf ("\\e"); break;
1639                            case '\a': s->Printf ("\\a"); break;
1640                            case '\b': s->Printf ("\\b"); break;
1641                            case '\f': s->Printf ("\\f"); break;
1642                            case '\n': s->Printf ("\\n"); break;
1643                            case '\r': s->Printf ("\\r"); break;
1644                            case '\t': s->Printf ("\\t"); break;
1645                            case '\v': s->Printf ("\\v"); break;
1646                            default:   s->Printf ("\\x%2.2x", c); break;
1647                            }
1648                        }
1649
1650                        ++cstr;
1651                    }
1652
1653                    s->PutChar('\"');
1654                }
1655            }
1656            break;
1657
1658
1659        case eFormatPointer:
1660            s->Address(GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset), sizeof (addr_t));
1661            break;
1662
1663
1664        case eFormatComplexInteger:
1665            {
1666                size_t complex_int_byte_size = item_byte_size / 2;
1667
1668                if (complex_int_byte_size <= 8)
1669                {
1670                    s->Printf("%" PRIu64, GetMaxU64Bitfield(&offset, complex_int_byte_size, 0, 0));
1671                    s->Printf(" + %" PRIu64 "i", GetMaxU64Bitfield(&offset, complex_int_byte_size, 0, 0));
1672                }
1673                else
1674                {
1675                    s->Printf("error: unsupported byte size (%zu) for complex integer format", item_byte_size);
1676                    return offset;
1677                }
1678            }
1679            break;
1680
1681        case eFormatComplex:
1682            if (sizeof(float) * 2 == item_byte_size)
1683            {
1684                float f32_1 = GetFloat (&offset);
1685                float f32_2 = GetFloat (&offset);
1686
1687                s->Printf ("%g + %gi", f32_1, f32_2);
1688                break;
1689            }
1690            else if (sizeof(double) * 2 == item_byte_size)
1691            {
1692                double d64_1 = GetDouble (&offset);
1693                double d64_2 = GetDouble (&offset);
1694
1695                s->Printf ("%lg + %lgi", d64_1, d64_2);
1696                break;
1697            }
1698            else if (sizeof(long double) * 2 == item_byte_size)
1699            {
1700                long double ld64_1 = GetLongDouble (&offset);
1701                long double ld64_2 = GetLongDouble (&offset);
1702                s->Printf ("%Lg + %Lgi", ld64_1, ld64_2);
1703                break;
1704            }
1705            else
1706            {
1707                s->Printf("error: unsupported byte size (%zu) for complex float format", item_byte_size);
1708                return offset;
1709            }
1710            break;
1711
1712        default:
1713        case eFormatDefault:
1714        case eFormatHex:
1715        case eFormatHexUppercase:
1716            {
1717                bool wantsuppercase  = (item_format == eFormatHexUppercase);
1718                if (item_byte_size <= 8)
1719                {
1720                    s->Printf(wantsuppercase ? "0x%*.*" PRIX64 : "0x%*.*" PRIx64, (int)(2 * item_byte_size), (int)(2 * item_byte_size), GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset));
1721                }
1722                else
1723                {
1724                    assert (item_bit_size == 0 && item_bit_offset == 0);
1725                    s->PutCString("0x");
1726                    const uint8_t *bytes = (const uint8_t* )GetData(&offset, item_byte_size);
1727                    if (bytes)
1728                    {
1729                        uint32_t idx;
1730                        if (m_byte_order == eByteOrderBig)
1731                        {
1732                            for (idx = 0; idx < item_byte_size; ++idx)
1733                                s->Printf(wantsuppercase ? "%2.2X" : "%2.2x", bytes[idx]);
1734                        }
1735                        else
1736                        {
1737                            for (idx = 0; idx < item_byte_size; ++idx)
1738                                s->Printf(wantsuppercase ? "%2.2X" : "%2.2x", bytes[item_byte_size - 1 - idx]);
1739                        }
1740                    }
1741                }
1742            }
1743            break;
1744
1745        case eFormatFloat:
1746            {
1747                TargetSP target_sp;
1748                bool used_apfloat = false;
1749                if (exe_scope)
1750                    target_sp = exe_scope->CalculateTarget();
1751                if (target_sp)
1752                {
1753                    ClangASTContext *clang_ast = target_sp->GetScratchClangASTContext();
1754                    if (clang_ast)
1755                    {
1756                        clang::ASTContext *ast = clang_ast->getASTContext();
1757                        if (ast)
1758                        {
1759                            llvm::SmallVector<char, 256> sv;
1760                            // Show full precision when printing float values
1761                            const unsigned format_precision = 0;
1762                            const unsigned format_max_padding = 100;
1763                            size_t item_bit_size = item_byte_size * 8;
1764
1765                            if (item_bit_size == ast->getTypeSize(ast->FloatTy))
1766                            {
1767                                llvm::APInt apint(item_bit_size, this->GetMaxU64(&offset, item_byte_size));
1768                                llvm::APFloat apfloat (ast->getFloatTypeSemantics(ast->FloatTy), apint);
1769                                apfloat.toString(sv, format_precision, format_max_padding);
1770                            }
1771                            else if (item_bit_size == ast->getTypeSize(ast->DoubleTy))
1772                            {
1773                                llvm::APInt apint;
1774                                if (GetAPInt (*this, &offset, item_byte_size, apint))
1775                                {
1776                                    llvm::APFloat apfloat (ast->getFloatTypeSemantics(ast->DoubleTy), apint);
1777                                    apfloat.toString(sv, format_precision, format_max_padding);
1778                                }
1779                            }
1780                            else if (item_bit_size == ast->getTypeSize(ast->LongDoubleTy))
1781                            {
1782                                llvm::APInt apint;
1783                                switch (target_sp->GetArchitecture().GetCore())
1784                                {
1785                                    case ArchSpec::eCore_x86_32_i386:
1786                                    case ArchSpec::eCore_x86_32_i486:
1787                                    case ArchSpec::eCore_x86_32_i486sx:
1788                                    case ArchSpec::eCore_x86_64_x86_64:
1789                                        // clang will assert when contructing the apfloat if we use a 16 byte integer value
1790                                        if (GetAPInt (*this, &offset, 10, apint))
1791                                        {
1792                                            llvm::APFloat apfloat (ast->getFloatTypeSemantics(ast->LongDoubleTy), apint);
1793                                            apfloat.toString(sv, format_precision, format_max_padding);
1794                                        }
1795                                        break;
1796
1797                                    default:
1798                                        if (GetAPInt (*this, &offset, item_byte_size, apint))
1799                                        {
1800                                            llvm::APFloat apfloat (ast->getFloatTypeSemantics(ast->LongDoubleTy), apint);
1801                                            apfloat.toString(sv, format_precision, format_max_padding);
1802                                        }
1803                                        break;
1804                                }
1805                            }
1806                            else if (item_bit_size == ast->getTypeSize(ast->HalfTy))
1807                            {
1808                                llvm::APInt apint(item_bit_size, this->GetU16(&offset));
1809                                llvm::APFloat apfloat (ast->getFloatTypeSemantics(ast->HalfTy), apint);
1810                                apfloat.toString(sv, format_precision, format_max_padding);
1811                            }
1812
1813                            if (!sv.empty())
1814                            {
1815                                s->Printf("%*.*s", (int)sv.size(), (int)sv.size(), sv.data());
1816                                used_apfloat = true;
1817                            }
1818                        }
1819                    }
1820                }
1821
1822                if (!used_apfloat)
1823                {
1824                    std::ostringstream ss;
1825                    if (item_byte_size == sizeof(float) || item_byte_size == 2)
1826                    {
1827                        float f;
1828                        if (item_byte_size == 2)
1829                        {
1830                            uint16_t half = this->GetU16(&offset);
1831                            f = half2float(half);
1832                        }
1833                        else
1834                        {
1835                            f = GetFloat (&offset);
1836                        }
1837                        ss.precision(std::numeric_limits<float>::digits10);
1838                        ss << f;
1839                    }
1840                    else if (item_byte_size == sizeof(double))
1841                    {
1842                        ss.precision(std::numeric_limits<double>::digits10);
1843                        ss << GetDouble(&offset);
1844                    }
1845                    else if (item_byte_size == sizeof(long double))
1846                    {
1847                        ss.precision(std::numeric_limits<long double>::digits10);
1848                        ss << GetLongDouble(&offset);
1849                    }
1850                    else
1851                    {
1852                        s->Printf("error: unsupported byte size (%zu) for float format", item_byte_size);
1853                        return offset;
1854                    }
1855                    ss.flush();
1856                    s->Printf("%s", ss.str().c_str());
1857                }
1858            }
1859            break;
1860
1861        case eFormatUnicode16:
1862            s->Printf("U+%4.4x", GetU16 (&offset));
1863            break;
1864
1865        case eFormatUnicode32:
1866            s->Printf("U+0x%8.8x", GetU32 (&offset));
1867            break;
1868
1869        case eFormatAddressInfo:
1870            {
1871                addr_t addr = GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset);
1872                s->Printf("0x%*.*" PRIx64, (int)(2 * item_byte_size), (int)(2 * item_byte_size), addr);
1873                if (exe_scope)
1874                {
1875                    TargetSP target_sp (exe_scope->CalculateTarget());
1876                    lldb_private::Address so_addr;
1877                    if (target_sp)
1878                    {
1879                        if (target_sp->GetSectionLoadList().ResolveLoadAddress(addr, so_addr))
1880                        {
1881                            s->PutChar(' ');
1882                            so_addr.Dump (s,
1883                                          exe_scope,
1884                                          Address::DumpStyleResolvedDescription,
1885                                          Address::DumpStyleModuleWithFileAddress);
1886                        }
1887                        else
1888                        {
1889                            so_addr.SetOffset(addr);
1890                            so_addr.Dump (s, exe_scope, Address::DumpStyleResolvedPointerDescription);
1891                        }
1892                    }
1893                }
1894            }
1895            break;
1896
1897        case eFormatHexFloat:
1898            if (sizeof(float) == item_byte_size)
1899            {
1900                char float_cstr[256];
1901                llvm::APFloat ap_float (GetFloat (&offset));
1902                ap_float.convertToHexString (float_cstr, 0, false, llvm::APFloat::rmNearestTiesToEven);
1903                s->Printf ("%s", float_cstr);
1904                break;
1905            }
1906            else if (sizeof(double) == item_byte_size)
1907            {
1908                char float_cstr[256];
1909                llvm::APFloat ap_float (GetDouble (&offset));
1910                ap_float.convertToHexString (float_cstr, 0, false, llvm::APFloat::rmNearestTiesToEven);
1911                s->Printf ("%s", float_cstr);
1912                break;
1913            }
1914            else
1915            {
1916                s->Printf("error: unsupported byte size (%zu) for hex float format", item_byte_size);
1917                return offset;
1918            }
1919            break;
1920
1921// please keep the single-item formats below in sync with FormatManager::GetSingleItemFormat
1922// if you fail to do so, users will start getting different outputs depending on internal
1923// implementation details they should not care about ||
1924        case eFormatVectorOfChar:               //   ||
1925            s->PutChar('{');                    //   \/
1926            offset = Dump (s, offset, eFormatCharArray, 1, item_byte_size, item_byte_size, LLDB_INVALID_ADDRESS, 0, 0);
1927            s->PutChar('}');
1928            break;
1929
1930        case eFormatVectorOfSInt8:
1931            s->PutChar('{');
1932            offset = Dump (s, offset, eFormatDecimal, 1, item_byte_size, item_byte_size, LLDB_INVALID_ADDRESS, 0, 0);
1933            s->PutChar('}');
1934            break;
1935
1936        case eFormatVectorOfUInt8:
1937            s->PutChar('{');
1938            offset = Dump (s, offset, eFormatHex, 1, item_byte_size, item_byte_size, LLDB_INVALID_ADDRESS, 0, 0);
1939            s->PutChar('}');
1940            break;
1941
1942        case eFormatVectorOfSInt16:
1943            s->PutChar('{');
1944            offset = Dump (s, offset, eFormatDecimal, sizeof(uint16_t), item_byte_size / sizeof(uint16_t), item_byte_size / sizeof(uint16_t), LLDB_INVALID_ADDRESS, 0, 0);
1945            s->PutChar('}');
1946            break;
1947
1948        case eFormatVectorOfUInt16:
1949            s->PutChar('{');
1950            offset = Dump (s, offset, eFormatHex,     sizeof(uint16_t), item_byte_size / sizeof(uint16_t), item_byte_size / sizeof(uint16_t), LLDB_INVALID_ADDRESS, 0, 0);
1951            s->PutChar('}');
1952            break;
1953
1954        case eFormatVectorOfSInt32:
1955            s->PutChar('{');
1956            offset = Dump (s, offset, eFormatDecimal, sizeof(uint32_t), item_byte_size / sizeof(uint32_t), item_byte_size / sizeof(uint32_t), LLDB_INVALID_ADDRESS, 0, 0);
1957            s->PutChar('}');
1958            break;
1959
1960        case eFormatVectorOfUInt32:
1961            s->PutChar('{');
1962            offset = Dump (s, offset, eFormatHex,     sizeof(uint32_t), item_byte_size / sizeof(uint32_t), item_byte_size / sizeof(uint32_t), LLDB_INVALID_ADDRESS, 0, 0);
1963            s->PutChar('}');
1964            break;
1965
1966        case eFormatVectorOfSInt64:
1967            s->PutChar('{');
1968            offset = Dump (s, offset, eFormatDecimal, sizeof(uint64_t), item_byte_size / sizeof(uint64_t), item_byte_size / sizeof(uint64_t), LLDB_INVALID_ADDRESS, 0, 0);
1969            s->PutChar('}');
1970            break;
1971
1972        case eFormatVectorOfUInt64:
1973            s->PutChar('{');
1974            offset = Dump (s, offset, eFormatHex,     sizeof(uint64_t), item_byte_size / sizeof(uint64_t), item_byte_size / sizeof(uint64_t), LLDB_INVALID_ADDRESS, 0, 0);
1975            s->PutChar('}');
1976            break;
1977
1978        case eFormatVectorOfFloat32:
1979            s->PutChar('{');
1980            offset = Dump (s, offset, eFormatFloat,       4, item_byte_size / 4, item_byte_size / 4, LLDB_INVALID_ADDRESS, 0, 0);
1981            s->PutChar('}');
1982            break;
1983
1984        case eFormatVectorOfFloat64:
1985            s->PutChar('{');
1986            offset = Dump (s, offset, eFormatFloat,       8, item_byte_size / 8, item_byte_size / 8, LLDB_INVALID_ADDRESS, 0, 0);
1987            s->PutChar('}');
1988            break;
1989
1990        case eFormatVectorOfUInt128:
1991            s->PutChar('{');
1992            offset = Dump (s, offset, eFormatHex, 16, item_byte_size / 16, item_byte_size / 16, LLDB_INVALID_ADDRESS, 0, 0);
1993            s->PutChar('}');
1994            break;
1995        }
1996    }
1997
1998    if (item_format == eFormatBytesWithASCII && offset > line_start_offset)
1999    {
2000        s->Printf("%*s", static_cast<int>((num_per_line - (offset - line_start_offset)) * 3 + 2), "");
2001        Dump(s, line_start_offset, eFormatCharPrintable, 1, offset - line_start_offset, LLDB_INVALID_OFFSET, LLDB_INVALID_ADDRESS, 0, 0);
2002    }
2003    return offset;  // Return the offset at which we ended up
2004}
2005
2006//----------------------------------------------------------------------
2007// Dumps bytes from this object's data to the stream "s" starting
2008// "start_offset" bytes into this data, and ending with the byte
2009// before "end_offset". "base_addr" will be added to the offset
2010// into the dumped data when showing the offset into the data in the
2011// output information. "num_per_line" objects of type "type" will
2012// be dumped with the option to override the format for each object
2013// with "type_format". "type_format" is a printf style formatting
2014// string. If "type_format" is NULL, then an appropriate format
2015// string will be used for the supplied "type". If the stream "s"
2016// is NULL, then the output will be send to Log().
2017//----------------------------------------------------------------------
2018lldb::offset_t
2019DataExtractor::PutToLog
2020(
2021    Log *log,
2022    offset_t start_offset,
2023    offset_t length,
2024    uint64_t base_addr,
2025    uint32_t num_per_line,
2026    DataExtractor::Type type,
2027    const char *format
2028) const
2029{
2030    if (log == NULL)
2031        return start_offset;
2032
2033    offset_t offset;
2034    offset_t end_offset;
2035    uint32_t count;
2036    StreamString sstr;
2037    for (offset = start_offset, end_offset = offset + length, count = 0; ValidOffset(offset) && offset < end_offset; ++count)
2038    {
2039        if ((count % num_per_line) == 0)
2040        {
2041            // Print out any previous string
2042            if (sstr.GetSize() > 0)
2043            {
2044                log->Printf("%s", sstr.GetData());
2045                sstr.Clear();
2046            }
2047            // Reset string offset and fill the current line string with address:
2048            if (base_addr != LLDB_INVALID_ADDRESS)
2049                sstr.Printf("0x%8.8" PRIx64 ":", (uint64_t)(base_addr + (offset - start_offset)));
2050        }
2051
2052        switch (type)
2053        {
2054            case TypeUInt8:   sstr.Printf (format ? format : " %2.2x", GetU8(&offset)); break;
2055            case TypeChar:
2056                {
2057                    char ch = GetU8(&offset);
2058                    sstr.Printf (format ? format : " %c",    isprint(ch) ? ch : ' ');
2059                }
2060                break;
2061            case TypeUInt16:  sstr.Printf (format ? format : " %4.4x",       GetU16(&offset)); break;
2062            case TypeUInt32:  sstr.Printf (format ? format : " %8.8x",       GetU32(&offset)); break;
2063            case TypeUInt64:  sstr.Printf (format ? format : " %16.16" PRIx64,   GetU64(&offset)); break;
2064            case TypePointer: sstr.Printf (format ? format : " 0x%" PRIx64,      GetAddress(&offset)); break;
2065            case TypeULEB128: sstr.Printf (format ? format : " 0x%" PRIx64,      GetULEB128(&offset)); break;
2066            case TypeSLEB128: sstr.Printf (format ? format : " %" PRId64,        GetSLEB128(&offset)); break;
2067        }
2068    }
2069
2070    if (sstr.GetSize() > 0)
2071        log->Printf("%s", sstr.GetData());
2072
2073    return offset;  // Return the offset at which we ended up
2074}
2075
2076//----------------------------------------------------------------------
2077// DumpUUID
2078//
2079// Dump out a UUID starting at 'offset' bytes into the buffer
2080//----------------------------------------------------------------------
2081void
2082DataExtractor::DumpUUID (Stream *s, offset_t offset) const
2083{
2084    if (s)
2085    {
2086        const uint8_t *uuid_data = PeekData(offset, 16);
2087        if ( uuid_data )
2088        {
2089            lldb_private::UUID uuid(uuid_data, 16);
2090            uuid.Dump(s);
2091        }
2092        else
2093        {
2094            s->Printf("<not enough data for UUID at offset 0x%8.8" PRIx64 ">", offset);
2095        }
2096    }
2097}
2098
2099void
2100DataExtractor::DumpHexBytes (Stream *s,
2101                             const void *src,
2102                             size_t src_len,
2103                             uint32_t bytes_per_line,
2104                             addr_t base_addr)
2105{
2106    DataExtractor data (src, src_len, eByteOrderLittle, 4);
2107    data.Dump (s,
2108               0,               // Offset into "src"
2109               eFormatBytes,    // Dump as hex bytes
2110               1,               // Size of each item is 1 for single bytes
2111               src_len,         // Number of bytes
2112               bytes_per_line,  // Num bytes per line
2113               base_addr,       // Base address
2114               0, 0);           // Bitfield info
2115}
2116
2117size_t
2118DataExtractor::Copy (DataExtractor &dest_data) const
2119{
2120    if (m_data_sp.get())
2121    {
2122        // we can pass along the SP to the data
2123        dest_data.SetData(m_data_sp);
2124    }
2125    else
2126    {
2127        const uint8_t *base_ptr = m_start;
2128        size_t data_size = GetByteSize();
2129        dest_data.SetData(DataBufferSP(new DataBufferHeap(base_ptr, data_size)));
2130    }
2131    return GetByteSize();
2132}
2133
2134bool
2135DataExtractor::Append(DataExtractor& rhs)
2136{
2137    if (rhs.GetByteOrder() != GetByteOrder())
2138        return false;
2139
2140    if (rhs.GetByteSize() == 0)
2141        return true;
2142
2143    if (GetByteSize() == 0)
2144        return (rhs.Copy(*this) > 0);
2145
2146    size_t bytes = GetByteSize() + rhs.GetByteSize();
2147
2148    DataBufferHeap *buffer_heap_ptr = NULL;
2149    DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));
2150
2151    if (buffer_sp.get() == NULL || buffer_heap_ptr == NULL)
2152        return false;
2153
2154    uint8_t* bytes_ptr = buffer_heap_ptr->GetBytes();
2155
2156    memcpy(bytes_ptr, GetDataStart(), GetByteSize());
2157    memcpy(bytes_ptr + GetByteSize(), rhs.GetDataStart(), rhs.GetByteSize());
2158
2159    SetData(buffer_sp);
2160
2161    return true;
2162}
2163
2164bool
2165DataExtractor::Append(void* buf, offset_t length)
2166{
2167    if (buf == NULL)
2168        return false;
2169
2170    if (length == 0)
2171        return true;
2172
2173    size_t bytes = GetByteSize() + length;
2174
2175    DataBufferHeap *buffer_heap_ptr = NULL;
2176    DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));
2177
2178    if (buffer_sp.get() == NULL || buffer_heap_ptr == NULL)
2179        return false;
2180
2181    uint8_t* bytes_ptr = buffer_heap_ptr->GetBytes();
2182
2183    if (GetByteSize() > 0)
2184        memcpy(bytes_ptr, GetDataStart(), GetByteSize());
2185
2186    memcpy(bytes_ptr + GetByteSize(), buf, length);
2187
2188    SetData(buffer_sp);
2189
2190    return true;
2191}
2192