DependenceAnalysis.h revision 4c5e43da7792f75567b693105cc53e3f1992ad98
1//===-- llvm/Analysis/DependenceAnalysis.h -------------------- -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// DependenceAnalysis is an LLVM pass that analyses dependences between memory
11// accesses. Currently, it is an implementation of the approach described in
12//
13//            Practical Dependence Testing
14//            Goff, Kennedy, Tseng
15//            PLDI 1991
16//
17// There's a single entry point that analyzes the dependence between a pair
18// of memory references in a function, returning either NULL, for no dependence,
19// or a more-or-less detailed description of the dependence between them.
20//
21// This pass exists to support the DependenceGraph pass. There are two separate
22// passes because there's a useful separation of concerns. A dependence exists
23// if two conditions are met:
24//
25//    1) Two instructions reference the same memory location, and
26//    2) There is a flow of control leading from one instruction to the other.
27//
28// DependenceAnalysis attacks the first condition; DependenceGraph will attack
29// the second (it's not yet ready).
30//
31// Please note that this is work in progress and the interface is subject to
32// change.
33//
34// Plausible changes:
35//    Return a set of more precise dependences instead of just one dependence
36//    summarizing all.
37//
38//===----------------------------------------------------------------------===//
39
40#ifndef LLVM_ANALYSIS_DEPENDENCEANALYSIS_H
41#define LLVM_ANALYSIS_DEPENDENCEANALYSIS_H
42
43#include "llvm/ADT/SmallBitVector.h"
44#include "llvm/IR/Instructions.h"
45#include "llvm/Pass.h"
46
47namespace llvm {
48  class AliasAnalysis;
49  class Loop;
50  class LoopInfo;
51  class ScalarEvolution;
52  class SCEV;
53  class SCEVConstant;
54  class raw_ostream;
55
56  /// Dependence - This class represents a dependence between two memory
57  /// memory references in a function. It contains minimal information and
58  /// is used in the very common situation where the compiler is unable to
59  /// determine anything beyond the existence of a dependence; that is, it
60  /// represents a confused dependence (see also FullDependence). In most
61  /// cases (for output, flow, and anti dependences), the dependence implies
62  /// an ordering, where the source must precede the destination; in contrast,
63  /// input dependences are unordered.
64  ///
65  /// When a dependence graph is built, each Dependence will be a member of
66  /// the set of predecessor edges for its destination instruction and a set
67  /// if successor edges for its source instruction. These sets are represented
68  /// as singly-linked lists, with the "next" fields stored in the dependence
69  /// itelf.
70  class Dependence {
71  public:
72    Dependence(Instruction *Source,
73               Instruction *Destination) :
74      Src(Source),
75      Dst(Destination),
76      NextPredecessor(nullptr),
77      NextSuccessor(nullptr) {}
78    virtual ~Dependence() {}
79
80    /// Dependence::DVEntry - Each level in the distance/direction vector
81    /// has a direction (or perhaps a union of several directions), and
82    /// perhaps a distance.
83    struct DVEntry {
84      enum { NONE = 0,
85             LT = 1,
86             EQ = 2,
87             LE = 3,
88             GT = 4,
89             NE = 5,
90             GE = 6,
91             ALL = 7 };
92      unsigned char Direction : 3; // Init to ALL, then refine.
93      bool Scalar    : 1; // Init to true.
94      bool PeelFirst : 1; // Peeling the first iteration will break dependence.
95      bool PeelLast  : 1; // Peeling the last iteration will break the dependence.
96      bool Splitable : 1; // Splitting the loop will break dependence.
97      const SCEV *Distance; // NULL implies no distance available.
98      DVEntry() : Direction(ALL), Scalar(true), PeelFirst(false),
99                  PeelLast(false), Splitable(false), Distance(nullptr) { }
100    };
101
102    /// getSrc - Returns the source instruction for this dependence.
103    ///
104    Instruction *getSrc() const { return Src; }
105
106    /// getDst - Returns the destination instruction for this dependence.
107    ///
108    Instruction *getDst() const { return Dst; }
109
110    /// isInput - Returns true if this is an input dependence.
111    ///
112    bool isInput() const;
113
114    /// isOutput - Returns true if this is an output dependence.
115    ///
116    bool isOutput() const;
117
118    /// isFlow - Returns true if this is a flow (aka true) dependence.
119    ///
120    bool isFlow() const;
121
122    /// isAnti - Returns true if this is an anti dependence.
123    ///
124    bool isAnti() const;
125
126    /// isOrdered - Returns true if dependence is Output, Flow, or Anti
127    ///
128    bool isOrdered() const { return isOutput() || isFlow() || isAnti(); }
129
130    /// isUnordered - Returns true if dependence is Input
131    ///
132    bool isUnordered() const { return isInput(); }
133
134    /// isLoopIndependent - Returns true if this is a loop-independent
135    /// dependence.
136    virtual bool isLoopIndependent() const { return true; }
137
138    /// isConfused - Returns true if this dependence is confused
139    /// (the compiler understands nothing and makes worst-case
140    /// assumptions).
141    virtual bool isConfused() const { return true; }
142
143    /// isConsistent - Returns true if this dependence is consistent
144    /// (occurs every time the source and destination are executed).
145    virtual bool isConsistent() const { return false; }
146
147    /// getLevels - Returns the number of common loops surrounding the
148    /// source and destination of the dependence.
149    virtual unsigned getLevels() const { return 0; }
150
151    /// getDirection - Returns the direction associated with a particular
152    /// level.
153    virtual unsigned getDirection(unsigned Level) const { return DVEntry::ALL; }
154
155    /// getDistance - Returns the distance (or NULL) associated with a
156    /// particular level.
157    virtual const SCEV *getDistance(unsigned Level) const { return nullptr; }
158
159    /// isPeelFirst - Returns true if peeling the first iteration from
160    /// this loop will break this dependence.
161    virtual bool isPeelFirst(unsigned Level) const { return false; }
162
163    /// isPeelLast - Returns true if peeling the last iteration from
164    /// this loop will break this dependence.
165    virtual bool isPeelLast(unsigned Level) const { return false; }
166
167    /// isSplitable - Returns true if splitting this loop will break
168    /// the dependence.
169    virtual bool isSplitable(unsigned Level) const { return false; }
170
171    /// isScalar - Returns true if a particular level is scalar; that is,
172    /// if no subscript in the source or destination mention the induction
173    /// variable associated with the loop at this level.
174    virtual bool isScalar(unsigned Level) const;
175
176    /// getNextPredecessor - Returns the value of the NextPredecessor
177    /// field.
178    const Dependence *getNextPredecessor() const {
179      return NextPredecessor;
180    }
181
182    /// getNextSuccessor - Returns the value of the NextSuccessor
183    /// field.
184    const Dependence *getNextSuccessor() const {
185      return NextSuccessor;
186    }
187
188    /// setNextPredecessor - Sets the value of the NextPredecessor
189    /// field.
190    void setNextPredecessor(const Dependence *pred) {
191      NextPredecessor = pred;
192    }
193
194    /// setNextSuccessor - Sets the value of the NextSuccessor
195    /// field.
196    void setNextSuccessor(const Dependence *succ) {
197      NextSuccessor = succ;
198    }
199
200    /// dump - For debugging purposes, dumps a dependence to OS.
201    ///
202    void dump(raw_ostream &OS) const;
203  private:
204    Instruction *Src, *Dst;
205    const Dependence *NextPredecessor, *NextSuccessor;
206    friend class DependenceAnalysis;
207  };
208
209
210  /// FullDependence - This class represents a dependence between two memory
211  /// references in a function. It contains detailed information about the
212  /// dependence (direction vectors, etc.) and is used when the compiler is
213  /// able to accurately analyze the interaction of the references; that is,
214  /// it is not a confused dependence (see Dependence). In most cases
215  /// (for output, flow, and anti dependences), the dependence implies an
216  /// ordering, where the source must precede the destination; in contrast,
217  /// input dependences are unordered.
218  class FullDependence : public Dependence {
219  public:
220    FullDependence(Instruction *Src, Instruction *Dst, bool LoopIndependent,
221                   unsigned Levels);
222    ~FullDependence() { delete[] DV; }
223
224    /// isLoopIndependent - Returns true if this is a loop-independent
225    /// dependence.
226    bool isLoopIndependent() const override { return LoopIndependent; }
227
228    /// isConfused - Returns true if this dependence is confused
229    /// (the compiler understands nothing and makes worst-case
230    /// assumptions).
231    bool isConfused() const override { return false; }
232
233    /// isConsistent - Returns true if this dependence is consistent
234    /// (occurs every time the source and destination are executed).
235    bool isConsistent() const override { return Consistent; }
236
237    /// getLevels - Returns the number of common loops surrounding the
238    /// source and destination of the dependence.
239    unsigned getLevels() const override { return Levels; }
240
241    /// getDirection - Returns the direction associated with a particular
242    /// level.
243    unsigned getDirection(unsigned Level) const override;
244
245    /// getDistance - Returns the distance (or NULL) associated with a
246    /// particular level.
247    const SCEV *getDistance(unsigned Level) const override;
248
249    /// isPeelFirst - Returns true if peeling the first iteration from
250    /// this loop will break this dependence.
251    bool isPeelFirst(unsigned Level) const override;
252
253    /// isPeelLast - Returns true if peeling the last iteration from
254    /// this loop will break this dependence.
255    bool isPeelLast(unsigned Level) const override;
256
257    /// isSplitable - Returns true if splitting the loop will break
258    /// the dependence.
259    bool isSplitable(unsigned Level) const override;
260
261    /// isScalar - Returns true if a particular level is scalar; that is,
262    /// if no subscript in the source or destination mention the induction
263    /// variable associated with the loop at this level.
264    bool isScalar(unsigned Level) const override;
265
266  private:
267    unsigned short Levels;
268    bool LoopIndependent;
269    bool Consistent; // Init to true, then refine.
270    DVEntry *DV;
271    friend class DependenceAnalysis;
272  };
273
274
275  /// DependenceAnalysis - This class is the main dependence-analysis driver.
276  ///
277  class DependenceAnalysis : public FunctionPass {
278    void operator=(const DependenceAnalysis &) = delete;
279    DependenceAnalysis(const DependenceAnalysis &) = delete;
280  public:
281    /// depends - Tests for a dependence between the Src and Dst instructions.
282    /// Returns NULL if no dependence; otherwise, returns a Dependence (or a
283    /// FullDependence) with as much information as can be gleaned.
284    /// The flag PossiblyLoopIndependent should be set by the caller
285    /// if it appears that control flow can reach from Src to Dst
286    /// without traversing a loop back edge.
287    std::unique_ptr<Dependence> depends(Instruction *Src,
288                                        Instruction *Dst,
289                                        bool PossiblyLoopIndependent);
290
291    /// getSplitIteration - Give a dependence that's splittable at some
292    /// particular level, return the iteration that should be used to split
293    /// the loop.
294    ///
295    /// Generally, the dependence analyzer will be used to build
296    /// a dependence graph for a function (basically a map from instructions
297    /// to dependences). Looking for cycles in the graph shows us loops
298    /// that cannot be trivially vectorized/parallelized.
299    ///
300    /// We can try to improve the situation by examining all the dependences
301    /// that make up the cycle, looking for ones we can break.
302    /// Sometimes, peeling the first or last iteration of a loop will break
303    /// dependences, and there are flags for those possibilities.
304    /// Sometimes, splitting a loop at some other iteration will do the trick,
305    /// and we've got a flag for that case. Rather than waste the space to
306    /// record the exact iteration (since we rarely know), we provide
307    /// a method that calculates the iteration. It's a drag that it must work
308    /// from scratch, but wonderful in that it's possible.
309    ///
310    /// Here's an example:
311    ///
312    ///    for (i = 0; i < 10; i++)
313    ///        A[i] = ...
314    ///        ... = A[11 - i]
315    ///
316    /// There's a loop-carried flow dependence from the store to the load,
317    /// found by the weak-crossing SIV test. The dependence will have a flag,
318    /// indicating that the dependence can be broken by splitting the loop.
319    /// Calling getSplitIteration will return 5.
320    /// Splitting the loop breaks the dependence, like so:
321    ///
322    ///    for (i = 0; i <= 5; i++)
323    ///        A[i] = ...
324    ///        ... = A[11 - i]
325    ///    for (i = 6; i < 10; i++)
326    ///        A[i] = ...
327    ///        ... = A[11 - i]
328    ///
329    /// breaks the dependence and allows us to vectorize/parallelize
330    /// both loops.
331    const SCEV *getSplitIteration(const Dependence &Dep, unsigned Level);
332
333  private:
334    AliasAnalysis *AA;
335    ScalarEvolution *SE;
336    LoopInfo *LI;
337    Function *F;
338
339    /// Subscript - This private struct represents a pair of subscripts from
340    /// a pair of potentially multi-dimensional array references. We use a
341    /// vector of them to guide subscript partitioning.
342    struct Subscript {
343      const SCEV *Src;
344      const SCEV *Dst;
345      enum ClassificationKind { ZIV, SIV, RDIV, MIV, NonLinear } Classification;
346      SmallBitVector Loops;
347      SmallBitVector GroupLoops;
348      SmallBitVector Group;
349    };
350
351    struct CoefficientInfo {
352      const SCEV *Coeff;
353      const SCEV *PosPart;
354      const SCEV *NegPart;
355      const SCEV *Iterations;
356    };
357
358    struct BoundInfo {
359      const SCEV *Iterations;
360      const SCEV *Upper[8];
361      const SCEV *Lower[8];
362      unsigned char Direction;
363      unsigned char DirSet;
364    };
365
366    /// Constraint - This private class represents a constraint, as defined
367    /// in the paper
368    ///
369    ///           Practical Dependence Testing
370    ///           Goff, Kennedy, Tseng
371    ///           PLDI 1991
372    ///
373    /// There are 5 kinds of constraint, in a hierarchy.
374    ///   1) Any - indicates no constraint, any dependence is possible.
375    ///   2) Line - A line ax + by = c, where a, b, and c are parameters,
376    ///             representing the dependence equation.
377    ///   3) Distance - The value d of the dependence distance;
378    ///   4) Point - A point <x, y> representing the dependence from
379    ///              iteration x to iteration y.
380    ///   5) Empty - No dependence is possible.
381    class Constraint {
382    private:
383      enum ConstraintKind { Empty, Point, Distance, Line, Any } Kind;
384      ScalarEvolution *SE;
385      const SCEV *A;
386      const SCEV *B;
387      const SCEV *C;
388      const Loop *AssociatedLoop;
389    public:
390      /// isEmpty - Return true if the constraint is of kind Empty.
391      bool isEmpty() const { return Kind == Empty; }
392
393      /// isPoint - Return true if the constraint is of kind Point.
394      bool isPoint() const { return Kind == Point; }
395
396      /// isDistance - Return true if the constraint is of kind Distance.
397      bool isDistance() const { return Kind == Distance; }
398
399      /// isLine - Return true if the constraint is of kind Line.
400      /// Since Distance's can also be represented as Lines, we also return
401      /// true if the constraint is of kind Distance.
402      bool isLine() const { return Kind == Line || Kind == Distance; }
403
404      /// isAny - Return true if the constraint is of kind Any;
405      bool isAny() const { return Kind == Any; }
406
407      /// getX - If constraint is a point <X, Y>, returns X.
408      /// Otherwise assert.
409      const SCEV *getX() const;
410
411      /// getY - If constraint is a point <X, Y>, returns Y.
412      /// Otherwise assert.
413      const SCEV *getY() const;
414
415      /// getA - If constraint is a line AX + BY = C, returns A.
416      /// Otherwise assert.
417      const SCEV *getA() const;
418
419      /// getB - If constraint is a line AX + BY = C, returns B.
420      /// Otherwise assert.
421      const SCEV *getB() const;
422
423      /// getC - If constraint is a line AX + BY = C, returns C.
424      /// Otherwise assert.
425      const SCEV *getC() const;
426
427      /// getD - If constraint is a distance, returns D.
428      /// Otherwise assert.
429      const SCEV *getD() const;
430
431      /// getAssociatedLoop - Returns the loop associated with this constraint.
432      const Loop *getAssociatedLoop() const;
433
434      /// setPoint - Change a constraint to Point.
435      void setPoint(const SCEV *X, const SCEV *Y, const Loop *CurrentLoop);
436
437      /// setLine - Change a constraint to Line.
438      void setLine(const SCEV *A, const SCEV *B,
439                   const SCEV *C, const Loop *CurrentLoop);
440
441      /// setDistance - Change a constraint to Distance.
442      void setDistance(const SCEV *D, const Loop *CurrentLoop);
443
444      /// setEmpty - Change a constraint to Empty.
445      void setEmpty();
446
447      /// setAny - Change a constraint to Any.
448      void setAny(ScalarEvolution *SE);
449
450      /// dump - For debugging purposes. Dumps the constraint
451      /// out to OS.
452      void dump(raw_ostream &OS) const;
453    };
454
455
456    /// establishNestingLevels - Examines the loop nesting of the Src and Dst
457    /// instructions and establishes their shared loops. Sets the variables
458    /// CommonLevels, SrcLevels, and MaxLevels.
459    /// The source and destination instructions needn't be contained in the same
460    /// loop. The routine establishNestingLevels finds the level of most deeply
461    /// nested loop that contains them both, CommonLevels. An instruction that's
462    /// not contained in a loop is at level = 0. MaxLevels is equal to the level
463    /// of the source plus the level of the destination, minus CommonLevels.
464    /// This lets us allocate vectors MaxLevels in length, with room for every
465    /// distinct loop referenced in both the source and destination subscripts.
466    /// The variable SrcLevels is the nesting depth of the source instruction.
467    /// It's used to help calculate distinct loops referenced by the destination.
468    /// Here's the map from loops to levels:
469    ///            0 - unused
470    ///            1 - outermost common loop
471    ///          ... - other common loops
472    /// CommonLevels - innermost common loop
473    ///          ... - loops containing Src but not Dst
474    ///    SrcLevels - innermost loop containing Src but not Dst
475    ///          ... - loops containing Dst but not Src
476    ///    MaxLevels - innermost loop containing Dst but not Src
477    /// Consider the follow code fragment:
478    ///    for (a = ...) {
479    ///      for (b = ...) {
480    ///        for (c = ...) {
481    ///          for (d = ...) {
482    ///            A[] = ...;
483    ///          }
484    ///        }
485    ///        for (e = ...) {
486    ///          for (f = ...) {
487    ///            for (g = ...) {
488    ///              ... = A[];
489    ///            }
490    ///          }
491    ///        }
492    ///      }
493    ///    }
494    /// If we're looking at the possibility of a dependence between the store
495    /// to A (the Src) and the load from A (the Dst), we'll note that they
496    /// have 2 loops in common, so CommonLevels will equal 2 and the direction
497    /// vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
498    /// A map from loop names to level indices would look like
499    ///     a - 1
500    ///     b - 2 = CommonLevels
501    ///     c - 3
502    ///     d - 4 = SrcLevels
503    ///     e - 5
504    ///     f - 6
505    ///     g - 7 = MaxLevels
506    void establishNestingLevels(const Instruction *Src,
507                                const Instruction *Dst);
508
509    unsigned CommonLevels, SrcLevels, MaxLevels;
510
511    /// mapSrcLoop - Given one of the loops containing the source, return
512    /// its level index in our numbering scheme.
513    unsigned mapSrcLoop(const Loop *SrcLoop) const;
514
515    /// mapDstLoop - Given one of the loops containing the destination,
516    /// return its level index in our numbering scheme.
517    unsigned mapDstLoop(const Loop *DstLoop) const;
518
519    /// isLoopInvariant - Returns true if Expression is loop invariant
520    /// in LoopNest.
521    bool isLoopInvariant(const SCEV *Expression, const Loop *LoopNest) const;
522
523    /// Makes sure both subscripts (i.e. Pair->Src and Pair->Dst) share the same
524    /// integer type by sign-extending one of them when necessary.
525    /// Sign-extending a subscript is safe because getelementptr assumes the
526    /// array subscripts are signed.
527    void unifySubscriptType(Subscript *Pair);
528
529    /// removeMatchingExtensions - Examines a subscript pair.
530    /// If the source and destination are identically sign (or zero)
531    /// extended, it strips off the extension in an effort to
532    /// simplify the actual analysis.
533    void removeMatchingExtensions(Subscript *Pair);
534
535    /// collectCommonLoops - Finds the set of loops from the LoopNest that
536    /// have a level <= CommonLevels and are referred to by the SCEV Expression.
537    void collectCommonLoops(const SCEV *Expression,
538                            const Loop *LoopNest,
539                            SmallBitVector &Loops) const;
540
541    /// checkSrcSubscript - Examines the SCEV Src, returning true iff it's
542    /// linear. Collect the set of loops mentioned by Src.
543    bool checkSrcSubscript(const SCEV *Src,
544                           const Loop *LoopNest,
545                           SmallBitVector &Loops);
546
547    /// checkDstSubscript - Examines the SCEV Dst, returning true iff it's
548    /// linear. Collect the set of loops mentioned by Dst.
549    bool checkDstSubscript(const SCEV *Dst,
550                           const Loop *LoopNest,
551                           SmallBitVector &Loops);
552
553    /// isKnownPredicate - Compare X and Y using the predicate Pred.
554    /// Basically a wrapper for SCEV::isKnownPredicate,
555    /// but tries harder, especially in the presence of sign and zero
556    /// extensions and symbolics.
557    bool isKnownPredicate(ICmpInst::Predicate Pred,
558                          const SCEV *X,
559                          const SCEV *Y) const;
560
561    /// collectUpperBound - All subscripts are the same type (on my machine,
562    /// an i64). The loop bound may be a smaller type. collectUpperBound
563    /// find the bound, if available, and zero extends it to the Type T.
564    /// (I zero extend since the bound should always be >= 0.)
565    /// If no upper bound is available, return NULL.
566    const SCEV *collectUpperBound(const Loop *l, Type *T) const;
567
568    /// collectConstantUpperBound - Calls collectUpperBound(), then
569    /// attempts to cast it to SCEVConstant. If the cast fails,
570    /// returns NULL.
571    const SCEVConstant *collectConstantUpperBound(const Loop *l, Type *T) const;
572
573    /// classifyPair - Examines the subscript pair (the Src and Dst SCEVs)
574    /// and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
575    /// Collects the associated loops in a set.
576    Subscript::ClassificationKind classifyPair(const SCEV *Src,
577                                           const Loop *SrcLoopNest,
578                                           const SCEV *Dst,
579                                           const Loop *DstLoopNest,
580                                           SmallBitVector &Loops);
581
582    /// testZIV - Tests the ZIV subscript pair (Src and Dst) for dependence.
583    /// Returns true if any possible dependence is disproved.
584    /// If there might be a dependence, returns false.
585    /// If the dependence isn't proven to exist,
586    /// marks the Result as inconsistent.
587    bool testZIV(const SCEV *Src,
588                 const SCEV *Dst,
589                 FullDependence &Result) const;
590
591    /// testSIV - Tests the SIV subscript pair (Src and Dst) for dependence.
592    /// Things of the form [c1 + a1*i] and [c2 + a2*j], where
593    /// i and j are induction variables, c1 and c2 are loop invariant,
594    /// and a1 and a2 are constant.
595    /// Returns true if any possible dependence is disproved.
596    /// If there might be a dependence, returns false.
597    /// Sets appropriate direction vector entry and, when possible,
598    /// the distance vector entry.
599    /// If the dependence isn't proven to exist,
600    /// marks the Result as inconsistent.
601    bool testSIV(const SCEV *Src,
602                 const SCEV *Dst,
603                 unsigned &Level,
604                 FullDependence &Result,
605                 Constraint &NewConstraint,
606                 const SCEV *&SplitIter) const;
607
608    /// testRDIV - Tests the RDIV subscript pair (Src and Dst) for dependence.
609    /// Things of the form [c1 + a1*i] and [c2 + a2*j]
610    /// where i and j are induction variables, c1 and c2 are loop invariant,
611    /// and a1 and a2 are constant.
612    /// With minor algebra, this test can also be used for things like
613    /// [c1 + a1*i + a2*j][c2].
614    /// Returns true if any possible dependence is disproved.
615    /// If there might be a dependence, returns false.
616    /// Marks the Result as inconsistent.
617    bool testRDIV(const SCEV *Src,
618                  const SCEV *Dst,
619                  FullDependence &Result) const;
620
621    /// testMIV - Tests the MIV subscript pair (Src and Dst) for dependence.
622    /// Returns true if dependence disproved.
623    /// Can sometimes refine direction vectors.
624    bool testMIV(const SCEV *Src,
625                 const SCEV *Dst,
626                 const SmallBitVector &Loops,
627                 FullDependence &Result) const;
628
629    /// strongSIVtest - Tests the strong SIV subscript pair (Src and Dst)
630    /// for dependence.
631    /// Things of the form [c1 + a*i] and [c2 + a*i],
632    /// where i is an induction variable, c1 and c2 are loop invariant,
633    /// and a is a constant
634    /// Returns true if any possible dependence is disproved.
635    /// If there might be a dependence, returns false.
636    /// Sets appropriate direction and distance.
637    bool strongSIVtest(const SCEV *Coeff,
638                       const SCEV *SrcConst,
639                       const SCEV *DstConst,
640                       const Loop *CurrentLoop,
641                       unsigned Level,
642                       FullDependence &Result,
643                       Constraint &NewConstraint) const;
644
645    /// weakCrossingSIVtest - Tests the weak-crossing SIV subscript pair
646    /// (Src and Dst) for dependence.
647    /// Things of the form [c1 + a*i] and [c2 - a*i],
648    /// where i is an induction variable, c1 and c2 are loop invariant,
649    /// and a is a constant.
650    /// Returns true if any possible dependence is disproved.
651    /// If there might be a dependence, returns false.
652    /// Sets appropriate direction entry.
653    /// Set consistent to false.
654    /// Marks the dependence as splitable.
655    bool weakCrossingSIVtest(const SCEV *SrcCoeff,
656                             const SCEV *SrcConst,
657                             const SCEV *DstConst,
658                             const Loop *CurrentLoop,
659                             unsigned Level,
660                             FullDependence &Result,
661                             Constraint &NewConstraint,
662                             const SCEV *&SplitIter) const;
663
664    /// ExactSIVtest - Tests the SIV subscript pair
665    /// (Src and Dst) for dependence.
666    /// Things of the form [c1 + a1*i] and [c2 + a2*i],
667    /// where i is an induction variable, c1 and c2 are loop invariant,
668    /// and a1 and a2 are constant.
669    /// Returns true if any possible dependence is disproved.
670    /// If there might be a dependence, returns false.
671    /// Sets appropriate direction entry.
672    /// Set consistent to false.
673    bool exactSIVtest(const SCEV *SrcCoeff,
674                      const SCEV *DstCoeff,
675                      const SCEV *SrcConst,
676                      const SCEV *DstConst,
677                      const Loop *CurrentLoop,
678                      unsigned Level,
679                      FullDependence &Result,
680                      Constraint &NewConstraint) const;
681
682    /// weakZeroSrcSIVtest - Tests the weak-zero SIV subscript pair
683    /// (Src and Dst) for dependence.
684    /// Things of the form [c1] and [c2 + a*i],
685    /// where i is an induction variable, c1 and c2 are loop invariant,
686    /// and a is a constant. See also weakZeroDstSIVtest.
687    /// Returns true if any possible dependence is disproved.
688    /// If there might be a dependence, returns false.
689    /// Sets appropriate direction entry.
690    /// Set consistent to false.
691    /// If loop peeling will break the dependence, mark appropriately.
692    bool weakZeroSrcSIVtest(const SCEV *DstCoeff,
693                            const SCEV *SrcConst,
694                            const SCEV *DstConst,
695                            const Loop *CurrentLoop,
696                            unsigned Level,
697                            FullDependence &Result,
698                            Constraint &NewConstraint) const;
699
700    /// weakZeroDstSIVtest - Tests the weak-zero SIV subscript pair
701    /// (Src and Dst) for dependence.
702    /// Things of the form [c1 + a*i] and [c2],
703    /// where i is an induction variable, c1 and c2 are loop invariant,
704    /// and a is a constant. See also weakZeroSrcSIVtest.
705    /// Returns true if any possible dependence is disproved.
706    /// If there might be a dependence, returns false.
707    /// Sets appropriate direction entry.
708    /// Set consistent to false.
709    /// If loop peeling will break the dependence, mark appropriately.
710    bool weakZeroDstSIVtest(const SCEV *SrcCoeff,
711                            const SCEV *SrcConst,
712                            const SCEV *DstConst,
713                            const Loop *CurrentLoop,
714                            unsigned Level,
715                            FullDependence &Result,
716                            Constraint &NewConstraint) const;
717
718    /// exactRDIVtest - Tests the RDIV subscript pair for dependence.
719    /// Things of the form [c1 + a*i] and [c2 + b*j],
720    /// where i and j are induction variable, c1 and c2 are loop invariant,
721    /// and a and b are constants.
722    /// Returns true if any possible dependence is disproved.
723    /// Marks the result as inconsistent.
724    /// Works in some cases that symbolicRDIVtest doesn't,
725    /// and vice versa.
726    bool exactRDIVtest(const SCEV *SrcCoeff,
727                       const SCEV *DstCoeff,
728                       const SCEV *SrcConst,
729                       const SCEV *DstConst,
730                       const Loop *SrcLoop,
731                       const Loop *DstLoop,
732                       FullDependence &Result) const;
733
734    /// symbolicRDIVtest - Tests the RDIV subscript pair for dependence.
735    /// Things of the form [c1 + a*i] and [c2 + b*j],
736    /// where i and j are induction variable, c1 and c2 are loop invariant,
737    /// and a and b are constants.
738    /// Returns true if any possible dependence is disproved.
739    /// Marks the result as inconsistent.
740    /// Works in some cases that exactRDIVtest doesn't,
741    /// and vice versa. Can also be used as a backup for
742    /// ordinary SIV tests.
743    bool symbolicRDIVtest(const SCEV *SrcCoeff,
744                          const SCEV *DstCoeff,
745                          const SCEV *SrcConst,
746                          const SCEV *DstConst,
747                          const Loop *SrcLoop,
748                          const Loop *DstLoop) const;
749
750    /// gcdMIVtest - Tests an MIV subscript pair for dependence.
751    /// Returns true if any possible dependence is disproved.
752    /// Marks the result as inconsistent.
753    /// Can sometimes disprove the equal direction for 1 or more loops.
754    //  Can handle some symbolics that even the SIV tests don't get,
755    /// so we use it as a backup for everything.
756    bool gcdMIVtest(const SCEV *Src,
757                    const SCEV *Dst,
758                    FullDependence &Result) const;
759
760    /// banerjeeMIVtest - Tests an MIV subscript pair for dependence.
761    /// Returns true if any possible dependence is disproved.
762    /// Marks the result as inconsistent.
763    /// Computes directions.
764    bool banerjeeMIVtest(const SCEV *Src,
765                         const SCEV *Dst,
766                         const SmallBitVector &Loops,
767                         FullDependence &Result) const;
768
769    /// collectCoefficientInfo - Walks through the subscript,
770    /// collecting each coefficient, the associated loop bounds,
771    /// and recording its positive and negative parts for later use.
772    CoefficientInfo *collectCoeffInfo(const SCEV *Subscript,
773                                      bool SrcFlag,
774                                      const SCEV *&Constant) const;
775
776    /// getPositivePart - X^+ = max(X, 0).
777    ///
778    const SCEV *getPositivePart(const SCEV *X) const;
779
780    /// getNegativePart - X^- = min(X, 0).
781    ///
782    const SCEV *getNegativePart(const SCEV *X) const;
783
784    /// getLowerBound - Looks through all the bounds info and
785    /// computes the lower bound given the current direction settings
786    /// at each level.
787    const SCEV *getLowerBound(BoundInfo *Bound) const;
788
789    /// getUpperBound - Looks through all the bounds info and
790    /// computes the upper bound given the current direction settings
791    /// at each level.
792    const SCEV *getUpperBound(BoundInfo *Bound) const;
793
794    /// exploreDirections - Hierarchically expands the direction vector
795    /// search space, combining the directions of discovered dependences
796    /// in the DirSet field of Bound. Returns the number of distinct
797    /// dependences discovered. If the dependence is disproved,
798    /// it will return 0.
799    unsigned exploreDirections(unsigned Level,
800                               CoefficientInfo *A,
801                               CoefficientInfo *B,
802                               BoundInfo *Bound,
803                               const SmallBitVector &Loops,
804                               unsigned &DepthExpanded,
805                               const SCEV *Delta) const;
806
807    /// testBounds - Returns true iff the current bounds are plausible.
808    ///
809    bool testBounds(unsigned char DirKind,
810                    unsigned Level,
811                    BoundInfo *Bound,
812                    const SCEV *Delta) const;
813
814    /// findBoundsALL - Computes the upper and lower bounds for level K
815    /// using the * direction. Records them in Bound.
816    void findBoundsALL(CoefficientInfo *A,
817                       CoefficientInfo *B,
818                       BoundInfo *Bound,
819                       unsigned K) const;
820
821    /// findBoundsLT - Computes the upper and lower bounds for level K
822    /// using the < direction. Records them in Bound.
823    void findBoundsLT(CoefficientInfo *A,
824                      CoefficientInfo *B,
825                      BoundInfo *Bound,
826                      unsigned K) const;
827
828    /// findBoundsGT - Computes the upper and lower bounds for level K
829    /// using the > direction. Records them in Bound.
830    void findBoundsGT(CoefficientInfo *A,
831                      CoefficientInfo *B,
832                      BoundInfo *Bound,
833                      unsigned K) const;
834
835    /// findBoundsEQ - Computes the upper and lower bounds for level K
836    /// using the = direction. Records them in Bound.
837    void findBoundsEQ(CoefficientInfo *A,
838                      CoefficientInfo *B,
839                      BoundInfo *Bound,
840                      unsigned K) const;
841
842    /// intersectConstraints - Updates X with the intersection
843    /// of the Constraints X and Y. Returns true if X has changed.
844    bool intersectConstraints(Constraint *X,
845                              const Constraint *Y);
846
847    /// propagate - Review the constraints, looking for opportunities
848    /// to simplify a subscript pair (Src and Dst).
849    /// Return true if some simplification occurs.
850    /// If the simplification isn't exact (that is, if it is conservative
851    /// in terms of dependence), set consistent to false.
852    bool propagate(const SCEV *&Src,
853                   const SCEV *&Dst,
854                   SmallBitVector &Loops,
855                   SmallVectorImpl<Constraint> &Constraints,
856                   bool &Consistent);
857
858    /// propagateDistance - Attempt to propagate a distance
859    /// constraint into a subscript pair (Src and Dst).
860    /// Return true if some simplification occurs.
861    /// If the simplification isn't exact (that is, if it is conservative
862    /// in terms of dependence), set consistent to false.
863    bool propagateDistance(const SCEV *&Src,
864                           const SCEV *&Dst,
865                           Constraint &CurConstraint,
866                           bool &Consistent);
867
868    /// propagatePoint - Attempt to propagate a point
869    /// constraint into a subscript pair (Src and Dst).
870    /// Return true if some simplification occurs.
871    bool propagatePoint(const SCEV *&Src,
872                        const SCEV *&Dst,
873                        Constraint &CurConstraint);
874
875    /// propagateLine - Attempt to propagate a line
876    /// constraint into a subscript pair (Src and Dst).
877    /// Return true if some simplification occurs.
878    /// If the simplification isn't exact (that is, if it is conservative
879    /// in terms of dependence), set consistent to false.
880    bool propagateLine(const SCEV *&Src,
881                       const SCEV *&Dst,
882                       Constraint &CurConstraint,
883                       bool &Consistent);
884
885    /// findCoefficient - Given a linear SCEV,
886    /// return the coefficient corresponding to specified loop.
887    /// If there isn't one, return the SCEV constant 0.
888    /// For example, given a*i + b*j + c*k, returning the coefficient
889    /// corresponding to the j loop would yield b.
890    const SCEV *findCoefficient(const SCEV *Expr,
891                                const Loop *TargetLoop) const;
892
893    /// zeroCoefficient - Given a linear SCEV,
894    /// return the SCEV given by zeroing out the coefficient
895    /// corresponding to the specified loop.
896    /// For example, given a*i + b*j + c*k, zeroing the coefficient
897    /// corresponding to the j loop would yield a*i + c*k.
898    const SCEV *zeroCoefficient(const SCEV *Expr,
899                                const Loop *TargetLoop) const;
900
901    /// addToCoefficient - Given a linear SCEV Expr,
902    /// return the SCEV given by adding some Value to the
903    /// coefficient corresponding to the specified TargetLoop.
904    /// For example, given a*i + b*j + c*k, adding 1 to the coefficient
905    /// corresponding to the j loop would yield a*i + (b+1)*j + c*k.
906    const SCEV *addToCoefficient(const SCEV *Expr,
907                                 const Loop *TargetLoop,
908                                 const SCEV *Value)  const;
909
910    /// updateDirection - Update direction vector entry
911    /// based on the current constraint.
912    void updateDirection(Dependence::DVEntry &Level,
913                         const Constraint &CurConstraint) const;
914
915    bool tryDelinearize(const SCEV *SrcSCEV, const SCEV *DstSCEV,
916                        SmallVectorImpl<Subscript> &Pair,
917                        const SCEV *ElementSize);
918
919  public:
920    static char ID; // Class identification, replacement for typeinfo
921    DependenceAnalysis() : FunctionPass(ID) {
922      initializeDependenceAnalysisPass(*PassRegistry::getPassRegistry());
923    }
924
925    bool runOnFunction(Function &F) override;
926    void releaseMemory() override;
927    void getAnalysisUsage(AnalysisUsage &) const override;
928    void print(raw_ostream &, const Module * = nullptr) const override;
929  }; // class DependenceAnalysis
930
931  /// createDependenceAnalysisPass - This creates an instance of the
932  /// DependenceAnalysis pass.
933  FunctionPass *createDependenceAnalysisPass();
934
935} // namespace llvm
936
937#endif
938