DependenceAnalysis.h revision aa79721fceb3310db5c6aa98f212b690652a8ab4
1//===-- llvm/Analysis/DependenceAnalysis.h -------------------- -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// DependenceAnalysis is an LLVM pass that analyses dependences between memory
11// accesses. Currently, it is an implementation of the approach described in
12//
13//            Practical Dependence Testing
14//            Goff, Kennedy, Tseng
15//            PLDI 1991
16//
17// There's a single entry point that analyzes the dependence between a pair
18// of memory references in a function, returning either NULL, for no dependence,
19// or a more-or-less detailed description of the dependence between them.
20//
21// Please note that this is work in progress and the interface is subject to
22// change.
23//
24// Plausible changes:
25//    Return a set of more precise dependences instead of just one dependence
26//    summarizing all.
27//
28//===----------------------------------------------------------------------===//
29
30#ifndef LLVM_ANALYSIS_DEPENDENCEANALYSIS_H
31#define LLVM_ANALYSIS_DEPENDENCEANALYSIS_H
32
33#include "llvm/BasicBlock.h"
34#include "llvm/Function.h"
35#include "llvm/Instruction.h"
36#include "llvm/Pass.h"
37#include "llvm/ADT/SmallBitVector.h"
38#include "llvm/Analysis/ScalarEvolution.h"
39#include "llvm/Analysis/ScalarEvolutionExpressions.h"
40#include "llvm/Analysis/AliasAnalysis.h"
41#include "llvm/Analysis/LoopInfo.h"
42#include "llvm/Support/raw_ostream.h"
43
44
45namespace llvm {
46  class AliasAnalysis;
47  class ScalarEvolution;
48  class SCEV;
49  class Value;
50  class raw_ostream;
51
52  /// Dependence - This class represents a dependence between two memory
53  /// memory references in a function. It contains minimal information and
54  /// is used in the very common situation where the compiler is unable to
55  /// determine anything beyond the existence of a dependence; that is, it
56  /// represents a confused dependence (see also FullDependence). In most
57  /// cases (for output, flow, and anti dependences), the dependence implies
58  /// an ordering, where the source must preceed the destination; in contrast,
59  /// input dependences are unordered.
60  class Dependence {
61  public:
62    Dependence(const Instruction *Source,
63               const Instruction *Destination) :
64      Src(Source), Dst(Destination) {}
65    virtual ~Dependence() {}
66
67    /// Dependence::DVEntry - Each level in the distance/direction vector
68    /// has a direction (or perhaps a union of several directions), and
69    /// perhaps a distance.
70    struct DVEntry {
71      enum { NONE = 0,
72             LT = 1,
73             EQ = 2,
74             LE = 3,
75             GT = 4,
76             NE = 5,
77             GE = 6,
78             ALL = 7 };
79      unsigned char Direction : 3; // Init to ALL, then refine.
80      bool Scalar    : 1; // Init to true.
81      bool PeelFirst : 1; // Peeling the first iteration will break dependence.
82      bool PeelLast  : 1; // Peeling the last iteration will break the dependence.
83      bool Splitable : 1; // Splitting the loop will break dependence.
84      const SCEV *Distance; // NULL implies no distance available.
85      DVEntry() : Direction(ALL), Scalar(true), PeelFirst(false),
86                  PeelLast(false), Splitable(false), Distance(NULL) { }
87    };
88
89    /// getSrc - Returns the source instruction for this dependence.
90    ///
91    const Instruction *getSrc() const { return Src; }
92
93    /// getDst - Returns the destination instruction for this dependence.
94    ///
95    const Instruction *getDst() const { return Dst; }
96
97    /// isInput - Returns true if this is an input dependence.
98    ///
99    bool isInput() const;
100
101    /// isOutput - Returns true if this is an output dependence.
102    ///
103    bool isOutput() const;
104
105    /// isFlow - Returns true if this is a flow (aka true) dependence.
106    ///
107    bool isFlow() const;
108
109    /// isAnti - Returns true if this is an anti dependence.
110    ///
111    bool isAnti() const;
112
113    /// isOrdered - Returns true if dependence is Output, Flow, or Anti
114    ///
115    bool isOrdered() const { return isOutput() || isFlow() || isAnti(); }
116
117    /// isUnordered - Returns true if dependence is Input
118    ///
119    bool isUnordered() const { return isInput(); }
120
121    /// isLoopIndependent - Returns true if this is a loop-independent
122    /// dependence.
123    virtual bool isLoopIndependent() const { return true; }
124
125    /// isConfused - Returns true if this dependence is confused
126    /// (the compiler understands nothing and makes worst-case
127    /// assumptions).
128    virtual bool isConfused() const { return true; }
129
130    /// isConsistent - Returns true if this dependence is consistent
131    /// (occurs every time the source and destination are executed).
132    virtual bool isConsistent() const { return false; }
133
134    /// getLevels - Returns the number of common loops surrounding the
135    /// souce and destination of the dependence.
136    virtual unsigned getLevels() const { return 0; }
137
138    /// getDirection - Returns the direction associated with a particular
139    /// level.
140    virtual unsigned getDirection(unsigned Level) const { return DVEntry::ALL; }
141
142    /// getDistance - Returns the distance (or NULL) associated with a
143    /// particular level.
144    virtual const SCEV *getDistance(unsigned Level) const { return NULL; }
145
146    /// isPeelFirst - Returns true if peeling the first iteration from
147    /// this loop will break this dependence.
148    virtual bool isPeelFirst(unsigned Level) const { return false; }
149
150    /// isPeelLast - Returns true if peeling the last iteration from
151    /// this loop will break this dependence.
152    virtual bool isPeelLast(unsigned Level) const { return false; }
153
154    /// isSplitable - Returns true if splitting this loop will break
155    /// the dependence.
156    virtual bool isSplitable(unsigned Level) const { return false; }
157
158    /// isScalar - Returns true if a particular level is scalar; that is,
159    /// if no subscript in the source or destination mention the induction
160    /// variable associated with the loop at this level.
161    virtual bool isScalar(unsigned Level) const;
162
163    /// dump - For debugging purposes, dumps a dependence to OS.
164    ///
165    void dump(raw_ostream &OS) const;
166  private:
167    const Instruction *Src, *Dst;
168    friend class DependenceAnalysis;
169  };
170
171
172  /// FullDependence - This class represents a dependence between two memory
173  /// references in a function. It contains detailed information about the
174  /// dependence (direction vectors, etc) and is used when the compiler is
175  /// able to accurately analyze the interaction of the references; that is,
176  /// it is not a confused dependence (see Dependence). In most cases
177  /// (for output, flow, and anti dependences), the dependence implies an
178  /// ordering, where the source must preceed the destination; in contrast,
179  /// input dependences are unordered.
180  class FullDependence : public Dependence {
181  public:
182    FullDependence(const Instruction *Src,
183                   const Instruction *Dst,
184                   bool LoopIndependent,
185                   unsigned Levels);
186    ~FullDependence() {
187      delete DV;
188    }
189
190    /// isLoopIndependent - Returns true if this is a loop-independent
191    /// dependence.
192    bool isLoopIndependent() const { return LoopIndependent; }
193
194    /// isConfused - Returns true if this dependence is confused
195    /// (the compiler understands nothing and makes worst-case
196    /// assumptions).
197    bool isConfused() const { return false; }
198
199    /// isConsistent - Returns true if this dependence is consistent
200    /// (occurs every time the source and destination are executed).
201    bool isConsistent() const { return Consistent; }
202
203    /// getLevels - Returns the number of common loops surrounding the
204    /// souce and destination of the dependence.
205    unsigned getLevels() const { return Levels; }
206
207    /// getDirection - Returns the direction associated with a particular
208    /// level.
209    unsigned getDirection(unsigned Level) const;
210
211    /// getDistance - Returns the distance (or NULL) associated with a
212    /// particular level.
213    const SCEV *getDistance(unsigned Level) const;
214
215    /// isPeelFirst - Returns true if peeling the first iteration from
216    /// this loop will break this dependence.
217    bool isPeelFirst(unsigned Level) const;
218
219    /// isPeelLast - Returns true if peeling the last iteration from
220    /// this loop will break this dependence.
221    bool isPeelLast(unsigned Level) const;
222
223    /// isSplitable - Returns true if splitting the loop will break
224    /// the dependence.
225    bool isSplitable(unsigned Level) const;
226
227    /// isScalar - Returns true if a particular level is scalar; that is,
228    /// if no subscript in the source or destination mention the induction
229    /// variable associated with the loop at this level.
230    bool isScalar(unsigned Level) const;
231  private:
232    unsigned short Levels;
233    bool LoopIndependent;
234    bool Consistent; // Init to true, then refine.
235    DVEntry *DV;
236    friend class DependenceAnalysis;
237  };
238
239
240  /// DependenceAnalysis - This class is the main dependence-analysis driver.
241  ///
242  class DependenceAnalysis : public FunctionPass {
243    void operator=(const DependenceAnalysis &);     // do not implement
244    DependenceAnalysis(const DependenceAnalysis &); // do not implement
245  public:
246    /// depends - Tests for a dependence between the Src and Dst instructions.
247    /// Returns NULL if no dependence; otherwise, returns a Dependence (or a
248    /// FullDependence) with as much information as can be gleaned.
249    /// The flag PossiblyLoopIndependent should be set by the caller
250    /// if it appears that control flow can reach from Src to Dst
251    /// without traversing a loop back edge.
252    Dependence *depends(const Instruction *Src,
253                        const Instruction *Dst,
254                        bool PossiblyLoopIndependent);
255
256    /// getSplitIteration - Give a dependence that's splitable at some
257    /// particular level, return the iteration that should be used to split
258    /// the loop.
259    ///
260    /// Generally, the dependence analyzer will be used to build
261    /// a dependence graph for a function (basically a map from instructions
262    /// to dependences). Looking for cycles in the graph shows us loops
263    /// that cannot be trivially vectorized/parallelized.
264    ///
265    /// We can try to improve the situation by examining all the dependences
266    /// that make up the cycle, looking for ones we can break.
267    /// Sometimes, peeling the first or last iteration of a loop will break
268    /// dependences, and there are flags for those possibilities.
269    /// Sometimes, splitting a loop at some other iteration will do the trick,
270    /// and we've got a flag for that case. Rather than waste the space to
271    /// record the exact iteration (since we rarely know), we provide
272    /// a method that calculates the iteration. It's a drag that it must work
273    /// from scratch, but wonderful in that it's possible.
274    ///
275    /// Here's an example:
276    ///
277    ///    for (i = 0; i < 10; i++)
278    ///        A[i] = ...
279    ///        ... = A[11 - i]
280    ///
281    /// There's a loop-carried flow dependence from the store to the load,
282    /// found by the weak-crossing SIV test. The dependence will have a flag,
283    /// indicating that the dependence can be broken by splitting the loop.
284    /// Calling getSplitIteration will return 5.
285    /// Splitting the loop breaks the dependence, like so:
286    ///
287    ///    for (i = 0; i <= 5; i++)
288    ///        A[i] = ...
289    ///        ... = A[11 - i]
290    ///    for (i = 6; i < 10; i++)
291    ///        A[i] = ...
292    ///        ... = A[11 - i]
293    ///
294    /// breaks the dependence and allows us to vectorize/parallelize
295    /// both loops.
296    const SCEV *getSplitIteration(const Dependence *Dep, unsigned Level);
297
298  private:
299    AliasAnalysis *AA;
300    ScalarEvolution *SE;
301    LoopInfo *LI;
302    Function *F;
303
304    /// Subscript - This private struct represents a pair of subscripts from
305    /// a pair of potentially multi-dimensional array references. We use a
306    /// vector of them to guide subscript partitioning.
307    struct Subscript {
308      const SCEV *Src;
309      const SCEV *Dst;
310      enum ClassificationKind { ZIV, SIV, RDIV, MIV, NonLinear } Classification;
311      SmallBitVector Loops;
312      SmallBitVector GroupLoops;
313      SmallBitVector Group;
314    };
315
316    struct CoefficientInfo {
317      const SCEV *Coeff;
318      const SCEV *PosPart;
319      const SCEV *NegPart;
320      const SCEV *Iterations;
321    };
322
323    struct BoundInfo {
324      const SCEV *Iterations;
325      const SCEV *Upper[8];
326      const SCEV *Lower[8];
327      unsigned char Direction;
328      unsigned char DirSet;
329    };
330
331    /// Constraint - This private class represents a constraint, as defined
332    /// in the paper
333    ///
334    ///           Practical Dependence Testing
335    ///           Goff, Kennedy, Tseng
336    ///           PLDI 1991
337    ///
338    /// There are 5 kinds of constraint, in a hierarchy.
339    ///   1) Any - indicates no constraint, any dependence is possible.
340    ///   2) Line - A line ax + by = c, where a, b, and c are parameters,
341    ///             representing the dependence equation.
342    ///   3) Distance - The value d of the dependence distance;
343    ///   4) Point - A point <x, y> representing the dependence from
344    ///              iteration x to iteration y.
345    ///   5) Empty - No dependence is possible.
346    class Constraint {
347    private:
348      enum ConstraintKind { Empty, Point, Distance, Line, Any } Kind;
349      ScalarEvolution *SE;
350      const SCEV *A;
351      const SCEV *B;
352      const SCEV *C;
353      const Loop *AssociatedLoop;
354    public:
355      /// isEmpty - Return true if the constraint is of kind Empty.
356      bool isEmpty() const { return Kind == Empty; }
357
358      /// isPoint - Return true if the constraint is of kind Point.
359      bool isPoint() const { return Kind == Point; }
360
361      /// isDistance - Return true if the constraint is of kind Distance.
362      bool isDistance() const { return Kind == Distance; }
363
364      /// isLine - Return true if the constraint is of kind Line.
365      /// Since Distance's can also be represented as Lines, we also return
366      /// true if the constraint is of kind Distance.
367      bool isLine() const { return Kind == Line || Kind == Distance; }
368
369      /// isAny - Return true if the constraint is of kind Any;
370      bool isAny() const { return Kind == Any; }
371
372      /// getX - If constraint is a point <X, Y>, returns X.
373      /// Otherwise assert.
374      const SCEV *getX() const;
375
376      /// getY - If constraint is a point <X, Y>, returns Y.
377      /// Otherwise assert.
378      const SCEV *getY() const;
379
380      /// getA - If constraint is a line AX + BY = C, returns A.
381      /// Otherwise assert.
382      const SCEV *getA() const;
383
384      /// getB - If constraint is a line AX + BY = C, returns B.
385      /// Otherwise assert.
386      const SCEV *getB() const;
387
388      /// getC - If constraint is a line AX + BY = C, returns C.
389      /// Otherwise assert.
390      const SCEV *getC() const;
391
392      /// getD - If constraint is a distance, returns D.
393      /// Otherwise assert.
394      const SCEV *getD() const;
395
396      /// getAssociatedLoop - Returns the loop associated with this constraint.
397      const Loop *getAssociatedLoop() const;
398
399      /// setPoint - Change a constraint to Point.
400      void setPoint(const SCEV *X, const SCEV *Y, const Loop *CurrentLoop);
401
402      /// setLine - Change a constraint to Line.
403      void setLine(const SCEV *A, const SCEV *B,
404                   const SCEV *C, const Loop *CurrentLoop);
405
406      /// setDistance - Change a constraint to Distance.
407      void setDistance(const SCEV *D, const Loop *CurrentLoop);
408
409      /// setEmpty - Change a constraint to Empty.
410      void setEmpty();
411
412      /// setAny - Change a constraint to Any.
413      void setAny(ScalarEvolution *SE);
414
415      /// dump - For debugging purposes. Dumps the constraint
416      /// out to OS.
417      void dump(raw_ostream &OS) const;
418    };
419
420
421    /// establishNestingLevels - Examines the loop nesting of the Src and Dst
422    /// instructions and establishes their shared loops. Sets the variables
423    /// CommonLevels, SrcLevels, and MaxLevels.
424    /// The source and destination instructions needn't be contained in the same
425    /// loop. The routine establishNestingLevels finds the level of most deeply
426    /// nested loop that contains them both, CommonLevels. An instruction that's
427    /// not contained in a loop is at level = 0. MaxLevels is equal to the level
428    /// of the source plus the level of the destination, minus CommonLevels.
429    /// This lets us allocate vectors MaxLevels in length, with room for every
430    /// distinct loop referenced in both the source and destination subscripts.
431    /// The variable SrcLevels is the nesting depth of the source instruction.
432    /// It's used to help calculate distinct loops referenced by the destination.
433    /// Here's the map from loops to levels:
434    ///            0 - unused
435    ///            1 - outermost common loop
436    ///          ... - other common loops
437    /// CommonLevels - innermost common loop
438    ///          ... - loops containing Src but not Dst
439    ///    SrcLevels - innermost loop containing Src but not Dst
440    ///          ... - loops containing Dst but not Src
441    ///    MaxLevels - innermost loop containing Dst but not Src
442    /// Consider the follow code fragment:
443    ///    for (a = ...) {
444    ///      for (b = ...) {
445    ///        for (c = ...) {
446    ///          for (d = ...) {
447    ///            A[] = ...;
448    ///          }
449    ///        }
450    ///        for (e = ...) {
451    ///          for (f = ...) {
452    ///            for (g = ...) {
453    ///              ... = A[];
454    ///            }
455    ///          }
456    ///        }
457    ///      }
458    ///    }
459    /// If we're looking at the possibility of a dependence between the store
460    /// to A (the Src) and the load from A (the Dst), we'll note that they
461    /// have 2 loops in common, so CommonLevels will equal 2 and the direction
462    /// vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
463    /// A map from loop names to level indices would look like
464    ///     a - 1
465    ///     b - 2 = CommonLevels
466    ///     c - 3
467    ///     d - 4 = SrcLevels
468    ///     e - 5
469    ///     f - 6
470    ///     g - 7 = MaxLevels
471    void establishNestingLevels(const Instruction *Src,
472                                const Instruction *Dst);
473
474    unsigned CommonLevels, SrcLevels, MaxLevels;
475
476    /// mapSrcLoop - Given one of the loops containing the source, return
477    /// its level index in our numbering scheme.
478    unsigned mapSrcLoop(const Loop *SrcLoop) const;
479
480    /// mapDstLoop - Given one of the loops containing the destination,
481    /// return its level index in our numbering scheme.
482    unsigned mapDstLoop(const Loop *DstLoop) const;
483
484    /// isLoopInvariant - Returns true if Expression is loop invariant
485    /// in LoopNest.
486    bool isLoopInvariant(const SCEV *Expression, const Loop *LoopNest) const;
487
488    /// removeMatchingExtensions - Examines a subscript pair.
489    /// If the source and destination are identically sign (or zero)
490    /// extended, it strips off the extension in an effort to
491    /// simplify the actual analysis.
492    void removeMatchingExtensions(Subscript *Pair);
493
494    /// collectCommonLoops - Finds the set of loops from the LoopNest that
495    /// have a level <= CommonLevels and are referred to by the SCEV Expression.
496    void collectCommonLoops(const SCEV *Expression,
497                            const Loop *LoopNest,
498                            SmallBitVector &Loops) const;
499
500    /// checkSrcSubscript - Examines the SCEV Src, returning true iff it's
501    /// linear. Collect the set of loops mentioned by Src.
502    bool checkSrcSubscript(const SCEV *Src,
503                           const Loop *LoopNest,
504                           SmallBitVector &Loops);
505
506    /// checkDstSubscript - Examines the SCEV Dst, returning true iff it's
507    /// linear. Collect the set of loops mentioned by Dst.
508    bool checkDstSubscript(const SCEV *Dst,
509                           const Loop *LoopNest,
510                           SmallBitVector &Loops);
511
512    /// isKnownPredicate - Compare X and Y using the predicate Pred.
513    /// Basically a wrapper for SCEV::isKnownPredicate,
514    /// but tries harder, especially in the presense of sign and zero
515    /// extensions and symbolics.
516    bool isKnownPredicate(ICmpInst::Predicate Pred,
517                          const SCEV *X,
518                          const SCEV *Y) const;
519
520    /// collectUpperBound - All subscripts are the same type (on my machine,
521    /// an i64). The loop bound may be a smaller type. collectUpperBound
522    /// find the bound, if available, and zero extends it to the Type T.
523    /// (I zero extend since the bound should always be >= 0.)
524    /// If no upper bound is available, return NULL.
525    const SCEV *collectUpperBound(const Loop *l, Type *T) const;
526
527    /// collectConstantUpperBound - Calls collectUpperBound(), then
528    /// attempts to cast it to SCEVConstant. If the cast fails,
529    /// returns NULL.
530    const SCEVConstant *collectConstantUpperBound(const Loop *l, Type *T) const;
531
532    /// classifyPair - Examines the subscript pair (the Src and Dst SCEVs)
533    /// and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
534    /// Collects the associated loops in a set.
535    Subscript::ClassificationKind classifyPair(const SCEV *Src,
536                                           const Loop *SrcLoopNest,
537                                           const SCEV *Dst,
538                                           const Loop *DstLoopNest,
539                                           SmallBitVector &Loops);
540
541    /// testZIV - Tests the ZIV subscript pair (Src and Dst) for dependence.
542    /// Returns true if any possible dependence is disproved.
543    /// If there might be a dependence, returns false.
544    /// If the dependence isn't proven to exist,
545    /// marks the Result as inconsistent.
546    bool testZIV(const SCEV *Src,
547                 const SCEV *Dst,
548                 FullDependence &Result) const;
549
550    /// testSIV - Tests the SIV subscript pair (Src and Dst) for dependence.
551    /// Things of the form [c1 + a1*i] and [c2 + a2*j], where
552    /// i and j are induction variables, c1 and c2 are loop invariant,
553    /// and a1 and a2 are constant.
554    /// Returns true if any possible dependence is disproved.
555    /// If there might be a dependence, returns false.
556    /// Sets appropriate direction vector entry and, when possible,
557    /// the distance vector entry.
558    /// If the dependence isn't proven to exist,
559    /// marks the Result as inconsistent.
560    bool testSIV(const SCEV *Src,
561                 const SCEV *Dst,
562                 unsigned &Level,
563                 FullDependence &Result,
564                 Constraint &NewConstraint,
565                 const SCEV *&SplitIter) const;
566
567    /// testRDIV - Tests the RDIV subscript pair (Src and Dst) for dependence.
568    /// Things of the form [c1 + a1*i] and [c2 + a2*j]
569    /// where i and j are induction variables, c1 and c2 are loop invariant,
570    /// and a1 and a2 are constant.
571    /// With minor algebra, this test can also be used for things like
572    /// [c1 + a1*i + a2*j][c2].
573    /// Returns true if any possible dependence is disproved.
574    /// If there might be a dependence, returns false.
575    /// Marks the Result as inconsistent.
576    bool testRDIV(const SCEV *Src,
577                  const SCEV *Dst,
578                  FullDependence &Result) const;
579
580    /// testMIV - Tests the MIV subscript pair (Src and Dst) for dependence.
581    /// Returns true if dependence disproved.
582    /// Can sometimes refine direction vectors.
583    bool testMIV(const SCEV *Src,
584                 const SCEV *Dst,
585                 const SmallBitVector &Loops,
586                 FullDependence &Result) const;
587
588    /// strongSIVtest - Tests the strong SIV subscript pair (Src and Dst)
589    /// for dependence.
590    /// Things of the form [c1 + a*i] and [c2 + a*i],
591    /// where i is an induction variable, c1 and c2 are loop invariant,
592    /// and a is a constant
593    /// Returns true if any possible dependence is disproved.
594    /// If there might be a dependence, returns false.
595    /// Sets appropriate direction and distance.
596    bool strongSIVtest(const SCEV *Coeff,
597                       const SCEV *SrcConst,
598                       const SCEV *DstConst,
599                       const Loop *CurrentLoop,
600                       unsigned Level,
601                       FullDependence &Result,
602                       Constraint &NewConstraint) const;
603
604    /// weakCrossingSIVtest - Tests the weak-crossing SIV subscript pair
605    /// (Src and Dst) for dependence.
606    /// Things of the form [c1 + a*i] and [c2 - a*i],
607    /// where i is an induction variable, c1 and c2 are loop invariant,
608    /// and a is a constant.
609    /// Returns true if any possible dependence is disproved.
610    /// If there might be a dependence, returns false.
611    /// Sets appropriate direction entry.
612    /// Set consistent to false.
613    /// Marks the dependence as splitable.
614    bool weakCrossingSIVtest(const SCEV *SrcCoeff,
615                             const SCEV *SrcConst,
616                             const SCEV *DstConst,
617                             const Loop *CurrentLoop,
618                             unsigned Level,
619                             FullDependence &Result,
620                             Constraint &NewConstraint,
621                             const SCEV *&SplitIter) const;
622
623    /// ExactSIVtest - Tests the SIV subscript pair
624    /// (Src and Dst) for dependence.
625    /// Things of the form [c1 + a1*i] and [c2 + a2*i],
626    /// where i is an induction variable, c1 and c2 are loop invariant,
627    /// and a1 and a2 are constant.
628    /// Returns true if any possible dependence is disproved.
629    /// If there might be a dependence, returns false.
630    /// Sets appropriate direction entry.
631    /// Set consistent to false.
632    bool exactSIVtest(const SCEV *SrcCoeff,
633                      const SCEV *DstCoeff,
634                      const SCEV *SrcConst,
635                      const SCEV *DstConst,
636                      const Loop *CurrentLoop,
637                      unsigned Level,
638                      FullDependence &Result,
639                      Constraint &NewConstraint) const;
640
641    /// weakZeroSrcSIVtest - Tests the weak-zero SIV subscript pair
642    /// (Src and Dst) for dependence.
643    /// Things of the form [c1] and [c2 + a*i],
644    /// where i is an induction variable, c1 and c2 are loop invariant,
645    /// and a is a constant. See also weakZeroDstSIVtest.
646    /// Returns true if any possible dependence is disproved.
647    /// If there might be a dependence, returns false.
648    /// Sets appropriate direction entry.
649    /// Set consistent to false.
650    /// If loop peeling will break the dependence, mark appropriately.
651    bool weakZeroSrcSIVtest(const SCEV *DstCoeff,
652                            const SCEV *SrcConst,
653                            const SCEV *DstConst,
654                            const Loop *CurrentLoop,
655                            unsigned Level,
656                            FullDependence &Result,
657                            Constraint &NewConstraint) const;
658
659    /// weakZeroDstSIVtest - Tests the weak-zero SIV subscript pair
660    /// (Src and Dst) for dependence.
661    /// Things of the form [c1 + a*i] and [c2],
662    /// where i is an induction variable, c1 and c2 are loop invariant,
663    /// and a is a constant. See also weakZeroSrcSIVtest.
664    /// Returns true if any possible dependence is disproved.
665    /// If there might be a dependence, returns false.
666    /// Sets appropriate direction entry.
667    /// Set consistent to false.
668    /// If loop peeling will break the dependence, mark appropriately.
669    bool weakZeroDstSIVtest(const SCEV *SrcCoeff,
670                            const SCEV *SrcConst,
671                            const SCEV *DstConst,
672                            const Loop *CurrentLoop,
673                            unsigned Level,
674                            FullDependence &Result,
675                            Constraint &NewConstraint) const;
676
677    /// exactRDIVtest - Tests the RDIV subscript pair for dependence.
678    /// Things of the form [c1 + a*i] and [c2 + b*j],
679    /// where i and j are induction variable, c1 and c2 are loop invariant,
680    /// and a and b are constants.
681    /// Returns true if any possible dependence is disproved.
682    /// Marks the result as inconsistant.
683    /// Works in some cases that symbolicRDIVtest doesn't,
684    /// and vice versa.
685    bool exactRDIVtest(const SCEV *SrcCoeff,
686                       const SCEV *DstCoeff,
687                       const SCEV *SrcConst,
688                       const SCEV *DstConst,
689                       const Loop *SrcLoop,
690                       const Loop *DstLoop,
691                       FullDependence &Result) const;
692
693    /// symbolicRDIVtest - Tests the RDIV subscript pair for dependence.
694    /// Things of the form [c1 + a*i] and [c2 + b*j],
695    /// where i and j are induction variable, c1 and c2 are loop invariant,
696    /// and a and b are constants.
697    /// Returns true if any possible dependence is disproved.
698    /// Marks the result as inconsistant.
699    /// Works in some cases that exactRDIVtest doesn't,
700    /// and vice versa. Can also be used as a backup for
701    /// ordinary SIV tests.
702    bool symbolicRDIVtest(const SCEV *SrcCoeff,
703                          const SCEV *DstCoeff,
704                          const SCEV *SrcConst,
705                          const SCEV *DstConst,
706                          const Loop *SrcLoop,
707                          const Loop *DstLoop) const;
708
709    /// gcdMIVtest - Tests an MIV subscript pair for dependence.
710    /// Returns true if any possible dependence is disproved.
711    /// Marks the result as inconsistant.
712    /// Can sometimes disprove the equal direction for 1 or more loops.
713    //  Can handle some symbolics that even the SIV tests don't get,
714    /// so we use it as a backup for everything.
715    bool gcdMIVtest(const SCEV *Src,
716                    const SCEV *Dst,
717                    FullDependence &Result) const;
718
719    /// banerjeeMIVtest - Tests an MIV subscript pair for dependence.
720    /// Returns true if any possible dependence is disproved.
721    /// Marks the result as inconsistant.
722    /// Computes directions.
723    bool banerjeeMIVtest(const SCEV *Src,
724                         const SCEV *Dst,
725                         const SmallBitVector &Loops,
726                         FullDependence &Result) const;
727
728    /// collectCoefficientInfo - Walks through the subscript,
729    /// collecting each coefficient, the associated loop bounds,
730    /// and recording its positive and negative parts for later use.
731    CoefficientInfo *collectCoeffInfo(const SCEV *Subscript,
732                                      bool SrcFlag,
733                                      const SCEV *&Constant) const;
734
735    /// getPositivePart - X^+ = max(X, 0).
736    ///
737    const SCEV *getPositivePart(const SCEV *X) const;
738
739    /// getNegativePart - X^- = min(X, 0).
740    ///
741    const SCEV *getNegativePart(const SCEV *X) const;
742
743    /// getLowerBound - Looks through all the bounds info and
744    /// computes the lower bound given the current direction settings
745    /// at each level.
746    const SCEV *getLowerBound(BoundInfo *Bound) const;
747
748    /// getUpperBound - Looks through all the bounds info and
749    /// computes the upper bound given the current direction settings
750    /// at each level.
751    const SCEV *getUpperBound(BoundInfo *Bound) const;
752
753    /// exploreDirections - Hierarchically expands the direction vector
754    /// search space, combining the directions of discovered dependences
755    /// in the DirSet field of Bound. Returns the number of distinct
756    /// dependences discovered. If the dependence is disproved,
757    /// it will return 0.
758    unsigned exploreDirections(unsigned Level,
759                               CoefficientInfo *A,
760                               CoefficientInfo *B,
761                               BoundInfo *Bound,
762                               const SmallBitVector &Loops,
763                               unsigned &DepthExpanded,
764                               const SCEV *Delta) const;
765
766    /// testBounds - Returns true iff the current bounds are plausible.
767    ///
768    bool testBounds(unsigned char DirKind,
769                    unsigned Level,
770                    BoundInfo *Bound,
771                    const SCEV *Delta) const;
772
773    /// findBoundsALL - Computes the upper and lower bounds for level K
774    /// using the * direction. Records them in Bound.
775    void findBoundsALL(CoefficientInfo *A,
776                       CoefficientInfo *B,
777                       BoundInfo *Bound,
778                       unsigned K) const;
779
780    /// findBoundsLT - Computes the upper and lower bounds for level K
781    /// using the < direction. Records them in Bound.
782    void findBoundsLT(CoefficientInfo *A,
783                      CoefficientInfo *B,
784                      BoundInfo *Bound,
785                      unsigned K) const;
786
787    /// findBoundsGT - Computes the upper and lower bounds for level K
788    /// using the > direction. Records them in Bound.
789    void findBoundsGT(CoefficientInfo *A,
790                      CoefficientInfo *B,
791                      BoundInfo *Bound,
792                      unsigned K) const;
793
794    /// findBoundsEQ - Computes the upper and lower bounds for level K
795    /// using the = direction. Records them in Bound.
796    void findBoundsEQ(CoefficientInfo *A,
797                      CoefficientInfo *B,
798                      BoundInfo *Bound,
799                      unsigned K) const;
800
801    /// intersectConstraints - Updates X with the intersection
802    /// of the Constraints X and Y. Returns true if X has changed.
803    bool intersectConstraints(Constraint *X,
804                              const Constraint *Y);
805
806    /// propagate - Review the constraints, looking for opportunities
807    /// to simplify a subscript pair (Src and Dst).
808    /// Return true if some simplification occurs.
809    /// If the simplification isn't exact (that is, if it is conservative
810    /// in terms of dependence), set consistent to false.
811    bool propagate(const SCEV *&Src,
812                   const SCEV *&Dst,
813                   SmallBitVector &Loops,
814                   SmallVector<Constraint, 4> &Constraints,
815                   bool &Consistent);
816
817    /// propagateDistance - Attempt to propagate a distance
818    /// constraint into a subscript pair (Src and Dst).
819    /// Return true if some simplification occurs.
820    /// If the simplification isn't exact (that is, if it is conservative
821    /// in terms of dependence), set consistent to false.
822    bool propagateDistance(const SCEV *&Src,
823                           const SCEV *&Dst,
824                           Constraint &CurConstraint,
825                           bool &Consistent);
826
827    /// propagatePoint - Attempt to propagate a point
828    /// constraint into a subscript pair (Src and Dst).
829    /// Return true if some simplification occurs.
830    bool propagatePoint(const SCEV *&Src,
831                        const SCEV *&Dst,
832                        Constraint &CurConstraint);
833
834    /// propagateLine - Attempt to propagate a line
835    /// constraint into a subscript pair (Src and Dst).
836    /// Return true if some simplification occurs.
837    /// If the simplification isn't exact (that is, if it is conservative
838    /// in terms of dependence), set consistent to false.
839    bool propagateLine(const SCEV *&Src,
840                       const SCEV *&Dst,
841                       Constraint &CurConstraint,
842                       bool &Consistent);
843
844    /// findCoefficient - Given a linear SCEV,
845    /// return the coefficient corresponding to specified loop.
846    /// If there isn't one, return the SCEV constant 0.
847    /// For example, given a*i + b*j + c*k, returning the coefficient
848    /// corresponding to the j loop would yield b.
849    const SCEV *findCoefficient(const SCEV *Expr,
850                                const Loop *TargetLoop) const;
851
852    /// zeroCoefficient - Given a linear SCEV,
853    /// return the SCEV given by zeroing out the coefficient
854    /// corresponding to the specified loop.
855    /// For example, given a*i + b*j + c*k, zeroing the coefficient
856    /// corresponding to the j loop would yield a*i + c*k.
857    const SCEV *zeroCoefficient(const SCEV *Expr,
858                                const Loop *TargetLoop) const;
859
860    /// addToCoefficient - Given a linear SCEV Expr,
861    /// return the SCEV given by adding some Value to the
862    /// coefficient corresponding to the specified TargetLoop.
863    /// For example, given a*i + b*j + c*k, adding 1 to the coefficient
864    /// corresponding to the j loop would yield a*i + (b+1)*j + c*k.
865    const SCEV *addToCoefficient(const SCEV *Expr,
866                                 const Loop *TargetLoop,
867                                 const SCEV *Value)  const;
868
869    /// updateDirection - Update direction vector entry
870    /// based on the current constraint.
871    void updateDirection(Dependence::DVEntry &Level,
872                         const Constraint &CurConstraint) const;
873  public:
874    static char ID; // Class identification, replacement for typeinfo
875    DependenceAnalysis() : FunctionPass(ID) {
876      initializeDependenceAnalysisPass(*PassRegistry::getPassRegistry());
877    }
878
879    bool runOnFunction(Function &F);
880    void releaseMemory();
881    void getAnalysisUsage(AnalysisUsage &) const;
882    void print(raw_ostream &, const Module * = 0) const;
883  }; // class DependenceAnalysis
884
885  /// createDependenceAnalysisPass - This creates an instance of the
886  /// DependenceAnalysis pass.
887  FunctionPass *createDependenceAnalysisPass();
888
889} // namespace llvm
890
891#endif
892