1//===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the primary stateless implementation of the
11// Alias Analysis interface that implements identities (two different
12// globals cannot alias, etc), but does no stateful analysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/Passes.h"
17#include "llvm/ADT/SmallPtrSet.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/AssumptionCache.h"
21#include "llvm/Analysis/CFG.h"
22#include "llvm/Analysis/CaptureTracking.h"
23#include "llvm/Analysis/InstructionSimplify.h"
24#include "llvm/Analysis/LoopInfo.h"
25#include "llvm/Analysis/MemoryBuiltins.h"
26#include "llvm/Analysis/TargetLibraryInfo.h"
27#include "llvm/Analysis/ValueTracking.h"
28#include "llvm/IR/Constants.h"
29#include "llvm/IR/DataLayout.h"
30#include "llvm/IR/DerivedTypes.h"
31#include "llvm/IR/Dominators.h"
32#include "llvm/IR/Function.h"
33#include "llvm/IR/GetElementPtrTypeIterator.h"
34#include "llvm/IR/GlobalAlias.h"
35#include "llvm/IR/GlobalVariable.h"
36#include "llvm/IR/Instructions.h"
37#include "llvm/IR/IntrinsicInst.h"
38#include "llvm/IR/LLVMContext.h"
39#include "llvm/IR/Operator.h"
40#include "llvm/Pass.h"
41#include "llvm/Support/ErrorHandling.h"
42#include <algorithm>
43using namespace llvm;
44
45/// Cutoff after which to stop analysing a set of phi nodes potentially involved
46/// in a cycle. Because we are analysing 'through' phi nodes we need to be
47/// careful with value equivalence. We use reachability to make sure a value
48/// cannot be involved in a cycle.
49const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
50
51// The max limit of the search depth in DecomposeGEPExpression() and
52// GetUnderlyingObject(), both functions need to use the same search
53// depth otherwise the algorithm in aliasGEP will assert.
54static const unsigned MaxLookupSearchDepth = 6;
55
56//===----------------------------------------------------------------------===//
57// Useful predicates
58//===----------------------------------------------------------------------===//
59
60/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
61/// object that never escapes from the function.
62static bool isNonEscapingLocalObject(const Value *V) {
63  // If this is a local allocation, check to see if it escapes.
64  if (isa<AllocaInst>(V) || isNoAliasCall(V))
65    // Set StoreCaptures to True so that we can assume in our callers that the
66    // pointer is not the result of a load instruction. Currently
67    // PointerMayBeCaptured doesn't have any special analysis for the
68    // StoreCaptures=false case; if it did, our callers could be refined to be
69    // more precise.
70    return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
71
72  // If this is an argument that corresponds to a byval or noalias argument,
73  // then it has not escaped before entering the function.  Check if it escapes
74  // inside the function.
75  if (const Argument *A = dyn_cast<Argument>(V))
76    if (A->hasByValAttr() || A->hasNoAliasAttr())
77      // Note even if the argument is marked nocapture we still need to check
78      // for copies made inside the function. The nocapture attribute only
79      // specifies that there are no copies made that outlive the function.
80      return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
81
82  return false;
83}
84
85/// isEscapeSource - Return true if the pointer is one which would have
86/// been considered an escape by isNonEscapingLocalObject.
87static bool isEscapeSource(const Value *V) {
88  if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
89    return true;
90
91  // The load case works because isNonEscapingLocalObject considers all
92  // stores to be escapes (it passes true for the StoreCaptures argument
93  // to PointerMayBeCaptured).
94  if (isa<LoadInst>(V))
95    return true;
96
97  return false;
98}
99
100/// getObjectSize - Return the size of the object specified by V, or
101/// UnknownSize if unknown.
102static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
103                              const TargetLibraryInfo &TLI,
104                              bool RoundToAlign = false) {
105  uint64_t Size;
106  if (getObjectSize(V, Size, DL, &TLI, RoundToAlign))
107    return Size;
108  return AliasAnalysis::UnknownSize;
109}
110
111/// isObjectSmallerThan - Return true if we can prove that the object specified
112/// by V is smaller than Size.
113static bool isObjectSmallerThan(const Value *V, uint64_t Size,
114                                const DataLayout &DL,
115                                const TargetLibraryInfo &TLI) {
116  // Note that the meanings of the "object" are slightly different in the
117  // following contexts:
118  //    c1: llvm::getObjectSize()
119  //    c2: llvm.objectsize() intrinsic
120  //    c3: isObjectSmallerThan()
121  // c1 and c2 share the same meaning; however, the meaning of "object" in c3
122  // refers to the "entire object".
123  //
124  //  Consider this example:
125  //     char *p = (char*)malloc(100)
126  //     char *q = p+80;
127  //
128  //  In the context of c1 and c2, the "object" pointed by q refers to the
129  // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
130  //
131  //  However, in the context of c3, the "object" refers to the chunk of memory
132  // being allocated. So, the "object" has 100 bytes, and q points to the middle
133  // the "object". In case q is passed to isObjectSmallerThan() as the 1st
134  // parameter, before the llvm::getObjectSize() is called to get the size of
135  // entire object, we should:
136  //    - either rewind the pointer q to the base-address of the object in
137  //      question (in this case rewind to p), or
138  //    - just give up. It is up to caller to make sure the pointer is pointing
139  //      to the base address the object.
140  //
141  // We go for 2nd option for simplicity.
142  if (!isIdentifiedObject(V))
143    return false;
144
145  // This function needs to use the aligned object size because we allow
146  // reads a bit past the end given sufficient alignment.
147  uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/true);
148
149  return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize < Size;
150}
151
152/// isObjectSize - Return true if we can prove that the object specified
153/// by V has size Size.
154static bool isObjectSize(const Value *V, uint64_t Size,
155                         const DataLayout &DL, const TargetLibraryInfo &TLI) {
156  uint64_t ObjectSize = getObjectSize(V, DL, TLI);
157  return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize == Size;
158}
159
160//===----------------------------------------------------------------------===//
161// GetElementPtr Instruction Decomposition and Analysis
162//===----------------------------------------------------------------------===//
163
164namespace {
165  enum ExtensionKind {
166    EK_NotExtended,
167    EK_SignExt,
168    EK_ZeroExt
169  };
170
171  struct VariableGEPIndex {
172    const Value *V;
173    ExtensionKind Extension;
174    int64_t Scale;
175
176    bool operator==(const VariableGEPIndex &Other) const {
177      return V == Other.V && Extension == Other.Extension &&
178        Scale == Other.Scale;
179    }
180
181    bool operator!=(const VariableGEPIndex &Other) const {
182      return !operator==(Other);
183    }
184  };
185}
186
187
188/// GetLinearExpression - Analyze the specified value as a linear expression:
189/// "A*V + B", where A and B are constant integers.  Return the scale and offset
190/// values as APInts and return V as a Value*, and return whether we looked
191/// through any sign or zero extends.  The incoming Value is known to have
192/// IntegerType and it may already be sign or zero extended.
193///
194/// Note that this looks through extends, so the high bits may not be
195/// represented in the result.
196static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
197                                  ExtensionKind &Extension,
198                                  const DataLayout &DL, unsigned Depth,
199                                  AssumptionCache *AC, DominatorTree *DT) {
200  assert(V->getType()->isIntegerTy() && "Not an integer value");
201
202  // Limit our recursion depth.
203  if (Depth == 6) {
204    Scale = 1;
205    Offset = 0;
206    return V;
207  }
208
209  if (ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
210    // if it's a constant, just convert it to an offset
211    // and remove the variable.
212    Offset += Const->getValue();
213    assert(Scale == 0 && "Constant values don't have a scale");
214    return V;
215  }
216
217  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
218    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
219      switch (BOp->getOpcode()) {
220      default: break;
221      case Instruction::Or:
222        // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
223        // analyze it.
224        if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
225                               BOp, DT))
226          break;
227        // FALL THROUGH.
228      case Instruction::Add:
229        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
230                                DL, Depth + 1, AC, DT);
231        Offset += RHSC->getValue();
232        return V;
233      case Instruction::Mul:
234        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
235                                DL, Depth + 1, AC, DT);
236        Offset *= RHSC->getValue();
237        Scale *= RHSC->getValue();
238        return V;
239      case Instruction::Shl:
240        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
241                                DL, Depth + 1, AC, DT);
242        Offset <<= RHSC->getValue().getLimitedValue();
243        Scale <<= RHSC->getValue().getLimitedValue();
244        return V;
245      }
246    }
247  }
248
249  // Since GEP indices are sign extended anyway, we don't care about the high
250  // bits of a sign or zero extended value - just scales and offsets.  The
251  // extensions have to be consistent though.
252  if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) ||
253      (isa<ZExtInst>(V) && Extension != EK_SignExt)) {
254    Value *CastOp = cast<CastInst>(V)->getOperand(0);
255    unsigned OldWidth = Scale.getBitWidth();
256    unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
257    Scale = Scale.trunc(SmallWidth);
258    Offset = Offset.trunc(SmallWidth);
259    Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt;
260
261    Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension, DL,
262                                        Depth + 1, AC, DT);
263    Scale = Scale.zext(OldWidth);
264
265    // We have to sign-extend even if Extension == EK_ZeroExt as we can't
266    // decompose a sign extension (i.e. zext(x - 1) != zext(x) - zext(-1)).
267    Offset = Offset.sext(OldWidth);
268
269    return Result;
270  }
271
272  Scale = 1;
273  Offset = 0;
274  return V;
275}
276
277/// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it
278/// into a base pointer with a constant offset and a number of scaled symbolic
279/// offsets.
280///
281/// The scaled symbolic offsets (represented by pairs of a Value* and a scale in
282/// the VarIndices vector) are Value*'s that are known to be scaled by the
283/// specified amount, but which may have other unrepresented high bits. As such,
284/// the gep cannot necessarily be reconstructed from its decomposed form.
285///
286/// When DataLayout is around, this function is capable of analyzing everything
287/// that GetUnderlyingObject can look through. To be able to do that
288/// GetUnderlyingObject and DecomposeGEPExpression must use the same search
289/// depth (MaxLookupSearchDepth).
290/// When DataLayout not is around, it just looks through pointer casts.
291///
292static const Value *
293DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
294                       SmallVectorImpl<VariableGEPIndex> &VarIndices,
295                       bool &MaxLookupReached, const DataLayout &DL,
296                       AssumptionCache *AC, DominatorTree *DT) {
297  // Limit recursion depth to limit compile time in crazy cases.
298  unsigned MaxLookup = MaxLookupSearchDepth;
299  MaxLookupReached = false;
300
301  BaseOffs = 0;
302  do {
303    // See if this is a bitcast or GEP.
304    const Operator *Op = dyn_cast<Operator>(V);
305    if (!Op) {
306      // The only non-operator case we can handle are GlobalAliases.
307      if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
308        if (!GA->mayBeOverridden()) {
309          V = GA->getAliasee();
310          continue;
311        }
312      }
313      return V;
314    }
315
316    if (Op->getOpcode() == Instruction::BitCast ||
317        Op->getOpcode() == Instruction::AddrSpaceCast) {
318      V = Op->getOperand(0);
319      continue;
320    }
321
322    const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
323    if (!GEPOp) {
324      // If it's not a GEP, hand it off to SimplifyInstruction to see if it
325      // can come up with something. This matches what GetUnderlyingObject does.
326      if (const Instruction *I = dyn_cast<Instruction>(V))
327        // TODO: Get a DominatorTree and AssumptionCache and use them here
328        // (these are both now available in this function, but this should be
329        // updated when GetUnderlyingObject is updated). TLI should be
330        // provided also.
331        if (const Value *Simplified =
332              SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
333          V = Simplified;
334          continue;
335        }
336
337      return V;
338    }
339
340    // Don't attempt to analyze GEPs over unsized objects.
341    if (!GEPOp->getOperand(0)->getType()->getPointerElementType()->isSized())
342      return V;
343
344    unsigned AS = GEPOp->getPointerAddressSpace();
345    // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
346    gep_type_iterator GTI = gep_type_begin(GEPOp);
347    for (User::const_op_iterator I = GEPOp->op_begin()+1,
348         E = GEPOp->op_end(); I != E; ++I) {
349      Value *Index = *I;
350      // Compute the (potentially symbolic) offset in bytes for this index.
351      if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
352        // For a struct, add the member offset.
353        unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
354        if (FieldNo == 0) continue;
355
356        BaseOffs += DL.getStructLayout(STy)->getElementOffset(FieldNo);
357        continue;
358      }
359
360      // For an array/pointer, add the element offset, explicitly scaled.
361      if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
362        if (CIdx->isZero()) continue;
363        BaseOffs += DL.getTypeAllocSize(*GTI) * CIdx->getSExtValue();
364        continue;
365      }
366
367      uint64_t Scale = DL.getTypeAllocSize(*GTI);
368      ExtensionKind Extension = EK_NotExtended;
369
370      // If the integer type is smaller than the pointer size, it is implicitly
371      // sign extended to pointer size.
372      unsigned Width = Index->getType()->getIntegerBitWidth();
373      if (DL.getPointerSizeInBits(AS) > Width)
374        Extension = EK_SignExt;
375
376      // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
377      APInt IndexScale(Width, 0), IndexOffset(Width, 0);
378      Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension, DL,
379                                  0, AC, DT);
380
381      // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
382      // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
383      BaseOffs += IndexOffset.getSExtValue()*Scale;
384      Scale *= IndexScale.getSExtValue();
385
386      // If we already had an occurrence of this index variable, merge this
387      // scale into it.  For example, we want to handle:
388      //   A[x][x] -> x*16 + x*4 -> x*20
389      // This also ensures that 'x' only appears in the index list once.
390      for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
391        if (VarIndices[i].V == Index &&
392            VarIndices[i].Extension == Extension) {
393          Scale += VarIndices[i].Scale;
394          VarIndices.erase(VarIndices.begin()+i);
395          break;
396        }
397      }
398
399      // Make sure that we have a scale that makes sense for this target's
400      // pointer size.
401      if (unsigned ShiftBits = 64 - DL.getPointerSizeInBits(AS)) {
402        Scale <<= ShiftBits;
403        Scale = (int64_t)Scale >> ShiftBits;
404      }
405
406      if (Scale) {
407        VariableGEPIndex Entry = {Index, Extension,
408                                  static_cast<int64_t>(Scale)};
409        VarIndices.push_back(Entry);
410      }
411    }
412
413    // Analyze the base pointer next.
414    V = GEPOp->getOperand(0);
415  } while (--MaxLookup);
416
417  // If the chain of expressions is too deep, just return early.
418  MaxLookupReached = true;
419  return V;
420}
421
422//===----------------------------------------------------------------------===//
423// BasicAliasAnalysis Pass
424//===----------------------------------------------------------------------===//
425
426#ifndef NDEBUG
427static const Function *getParent(const Value *V) {
428  if (const Instruction *inst = dyn_cast<Instruction>(V))
429    return inst->getParent()->getParent();
430
431  if (const Argument *arg = dyn_cast<Argument>(V))
432    return arg->getParent();
433
434  return nullptr;
435}
436
437static bool notDifferentParent(const Value *O1, const Value *O2) {
438
439  const Function *F1 = getParent(O1);
440  const Function *F2 = getParent(O2);
441
442  return !F1 || !F2 || F1 == F2;
443}
444#endif
445
446namespace {
447  /// BasicAliasAnalysis - This is the primary alias analysis implementation.
448  struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis {
449    static char ID; // Class identification, replacement for typeinfo
450    BasicAliasAnalysis() : ImmutablePass(ID) {
451      initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry());
452    }
453
454    bool doInitialization(Module &M) override;
455
456    void getAnalysisUsage(AnalysisUsage &AU) const override {
457      AU.addRequired<AliasAnalysis>();
458      AU.addRequired<AssumptionCacheTracker>();
459      AU.addRequired<TargetLibraryInfoWrapperPass>();
460    }
461
462    AliasResult alias(const Location &LocA, const Location &LocB) override {
463      assert(AliasCache.empty() && "AliasCache must be cleared after use!");
464      assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
465             "BasicAliasAnalysis doesn't support interprocedural queries.");
466      AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags,
467                                     LocB.Ptr, LocB.Size, LocB.AATags);
468      // AliasCache rarely has more than 1 or 2 elements, always use
469      // shrink_and_clear so it quickly returns to the inline capacity of the
470      // SmallDenseMap if it ever grows larger.
471      // FIXME: This should really be shrink_to_inline_capacity_and_clear().
472      AliasCache.shrink_and_clear();
473      VisitedPhiBBs.clear();
474      return Alias;
475    }
476
477    ModRefResult getModRefInfo(ImmutableCallSite CS,
478                               const Location &Loc) override;
479
480    ModRefResult getModRefInfo(ImmutableCallSite CS1,
481                               ImmutableCallSite CS2) override;
482
483    /// pointsToConstantMemory - Chase pointers until we find a (constant
484    /// global) or not.
485    bool pointsToConstantMemory(const Location &Loc, bool OrLocal) override;
486
487    /// Get the location associated with a pointer argument of a callsite.
488    Location getArgLocation(ImmutableCallSite CS, unsigned ArgIdx,
489                            ModRefResult &Mask) override;
490
491    /// getModRefBehavior - Return the behavior when calling the given
492    /// call site.
493    ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override;
494
495    /// getModRefBehavior - Return the behavior when calling the given function.
496    /// For use when the call site is not known.
497    ModRefBehavior getModRefBehavior(const Function *F) override;
498
499    /// getAdjustedAnalysisPointer - This method is used when a pass implements
500    /// an analysis interface through multiple inheritance.  If needed, it
501    /// should override this to adjust the this pointer as needed for the
502    /// specified pass info.
503    void *getAdjustedAnalysisPointer(const void *ID) override {
504      if (ID == &AliasAnalysis::ID)
505        return (AliasAnalysis*)this;
506      return this;
507    }
508
509  private:
510    // AliasCache - Track alias queries to guard against recursion.
511    typedef std::pair<Location, Location> LocPair;
512    typedef SmallDenseMap<LocPair, AliasResult, 8> AliasCacheTy;
513    AliasCacheTy AliasCache;
514
515    /// \brief Track phi nodes we have visited. When interpret "Value" pointer
516    /// equality as value equality we need to make sure that the "Value" is not
517    /// part of a cycle. Otherwise, two uses could come from different
518    /// "iterations" of a cycle and see different values for the same "Value"
519    /// pointer.
520    /// The following example shows the problem:
521    ///   %p = phi(%alloca1, %addr2)
522    ///   %l = load %ptr
523    ///   %addr1 = gep, %alloca2, 0, %l
524    ///   %addr2 = gep  %alloca2, 0, (%l + 1)
525    ///      alias(%p, %addr1) -> MayAlias !
526    ///   store %l, ...
527    SmallPtrSet<const BasicBlock*, 8> VisitedPhiBBs;
528
529    // Visited - Track instructions visited by pointsToConstantMemory.
530    SmallPtrSet<const Value*, 16> Visited;
531
532    /// \brief Check whether two Values can be considered equivalent.
533    ///
534    /// In addition to pointer equivalence of \p V1 and \p V2 this checks
535    /// whether they can not be part of a cycle in the value graph by looking at
536    /// all visited phi nodes an making sure that the phis cannot reach the
537    /// value. We have to do this because we are looking through phi nodes (That
538    /// is we say noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
539    bool isValueEqualInPotentialCycles(const Value *V1, const Value *V2);
540
541    /// \brief Dest and Src are the variable indices from two decomposed
542    /// GetElementPtr instructions GEP1 and GEP2 which have common base
543    /// pointers.  Subtract the GEP2 indices from GEP1 to find the symbolic
544    /// difference between the two pointers.
545    void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest,
546                            const SmallVectorImpl<VariableGEPIndex> &Src);
547
548    // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP
549    // instruction against another.
550    AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size,
551                         const AAMDNodes &V1AAInfo,
552                         const Value *V2, uint64_t V2Size,
553                         const AAMDNodes &V2AAInfo,
554                         const Value *UnderlyingV1, const Value *UnderlyingV2);
555
556    // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI
557    // instruction against another.
558    AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize,
559                         const AAMDNodes &PNAAInfo,
560                         const Value *V2, uint64_t V2Size,
561                         const AAMDNodes &V2AAInfo);
562
563    /// aliasSelect - Disambiguate a Select instruction against another value.
564    AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize,
565                            const AAMDNodes &SIAAInfo,
566                            const Value *V2, uint64_t V2Size,
567                            const AAMDNodes &V2AAInfo);
568
569    AliasResult aliasCheck(const Value *V1, uint64_t V1Size,
570                           AAMDNodes V1AATag,
571                           const Value *V2, uint64_t V2Size,
572                           AAMDNodes V2AATag);
573  };
574}  // End of anonymous namespace
575
576// Register this pass...
577char BasicAliasAnalysis::ID = 0;
578INITIALIZE_AG_PASS_BEGIN(BasicAliasAnalysis, AliasAnalysis, "basicaa",
579                   "Basic Alias Analysis (stateless AA impl)",
580                   false, true, false)
581INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
582INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
583INITIALIZE_AG_PASS_END(BasicAliasAnalysis, AliasAnalysis, "basicaa",
584                   "Basic Alias Analysis (stateless AA impl)",
585                   false, true, false)
586
587
588ImmutablePass *llvm::createBasicAliasAnalysisPass() {
589  return new BasicAliasAnalysis();
590}
591
592/// pointsToConstantMemory - Returns whether the given pointer value
593/// points to memory that is local to the function, with global constants being
594/// considered local to all functions.
595bool
596BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) {
597  assert(Visited.empty() && "Visited must be cleared after use!");
598
599  unsigned MaxLookup = 8;
600  SmallVector<const Value *, 16> Worklist;
601  Worklist.push_back(Loc.Ptr);
602  do {
603    const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), *DL);
604    if (!Visited.insert(V).second) {
605      Visited.clear();
606      return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
607    }
608
609    // An alloca instruction defines local memory.
610    if (OrLocal && isa<AllocaInst>(V))
611      continue;
612
613    // A global constant counts as local memory for our purposes.
614    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
615      // Note: this doesn't require GV to be "ODR" because it isn't legal for a
616      // global to be marked constant in some modules and non-constant in
617      // others.  GV may even be a declaration, not a definition.
618      if (!GV->isConstant()) {
619        Visited.clear();
620        return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
621      }
622      continue;
623    }
624
625    // If both select values point to local memory, then so does the select.
626    if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
627      Worklist.push_back(SI->getTrueValue());
628      Worklist.push_back(SI->getFalseValue());
629      continue;
630    }
631
632    // If all values incoming to a phi node point to local memory, then so does
633    // the phi.
634    if (const PHINode *PN = dyn_cast<PHINode>(V)) {
635      // Don't bother inspecting phi nodes with many operands.
636      if (PN->getNumIncomingValues() > MaxLookup) {
637        Visited.clear();
638        return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
639      }
640      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
641        Worklist.push_back(PN->getIncomingValue(i));
642      continue;
643    }
644
645    // Otherwise be conservative.
646    Visited.clear();
647    return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
648
649  } while (!Worklist.empty() && --MaxLookup);
650
651  Visited.clear();
652  return Worklist.empty();
653}
654
655static bool isMemsetPattern16(const Function *MS,
656                              const TargetLibraryInfo &TLI) {
657  if (TLI.has(LibFunc::memset_pattern16) &&
658      MS->getName() == "memset_pattern16") {
659    FunctionType *MemsetType = MS->getFunctionType();
660    if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 &&
661        isa<PointerType>(MemsetType->getParamType(0)) &&
662        isa<PointerType>(MemsetType->getParamType(1)) &&
663        isa<IntegerType>(MemsetType->getParamType(2)))
664      return true;
665  }
666
667  return false;
668}
669
670/// getModRefBehavior - Return the behavior when calling the given call site.
671AliasAnalysis::ModRefBehavior
672BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
673  if (CS.doesNotAccessMemory())
674    // Can't do better than this.
675    return DoesNotAccessMemory;
676
677  ModRefBehavior Min = UnknownModRefBehavior;
678
679  // If the callsite knows it only reads memory, don't return worse
680  // than that.
681  if (CS.onlyReadsMemory())
682    Min = OnlyReadsMemory;
683
684  // The AliasAnalysis base class has some smarts, lets use them.
685  return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
686}
687
688/// getModRefBehavior - Return the behavior when calling the given function.
689/// For use when the call site is not known.
690AliasAnalysis::ModRefBehavior
691BasicAliasAnalysis::getModRefBehavior(const Function *F) {
692  // If the function declares it doesn't access memory, we can't do better.
693  if (F->doesNotAccessMemory())
694    return DoesNotAccessMemory;
695
696  // For intrinsics, we can check the table.
697  if (unsigned iid = F->getIntrinsicID()) {
698#define GET_INTRINSIC_MODREF_BEHAVIOR
699#include "llvm/IR/Intrinsics.gen"
700#undef GET_INTRINSIC_MODREF_BEHAVIOR
701  }
702
703  ModRefBehavior Min = UnknownModRefBehavior;
704
705  // If the function declares it only reads memory, go with that.
706  if (F->onlyReadsMemory())
707    Min = OnlyReadsMemory;
708
709  const TargetLibraryInfo &TLI =
710      getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
711  if (isMemsetPattern16(F, TLI))
712    Min = OnlyAccessesArgumentPointees;
713
714  // Otherwise be conservative.
715  return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
716}
717
718AliasAnalysis::Location
719BasicAliasAnalysis::getArgLocation(ImmutableCallSite CS, unsigned ArgIdx,
720                                   ModRefResult &Mask) {
721  Location Loc = AliasAnalysis::getArgLocation(CS, ArgIdx, Mask);
722  const TargetLibraryInfo &TLI =
723      getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
724  const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
725  if (II != nullptr)
726    switch (II->getIntrinsicID()) {
727    default: break;
728    case Intrinsic::memset:
729    case Intrinsic::memcpy:
730    case Intrinsic::memmove: {
731      assert((ArgIdx == 0 || ArgIdx == 1) &&
732             "Invalid argument index for memory intrinsic");
733      if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2)))
734        Loc.Size = LenCI->getZExtValue();
735      assert(Loc.Ptr == II->getArgOperand(ArgIdx) &&
736             "Memory intrinsic location pointer not argument?");
737      Mask = ArgIdx ? Ref : Mod;
738      break;
739    }
740    case Intrinsic::lifetime_start:
741    case Intrinsic::lifetime_end:
742    case Intrinsic::invariant_start: {
743      assert(ArgIdx == 1 && "Invalid argument index");
744      assert(Loc.Ptr == II->getArgOperand(ArgIdx) &&
745             "Intrinsic location pointer not argument?");
746      Loc.Size = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
747      break;
748    }
749    case Intrinsic::invariant_end: {
750      assert(ArgIdx == 2 && "Invalid argument index");
751      assert(Loc.Ptr == II->getArgOperand(ArgIdx) &&
752             "Intrinsic location pointer not argument?");
753      Loc.Size = cast<ConstantInt>(II->getArgOperand(1))->getZExtValue();
754      break;
755    }
756    case Intrinsic::arm_neon_vld1: {
757      assert(ArgIdx == 0 && "Invalid argument index");
758      assert(Loc.Ptr == II->getArgOperand(ArgIdx) &&
759             "Intrinsic location pointer not argument?");
760      // LLVM's vld1 and vst1 intrinsics currently only support a single
761      // vector register.
762      if (DL)
763        Loc.Size = DL->getTypeStoreSize(II->getType());
764      break;
765    }
766    case Intrinsic::arm_neon_vst1: {
767      assert(ArgIdx == 0 && "Invalid argument index");
768      assert(Loc.Ptr == II->getArgOperand(ArgIdx) &&
769             "Intrinsic location pointer not argument?");
770      if (DL)
771        Loc.Size = DL->getTypeStoreSize(II->getArgOperand(1)->getType());
772      break;
773    }
774    }
775
776  // We can bound the aliasing properties of memset_pattern16 just as we can
777  // for memcpy/memset.  This is particularly important because the
778  // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
779  // whenever possible.
780  else if (CS.getCalledFunction() &&
781           isMemsetPattern16(CS.getCalledFunction(), TLI)) {
782    assert((ArgIdx == 0 || ArgIdx == 1) &&
783           "Invalid argument index for memset_pattern16");
784    if (ArgIdx == 1)
785      Loc.Size = 16;
786    else if (const ConstantInt *LenCI =
787             dyn_cast<ConstantInt>(CS.getArgument(2)))
788      Loc.Size = LenCI->getZExtValue();
789    assert(Loc.Ptr == CS.getArgument(ArgIdx) &&
790           "memset_pattern16 location pointer not argument?");
791    Mask = ArgIdx ? Ref : Mod;
792  }
793  // FIXME: Handle memset_pattern4 and memset_pattern8 also.
794
795  return Loc;
796}
797
798static bool isAssumeIntrinsic(ImmutableCallSite CS) {
799  const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
800  if (II && II->getIntrinsicID() == Intrinsic::assume)
801    return true;
802
803  return false;
804}
805
806bool BasicAliasAnalysis::doInitialization(Module &M) {
807  InitializeAliasAnalysis(this, &M.getDataLayout());
808  return true;
809}
810
811/// getModRefInfo - Check to see if the specified callsite can clobber the
812/// specified memory object.  Since we only look at local properties of this
813/// function, we really can't say much about this query.  We do, however, use
814/// simple "address taken" analysis on local objects.
815AliasAnalysis::ModRefResult
816BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
817                                  const Location &Loc) {
818  assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
819         "AliasAnalysis query involving multiple functions!");
820
821  const Value *Object = GetUnderlyingObject(Loc.Ptr, *DL);
822
823  // If this is a tail call and Loc.Ptr points to a stack location, we know that
824  // the tail call cannot access or modify the local stack.
825  // We cannot exclude byval arguments here; these belong to the caller of
826  // the current function not to the current function, and a tail callee
827  // may reference them.
828  if (isa<AllocaInst>(Object))
829    if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
830      if (CI->isTailCall())
831        return NoModRef;
832
833  // If the pointer is to a locally allocated object that does not escape,
834  // then the call can not mod/ref the pointer unless the call takes the pointer
835  // as an argument, and itself doesn't capture it.
836  if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
837      isNonEscapingLocalObject(Object)) {
838    bool PassedAsArg = false;
839    unsigned ArgNo = 0;
840    for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
841         CI != CE; ++CI, ++ArgNo) {
842      // Only look at the no-capture or byval pointer arguments.  If this
843      // pointer were passed to arguments that were neither of these, then it
844      // couldn't be no-capture.
845      if (!(*CI)->getType()->isPointerTy() ||
846          (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
847        continue;
848
849      // If this is a no-capture pointer argument, see if we can tell that it
850      // is impossible to alias the pointer we're checking.  If not, we have to
851      // assume that the call could touch the pointer, even though it doesn't
852      // escape.
853      if (!isNoAlias(Location(*CI), Location(Object))) {
854        PassedAsArg = true;
855        break;
856      }
857    }
858
859    if (!PassedAsArg)
860      return NoModRef;
861  }
862
863  // While the assume intrinsic is marked as arbitrarily writing so that
864  // proper control dependencies will be maintained, it never aliases any
865  // particular memory location.
866  if (isAssumeIntrinsic(CS))
867    return NoModRef;
868
869  // The AliasAnalysis base class has some smarts, lets use them.
870  return AliasAnalysis::getModRefInfo(CS, Loc);
871}
872
873AliasAnalysis::ModRefResult
874BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
875                                  ImmutableCallSite CS2) {
876  // While the assume intrinsic is marked as arbitrarily writing so that
877  // proper control dependencies will be maintained, it never aliases any
878  // particular memory location.
879  if (isAssumeIntrinsic(CS1) || isAssumeIntrinsic(CS2))
880    return NoModRef;
881
882  // The AliasAnalysis base class has some smarts, lets use them.
883  return AliasAnalysis::getModRefInfo(CS1, CS2);
884}
885
886/// \brief Provide ad-hoc rules to disambiguate accesses through two GEP
887/// operators, both having the exact same pointer operand.
888static AliasAnalysis::AliasResult
889aliasSameBasePointerGEPs(const GEPOperator *GEP1, uint64_t V1Size,
890                         const GEPOperator *GEP2, uint64_t V2Size,
891                         const DataLayout &DL) {
892
893  assert(GEP1->getPointerOperand() == GEP2->getPointerOperand() &&
894         "Expected GEPs with the same pointer operand");
895
896  // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
897  // such that the struct field accesses provably cannot alias.
898  // We also need at least two indices (the pointer, and the struct field).
899  if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
900      GEP1->getNumIndices() < 2)
901    return AliasAnalysis::MayAlias;
902
903  // If we don't know the size of the accesses through both GEPs, we can't
904  // determine whether the struct fields accessed can't alias.
905  if (V1Size == AliasAnalysis::UnknownSize ||
906      V2Size == AliasAnalysis::UnknownSize)
907    return AliasAnalysis::MayAlias;
908
909  ConstantInt *C1 =
910      dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
911  ConstantInt *C2 =
912      dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));
913
914  // If the last (struct) indices aren't constants, we can't say anything.
915  // If they're identical, the other indices might be also be dynamically
916  // equal, so the GEPs can alias.
917  if (!C1 || !C2 || C1 == C2)
918    return AliasAnalysis::MayAlias;
919
920  // Find the last-indexed type of the GEP, i.e., the type you'd get if
921  // you stripped the last index.
922  // On the way, look at each indexed type.  If there's something other
923  // than an array, different indices can lead to different final types.
924  SmallVector<Value *, 8> IntermediateIndices;
925
926  // Insert the first index; we don't need to check the type indexed
927  // through it as it only drops the pointer indirection.
928  assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
929  IntermediateIndices.push_back(GEP1->getOperand(1));
930
931  // Insert all the remaining indices but the last one.
932  // Also, check that they all index through arrays.
933  for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
934    if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
935            GEP1->getSourceElementType(), IntermediateIndices)))
936      return AliasAnalysis::MayAlias;
937    IntermediateIndices.push_back(GEP1->getOperand(i + 1));
938  }
939
940  StructType *LastIndexedStruct =
941      dyn_cast<StructType>(GetElementPtrInst::getIndexedType(
942          GEP1->getSourceElementType(), IntermediateIndices));
943
944  if (!LastIndexedStruct)
945    return AliasAnalysis::MayAlias;
946
947  // We know that:
948  // - both GEPs begin indexing from the exact same pointer;
949  // - the last indices in both GEPs are constants, indexing into a struct;
950  // - said indices are different, hence, the pointed-to fields are different;
951  // - both GEPs only index through arrays prior to that.
952  //
953  // This lets us determine that the struct that GEP1 indexes into and the
954  // struct that GEP2 indexes into must either precisely overlap or be
955  // completely disjoint.  Because they cannot partially overlap, indexing into
956  // different non-overlapping fields of the struct will never alias.
957
958  // Therefore, the only remaining thing needed to show that both GEPs can't
959  // alias is that the fields are not overlapping.
960  const StructLayout *SL = DL.getStructLayout(LastIndexedStruct);
961  const uint64_t StructSize = SL->getSizeInBytes();
962  const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue());
963  const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue());
964
965  auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size,
966                                      uint64_t V2Off, uint64_t V2Size) {
967    return V1Off < V2Off && V1Off + V1Size <= V2Off &&
968           ((V2Off + V2Size <= StructSize) ||
969            (V2Off + V2Size - StructSize <= V1Off));
970  };
971
972  if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) ||
973      EltsDontOverlap(V2Off, V2Size, V1Off, V1Size))
974    return AliasAnalysis::NoAlias;
975
976  return AliasAnalysis::MayAlias;
977}
978
979/// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
980/// against another pointer.  We know that V1 is a GEP, but we don't know
981/// anything about V2.  UnderlyingV1 is GetUnderlyingObject(GEP1, DL),
982/// UnderlyingV2 is the same for V2.
983///
984AliasAnalysis::AliasResult
985BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
986                             const AAMDNodes &V1AAInfo,
987                             const Value *V2, uint64_t V2Size,
988                             const AAMDNodes &V2AAInfo,
989                             const Value *UnderlyingV1,
990                             const Value *UnderlyingV2) {
991  int64_t GEP1BaseOffset;
992  bool GEP1MaxLookupReached;
993  SmallVector<VariableGEPIndex, 4> GEP1VariableIndices;
994
995  // We have to get two AssumptionCaches here because GEP1 and V2 may be from
996  // different functions.
997  // FIXME: This really doesn't make any sense. We get a dominator tree below
998  // that can only refer to a single function. But this function (aliasGEP) is
999  // a method on an immutable pass that can be called when there *isn't*
1000  // a single function. The old pass management layer makes this "work", but
1001  // this isn't really a clean solution.
1002  AssumptionCacheTracker &ACT = getAnalysis<AssumptionCacheTracker>();
1003  AssumptionCache *AC1 = nullptr, *AC2 = nullptr;
1004  if (auto *GEP1I = dyn_cast<Instruction>(GEP1))
1005    AC1 = &ACT.getAssumptionCache(
1006        const_cast<Function &>(*GEP1I->getParent()->getParent()));
1007  if (auto *I2 = dyn_cast<Instruction>(V2))
1008    AC2 = &ACT.getAssumptionCache(
1009        const_cast<Function &>(*I2->getParent()->getParent()));
1010
1011  DominatorTreeWrapperPass *DTWP =
1012      getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1013  DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
1014
1015  // If we have two gep instructions with must-alias or not-alias'ing base
1016  // pointers, figure out if the indexes to the GEP tell us anything about the
1017  // derived pointer.
1018  if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
1019    // Do the base pointers alias?
1020    AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, AAMDNodes(),
1021                                       UnderlyingV2, UnknownSize, AAMDNodes());
1022
1023    // Check for geps of non-aliasing underlying pointers where the offsets are
1024    // identical.
1025    if ((BaseAlias == MayAlias) && V1Size == V2Size) {
1026      // Do the base pointers alias assuming type and size.
1027      AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size,
1028                                                V1AAInfo, UnderlyingV2,
1029                                                V2Size, V2AAInfo);
1030      if (PreciseBaseAlias == NoAlias) {
1031        // See if the computed offset from the common pointer tells us about the
1032        // relation of the resulting pointer.
1033        int64_t GEP2BaseOffset;
1034        bool GEP2MaxLookupReached;
1035        SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
1036        const Value *GEP2BasePtr =
1037            DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
1038                                   GEP2MaxLookupReached, *DL, AC2, DT);
1039        const Value *GEP1BasePtr =
1040            DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
1041                                   GEP1MaxLookupReached, *DL, AC1, DT);
1042        // DecomposeGEPExpression and GetUnderlyingObject should return the
1043        // same result except when DecomposeGEPExpression has no DataLayout.
1044        if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
1045          assert(!DL &&
1046                 "DecomposeGEPExpression and GetUnderlyingObject disagree!");
1047          return MayAlias;
1048        }
1049        // If the max search depth is reached the result is undefined
1050        if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1051          return MayAlias;
1052
1053        // Same offsets.
1054        if (GEP1BaseOffset == GEP2BaseOffset &&
1055            GEP1VariableIndices == GEP2VariableIndices)
1056          return NoAlias;
1057        GEP1VariableIndices.clear();
1058      }
1059    }
1060
1061    // If we get a No or May, then return it immediately, no amount of analysis
1062    // will improve this situation.
1063    if (BaseAlias != MustAlias) return BaseAlias;
1064
1065    // Otherwise, we have a MustAlias.  Since the base pointers alias each other
1066    // exactly, see if the computed offset from the common pointer tells us
1067    // about the relation of the resulting pointer.
1068    const Value *GEP1BasePtr =
1069        DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
1070                               GEP1MaxLookupReached, *DL, AC1, DT);
1071
1072    int64_t GEP2BaseOffset;
1073    bool GEP2MaxLookupReached;
1074    SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
1075    const Value *GEP2BasePtr =
1076        DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
1077                               GEP2MaxLookupReached, *DL, AC2, DT);
1078
1079    // DecomposeGEPExpression and GetUnderlyingObject should return the
1080    // same result except when DecomposeGEPExpression has no DataLayout.
1081    if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
1082      assert(!DL &&
1083             "DecomposeGEPExpression and GetUnderlyingObject disagree!");
1084      return MayAlias;
1085    }
1086
1087    // If we know the two GEPs are based off of the exact same pointer (and not
1088    // just the same underlying object), see if that tells us anything about
1089    // the resulting pointers.
1090    if (DL && GEP1->getPointerOperand() == GEP2->getPointerOperand()) {
1091      AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, *DL);
1092      // If we couldn't find anything interesting, don't abandon just yet.
1093      if (R != MayAlias)
1094        return R;
1095    }
1096
1097    // If the max search depth is reached the result is undefined
1098    if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1099      return MayAlias;
1100
1101    // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1102    // symbolic difference.
1103    GEP1BaseOffset -= GEP2BaseOffset;
1104    GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices);
1105
1106  } else {
1107    // Check to see if these two pointers are related by the getelementptr
1108    // instruction.  If one pointer is a GEP with a non-zero index of the other
1109    // pointer, we know they cannot alias.
1110
1111    // If both accesses are unknown size, we can't do anything useful here.
1112    if (V1Size == UnknownSize && V2Size == UnknownSize)
1113      return MayAlias;
1114
1115    AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, AAMDNodes(),
1116                               V2, V2Size, V2AAInfo);
1117    if (R != MustAlias)
1118      // If V2 may alias GEP base pointer, conservatively returns MayAlias.
1119      // If V2 is known not to alias GEP base pointer, then the two values
1120      // cannot alias per GEP semantics: "A pointer value formed from a
1121      // getelementptr instruction is associated with the addresses associated
1122      // with the first operand of the getelementptr".
1123      return R;
1124
1125    const Value *GEP1BasePtr =
1126        DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
1127                               GEP1MaxLookupReached, *DL, AC1, DT);
1128
1129    // DecomposeGEPExpression and GetUnderlyingObject should return the
1130    // same result except when DecomposeGEPExpression has no DataLayout.
1131    if (GEP1BasePtr != UnderlyingV1) {
1132      assert(!DL &&
1133             "DecomposeGEPExpression and GetUnderlyingObject disagree!");
1134      return MayAlias;
1135    }
1136    // If the max search depth is reached the result is undefined
1137    if (GEP1MaxLookupReached)
1138      return MayAlias;
1139  }
1140
1141  // In the two GEP Case, if there is no difference in the offsets of the
1142  // computed pointers, the resultant pointers are a must alias.  This
1143  // hapens when we have two lexically identical GEP's (for example).
1144  //
1145  // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
1146  // must aliases the GEP, the end result is a must alias also.
1147  if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
1148    return MustAlias;
1149
1150  // If there is a constant difference between the pointers, but the difference
1151  // is less than the size of the associated memory object, then we know
1152  // that the objects are partially overlapping.  If the difference is
1153  // greater, we know they do not overlap.
1154  if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) {
1155    if (GEP1BaseOffset >= 0) {
1156      if (V2Size != UnknownSize) {
1157        if ((uint64_t)GEP1BaseOffset < V2Size)
1158          return PartialAlias;
1159        return NoAlias;
1160      }
1161    } else {
1162      // We have the situation where:
1163      // +                +
1164      // | BaseOffset     |
1165      // ---------------->|
1166      // |-->V1Size       |-------> V2Size
1167      // GEP1             V2
1168      // We need to know that V2Size is not unknown, otherwise we might have
1169      // stripped a gep with negative index ('gep <ptr>, -1, ...).
1170      if (V1Size != UnknownSize && V2Size != UnknownSize) {
1171        if (-(uint64_t)GEP1BaseOffset < V1Size)
1172          return PartialAlias;
1173        return NoAlias;
1174      }
1175    }
1176  }
1177
1178  if (!GEP1VariableIndices.empty()) {
1179    uint64_t Modulo = 0;
1180    bool AllPositive = true;
1181    for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i) {
1182
1183      // Try to distinguish something like &A[i][1] against &A[42][0].
1184      // Grab the least significant bit set in any of the scales. We
1185      // don't need std::abs here (even if the scale's negative) as we'll
1186      // be ^'ing Modulo with itself later.
1187      Modulo |= (uint64_t) GEP1VariableIndices[i].Scale;
1188
1189      if (AllPositive) {
1190        // If the Value could change between cycles, then any reasoning about
1191        // the Value this cycle may not hold in the next cycle. We'll just
1192        // give up if we can't determine conditions that hold for every cycle:
1193        const Value *V = GEP1VariableIndices[i].V;
1194
1195        bool SignKnownZero, SignKnownOne;
1196        ComputeSignBit(const_cast<Value *>(V), SignKnownZero, SignKnownOne, *DL,
1197                       0, AC1, nullptr, DT);
1198
1199        // Zero-extension widens the variable, and so forces the sign
1200        // bit to zero.
1201        bool IsZExt = GEP1VariableIndices[i].Extension == EK_ZeroExt;
1202        SignKnownZero |= IsZExt;
1203        SignKnownOne &= !IsZExt;
1204
1205        // If the variable begins with a zero then we know it's
1206        // positive, regardless of whether the value is signed or
1207        // unsigned.
1208        int64_t Scale = GEP1VariableIndices[i].Scale;
1209        AllPositive =
1210          (SignKnownZero && Scale >= 0) ||
1211          (SignKnownOne && Scale < 0);
1212      }
1213    }
1214
1215    Modulo = Modulo ^ (Modulo & (Modulo - 1));
1216
1217    // We can compute the difference between the two addresses
1218    // mod Modulo. Check whether that difference guarantees that the
1219    // two locations do not alias.
1220    uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1);
1221    if (V1Size != UnknownSize && V2Size != UnknownSize &&
1222        ModOffset >= V2Size && V1Size <= Modulo - ModOffset)
1223      return NoAlias;
1224
1225    // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
1226    // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
1227    // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
1228    if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t) GEP1BaseOffset)
1229      return NoAlias;
1230  }
1231
1232  // Statically, we can see that the base objects are the same, but the
1233  // pointers have dynamic offsets which we can't resolve. And none of our
1234  // little tricks above worked.
1235  //
1236  // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the
1237  // practical effect of this is protecting TBAA in the case of dynamic
1238  // indices into arrays of unions or malloc'd memory.
1239  return PartialAlias;
1240}
1241
1242static AliasAnalysis::AliasResult
1243MergeAliasResults(AliasAnalysis::AliasResult A, AliasAnalysis::AliasResult B) {
1244  // If the results agree, take it.
1245  if (A == B)
1246    return A;
1247  // A mix of PartialAlias and MustAlias is PartialAlias.
1248  if ((A == AliasAnalysis::PartialAlias && B == AliasAnalysis::MustAlias) ||
1249      (B == AliasAnalysis::PartialAlias && A == AliasAnalysis::MustAlias))
1250    return AliasAnalysis::PartialAlias;
1251  // Otherwise, we don't know anything.
1252  return AliasAnalysis::MayAlias;
1253}
1254
1255/// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select
1256/// instruction against another.
1257AliasAnalysis::AliasResult
1258BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize,
1259                                const AAMDNodes &SIAAInfo,
1260                                const Value *V2, uint64_t V2Size,
1261                                const AAMDNodes &V2AAInfo) {
1262  // If the values are Selects with the same condition, we can do a more precise
1263  // check: just check for aliases between the values on corresponding arms.
1264  if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1265    if (SI->getCondition() == SI2->getCondition()) {
1266      AliasResult Alias =
1267        aliasCheck(SI->getTrueValue(), SISize, SIAAInfo,
1268                   SI2->getTrueValue(), V2Size, V2AAInfo);
1269      if (Alias == MayAlias)
1270        return MayAlias;
1271      AliasResult ThisAlias =
1272        aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
1273                   SI2->getFalseValue(), V2Size, V2AAInfo);
1274      return MergeAliasResults(ThisAlias, Alias);
1275    }
1276
1277  // If both arms of the Select node NoAlias or MustAlias V2, then returns
1278  // NoAlias / MustAlias. Otherwise, returns MayAlias.
1279  AliasResult Alias =
1280    aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), SISize, SIAAInfo);
1281  if (Alias == MayAlias)
1282    return MayAlias;
1283
1284  AliasResult ThisAlias =
1285    aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo);
1286  return MergeAliasResults(ThisAlias, Alias);
1287}
1288
1289// aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
1290// against another.
1291AliasAnalysis::AliasResult
1292BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize,
1293                             const AAMDNodes &PNAAInfo,
1294                             const Value *V2, uint64_t V2Size,
1295                             const AAMDNodes &V2AAInfo) {
1296  // Track phi nodes we have visited. We use this information when we determine
1297  // value equivalence.
1298  VisitedPhiBBs.insert(PN->getParent());
1299
1300  // If the values are PHIs in the same block, we can do a more precise
1301  // as well as efficient check: just check for aliases between the values
1302  // on corresponding edges.
1303  if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1304    if (PN2->getParent() == PN->getParent()) {
1305      LocPair Locs(Location(PN, PNSize, PNAAInfo),
1306                   Location(V2, V2Size, V2AAInfo));
1307      if (PN > V2)
1308        std::swap(Locs.first, Locs.second);
1309      // Analyse the PHIs' inputs under the assumption that the PHIs are
1310      // NoAlias.
1311      // If the PHIs are May/MustAlias there must be (recursively) an input
1312      // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
1313      // there must be an operation on the PHIs within the PHIs' value cycle
1314      // that causes a MayAlias.
1315      // Pretend the phis do not alias.
1316      AliasResult Alias = NoAlias;
1317      assert(AliasCache.count(Locs) &&
1318             "There must exist an entry for the phi node");
1319      AliasResult OrigAliasResult = AliasCache[Locs];
1320      AliasCache[Locs] = NoAlias;
1321
1322      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1323        AliasResult ThisAlias =
1324          aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
1325                     PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1326                     V2Size, V2AAInfo);
1327        Alias = MergeAliasResults(ThisAlias, Alias);
1328        if (Alias == MayAlias)
1329          break;
1330      }
1331
1332      // Reset if speculation failed.
1333      if (Alias != NoAlias)
1334        AliasCache[Locs] = OrigAliasResult;
1335
1336      return Alias;
1337    }
1338
1339  SmallPtrSet<Value*, 4> UniqueSrc;
1340  SmallVector<Value*, 4> V1Srcs;
1341  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1342    Value *PV1 = PN->getIncomingValue(i);
1343    if (isa<PHINode>(PV1))
1344      // If any of the source itself is a PHI, return MayAlias conservatively
1345      // to avoid compile time explosion. The worst possible case is if both
1346      // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1347      // and 'n' are the number of PHI sources.
1348      return MayAlias;
1349    if (UniqueSrc.insert(PV1).second)
1350      V1Srcs.push_back(PV1);
1351  }
1352
1353  AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo,
1354                                 V1Srcs[0], PNSize, PNAAInfo);
1355  // Early exit if the check of the first PHI source against V2 is MayAlias.
1356  // Other results are not possible.
1357  if (Alias == MayAlias)
1358    return MayAlias;
1359
1360  // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1361  // NoAlias / MustAlias. Otherwise, returns MayAlias.
1362  for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1363    Value *V = V1Srcs[i];
1364
1365    AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo,
1366                                       V, PNSize, PNAAInfo);
1367    Alias = MergeAliasResults(ThisAlias, Alias);
1368    if (Alias == MayAlias)
1369      break;
1370  }
1371
1372  return Alias;
1373}
1374
1375// aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
1376// such as array references.
1377//
1378AliasAnalysis::AliasResult
1379BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
1380                               AAMDNodes V1AAInfo,
1381                               const Value *V2, uint64_t V2Size,
1382                               AAMDNodes V2AAInfo) {
1383  // If either of the memory references is empty, it doesn't matter what the
1384  // pointer values are.
1385  if (V1Size == 0 || V2Size == 0)
1386    return NoAlias;
1387
1388  // Strip off any casts if they exist.
1389  V1 = V1->stripPointerCasts();
1390  V2 = V2->stripPointerCasts();
1391
1392  // Are we checking for alias of the same value?
1393  // Because we look 'through' phi nodes we could look at "Value" pointers from
1394  // different iterations. We must therefore make sure that this is not the
1395  // case. The function isValueEqualInPotentialCycles ensures that this cannot
1396  // happen by looking at the visited phi nodes and making sure they cannot
1397  // reach the value.
1398  if (isValueEqualInPotentialCycles(V1, V2))
1399    return MustAlias;
1400
1401  if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1402    return NoAlias;  // Scalars cannot alias each other
1403
1404  // Figure out what objects these things are pointing to if we can.
1405  const Value *O1 = GetUnderlyingObject(V1, *DL, MaxLookupSearchDepth);
1406  const Value *O2 = GetUnderlyingObject(V2, *DL, MaxLookupSearchDepth);
1407
1408  // Null values in the default address space don't point to any object, so they
1409  // don't alias any other pointer.
1410  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1411    if (CPN->getType()->getAddressSpace() == 0)
1412      return NoAlias;
1413  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1414    if (CPN->getType()->getAddressSpace() == 0)
1415      return NoAlias;
1416
1417  if (O1 != O2) {
1418    // If V1/V2 point to two different objects we know that we have no alias.
1419    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1420      return NoAlias;
1421
1422    // Constant pointers can't alias with non-const isIdentifiedObject objects.
1423    if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1424        (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1425      return NoAlias;
1426
1427    // Function arguments can't alias with things that are known to be
1428    // unambigously identified at the function level.
1429    if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1430        (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1431      return NoAlias;
1432
1433    // Most objects can't alias null.
1434    if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
1435        (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
1436      return NoAlias;
1437
1438    // If one pointer is the result of a call/invoke or load and the other is a
1439    // non-escaping local object within the same function, then we know the
1440    // object couldn't escape to a point where the call could return it.
1441    //
1442    // Note that if the pointers are in different functions, there are a
1443    // variety of complications. A call with a nocapture argument may still
1444    // temporary store the nocapture argument's value in a temporary memory
1445    // location if that memory location doesn't escape. Or it may pass a
1446    // nocapture value to other functions as long as they don't capture it.
1447    if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
1448      return NoAlias;
1449    if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
1450      return NoAlias;
1451  }
1452
1453  // If the size of one access is larger than the entire object on the other
1454  // side, then we know such behavior is undefined and can assume no alias.
1455  if (DL)
1456    if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *DL, *TLI)) ||
1457        (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *DL, *TLI)))
1458      return NoAlias;
1459
1460  // Check the cache before climbing up use-def chains. This also terminates
1461  // otherwise infinitely recursive queries.
1462  LocPair Locs(Location(V1, V1Size, V1AAInfo),
1463               Location(V2, V2Size, V2AAInfo));
1464  if (V1 > V2)
1465    std::swap(Locs.first, Locs.second);
1466  std::pair<AliasCacheTy::iterator, bool> Pair =
1467    AliasCache.insert(std::make_pair(Locs, MayAlias));
1468  if (!Pair.second)
1469    return Pair.first->second;
1470
1471  // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1472  // GEP can't simplify, we don't even look at the PHI cases.
1473  if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
1474    std::swap(V1, V2);
1475    std::swap(V1Size, V2Size);
1476    std::swap(O1, O2);
1477    std::swap(V1AAInfo, V2AAInfo);
1478  }
1479  if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1480    AliasResult Result = aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2);
1481    if (Result != MayAlias) return AliasCache[Locs] = Result;
1482  }
1483
1484  if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
1485    std::swap(V1, V2);
1486    std::swap(V1Size, V2Size);
1487    std::swap(V1AAInfo, V2AAInfo);
1488  }
1489  if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1490    AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo,
1491                                  V2, V2Size, V2AAInfo);
1492    if (Result != MayAlias) return AliasCache[Locs] = Result;
1493  }
1494
1495  if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
1496    std::swap(V1, V2);
1497    std::swap(V1Size, V2Size);
1498    std::swap(V1AAInfo, V2AAInfo);
1499  }
1500  if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1501    AliasResult Result = aliasSelect(S1, V1Size, V1AAInfo,
1502                                     V2, V2Size, V2AAInfo);
1503    if (Result != MayAlias) return AliasCache[Locs] = Result;
1504  }
1505
1506  // If both pointers are pointing into the same object and one of them
1507  // accesses is accessing the entire object, then the accesses must
1508  // overlap in some way.
1509  if (DL && O1 == O2)
1510    if ((V1Size != UnknownSize && isObjectSize(O1, V1Size, *DL, *TLI)) ||
1511        (V2Size != UnknownSize && isObjectSize(O2, V2Size, *DL, *TLI)))
1512      return AliasCache[Locs] = PartialAlias;
1513
1514  AliasResult Result =
1515    AliasAnalysis::alias(Location(V1, V1Size, V1AAInfo),
1516                         Location(V2, V2Size, V2AAInfo));
1517  return AliasCache[Locs] = Result;
1518}
1519
1520bool BasicAliasAnalysis::isValueEqualInPotentialCycles(const Value *V,
1521                                                       const Value *V2) {
1522  if (V != V2)
1523    return false;
1524
1525  const Instruction *Inst = dyn_cast<Instruction>(V);
1526  if (!Inst)
1527    return true;
1528
1529  if (VisitedPhiBBs.empty())
1530    return true;
1531
1532  if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
1533    return false;
1534
1535  // Use dominance or loop info if available.
1536  DominatorTreeWrapperPass *DTWP =
1537      getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1538  DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
1539  auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
1540  LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
1541
1542  // Make sure that the visited phis cannot reach the Value. This ensures that
1543  // the Values cannot come from different iterations of a potential cycle the
1544  // phi nodes could be involved in.
1545  for (auto *P : VisitedPhiBBs)
1546    if (isPotentiallyReachable(P->begin(), Inst, DT, LI))
1547      return false;
1548
1549  return true;
1550}
1551
1552/// GetIndexDifference - Dest and Src are the variable indices from two
1553/// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
1554/// pointers.  Subtract the GEP2 indices from GEP1 to find the symbolic
1555/// difference between the two pointers.
1556void BasicAliasAnalysis::GetIndexDifference(
1557    SmallVectorImpl<VariableGEPIndex> &Dest,
1558    const SmallVectorImpl<VariableGEPIndex> &Src) {
1559  if (Src.empty())
1560    return;
1561
1562  for (unsigned i = 0, e = Src.size(); i != e; ++i) {
1563    const Value *V = Src[i].V;
1564    ExtensionKind Extension = Src[i].Extension;
1565    int64_t Scale = Src[i].Scale;
1566
1567    // Find V in Dest.  This is N^2, but pointer indices almost never have more
1568    // than a few variable indexes.
1569    for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
1570      if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
1571          Dest[j].Extension != Extension)
1572        continue;
1573
1574      // If we found it, subtract off Scale V's from the entry in Dest.  If it
1575      // goes to zero, remove the entry.
1576      if (Dest[j].Scale != Scale)
1577        Dest[j].Scale -= Scale;
1578      else
1579        Dest.erase(Dest.begin() + j);
1580      Scale = 0;
1581      break;
1582    }
1583
1584    // If we didn't consume this entry, add it to the end of the Dest list.
1585    if (Scale) {
1586      VariableGEPIndex Entry = { V, Extension, -Scale };
1587      Dest.push_back(Entry);
1588    }
1589  }
1590}
1591