MemoryDependenceAnalysis.cpp revision 847a84efd23a2c7d90429b82f6e0f19d1f913d9a
1//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation  --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements an analysis that determines, for a given memory
11// operation, what preceding memory operations it depends on.  It builds on
12// alias analysis information, and tries to provide a lazy, caching interface to
13// a common kind of alias information query.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "memdep"
18#include "llvm/Analysis/MemoryDependenceAnalysis.h"
19#include "llvm/Instructions.h"
20#include "llvm/IntrinsicInst.h"
21#include "llvm/Function.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/Analysis/Dominators.h"
24#include "llvm/Analysis/InstructionSimplify.h"
25#include "llvm/Analysis/MemoryBuiltins.h"
26#include "llvm/Analysis/PHITransAddr.h"
27#include "llvm/ADT/Statistic.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/Support/PredIteratorCache.h"
30#include "llvm/Support/Debug.h"
31using namespace llvm;
32
33STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
34STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
35STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
36
37STATISTIC(NumCacheNonLocalPtr,
38          "Number of fully cached non-local ptr responses");
39STATISTIC(NumCacheDirtyNonLocalPtr,
40          "Number of cached, but dirty, non-local ptr responses");
41STATISTIC(NumUncacheNonLocalPtr,
42          "Number of uncached non-local ptr responses");
43STATISTIC(NumCacheCompleteNonLocalPtr,
44          "Number of block queries that were completely cached");
45
46char MemoryDependenceAnalysis::ID = 0;
47
48// Register this pass...
49INITIALIZE_PASS(MemoryDependenceAnalysis, "memdep",
50                "Memory Dependence Analysis", false, true);
51
52MemoryDependenceAnalysis::MemoryDependenceAnalysis()
53: FunctionPass(&ID), PredCache(0) {
54}
55MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
56}
57
58/// Clean up memory in between runs
59void MemoryDependenceAnalysis::releaseMemory() {
60  LocalDeps.clear();
61  NonLocalDeps.clear();
62  NonLocalPointerDeps.clear();
63  ReverseLocalDeps.clear();
64  ReverseNonLocalDeps.clear();
65  ReverseNonLocalPtrDeps.clear();
66  PredCache->clear();
67}
68
69
70
71/// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
72///
73void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
74  AU.setPreservesAll();
75  AU.addRequiredTransitive<AliasAnalysis>();
76}
77
78bool MemoryDependenceAnalysis::runOnFunction(Function &) {
79  AA = &getAnalysis<AliasAnalysis>();
80  if (PredCache == 0)
81    PredCache.reset(new PredIteratorCache());
82  return false;
83}
84
85/// RemoveFromReverseMap - This is a helper function that removes Val from
86/// 'Inst's set in ReverseMap.  If the set becomes empty, remove Inst's entry.
87template <typename KeyTy>
88static void RemoveFromReverseMap(DenseMap<Instruction*,
89                                 SmallPtrSet<KeyTy, 4> > &ReverseMap,
90                                 Instruction *Inst, KeyTy Val) {
91  typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
92  InstIt = ReverseMap.find(Inst);
93  assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
94  bool Found = InstIt->second.erase(Val);
95  assert(Found && "Invalid reverse map!"); Found=Found;
96  if (InstIt->second.empty())
97    ReverseMap.erase(InstIt);
98}
99
100
101/// getCallSiteDependencyFrom - Private helper for finding the local
102/// dependencies of a call site.
103MemDepResult MemoryDependenceAnalysis::
104getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
105                          BasicBlock::iterator ScanIt, BasicBlock *BB) {
106  // Walk backwards through the block, looking for dependencies
107  while (ScanIt != BB->begin()) {
108    Instruction *Inst = --ScanIt;
109
110    // If this inst is a memory op, get the pointer it accessed
111    Value *Pointer = 0;
112    uint64_t PointerSize = 0;
113    if (StoreInst *S = dyn_cast<StoreInst>(Inst)) {
114      Pointer = S->getPointerOperand();
115      PointerSize = AA->getTypeStoreSize(S->getOperand(0)->getType());
116    } else if (VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
117      Pointer = V->getOperand(0);
118      PointerSize = AA->getTypeStoreSize(V->getType());
119    } else if (const CallInst *CI = isFreeCall(Inst)) {
120      Pointer = CI->getArgOperand(0);
121      // calls to free() erase the entire structure
122      PointerSize = ~0ULL;
123    } else if (CallSite InstCS = cast<Value>(Inst)) {
124      // Debug intrinsics don't cause dependences.
125      if (isa<DbgInfoIntrinsic>(Inst)) continue;
126      // If these two calls do not interfere, look past it.
127      switch (AA->getModRefInfo(CS, InstCS)) {
128      case AliasAnalysis::NoModRef:
129        // If the two calls don't interact (e.g. InstCS is readnone) keep
130        // scanning.
131        continue;
132      case AliasAnalysis::Ref:
133        // If the two calls read the same memory locations and CS is a readonly
134        // function, then we have two cases: 1) the calls may not interfere with
135        // each other at all.  2) the calls may produce the same value.  In case
136        // #1 we want to ignore the values, in case #2, we want to return Inst
137        // as a Def dependence.  This allows us to CSE in cases like:
138        //   X = strlen(P);
139        //    memchr(...);
140        //   Y = strlen(P);  // Y = X
141        if (isReadOnlyCall) {
142          if (CS.getCalledFunction() != 0 &&
143              CS.getCalledFunction() == InstCS.getCalledFunction())
144            return MemDepResult::getDef(Inst);
145          // Ignore unrelated read/read call dependences.
146          continue;
147        }
148        // FALL THROUGH
149      default:
150        return MemDepResult::getClobber(Inst);
151      }
152    } else {
153      // Non-memory instruction.
154      continue;
155    }
156
157    if (AA->getModRefInfo(CS, Pointer, PointerSize) != AliasAnalysis::NoModRef)
158      return MemDepResult::getClobber(Inst);
159  }
160
161  // No dependence found.  If this is the entry block of the function, it is a
162  // clobber, otherwise it is non-local.
163  if (BB != &BB->getParent()->getEntryBlock())
164    return MemDepResult::getNonLocal();
165  return MemDepResult::getClobber(ScanIt);
166}
167
168/// getPointerDependencyFrom - Return the instruction on which a memory
169/// location depends.  If isLoad is true, this routine ignore may-aliases with
170/// read-only operations.
171MemDepResult MemoryDependenceAnalysis::
172getPointerDependencyFrom(Value *MemPtr, uint64_t MemSize, bool isLoad,
173                         BasicBlock::iterator ScanIt, BasicBlock *BB) {
174
175  Value *InvariantTag = 0;
176
177  // Walk backwards through the basic block, looking for dependencies.
178  while (ScanIt != BB->begin()) {
179    Instruction *Inst = --ScanIt;
180
181    // If we're in an invariant region, no dependencies can be found before
182    // we pass an invariant-begin marker.
183    if (InvariantTag == Inst) {
184      InvariantTag = 0;
185      continue;
186    }
187
188    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
189      // Debug intrinsics don't cause dependences.
190      if (isa<DbgInfoIntrinsic>(Inst)) continue;
191
192      // If we pass an invariant-end marker, then we've just entered an
193      // invariant region and can start ignoring dependencies.
194      if (II->getIntrinsicID() == Intrinsic::invariant_end) {
195        // FIXME: This only considers queries directly on the invariant-tagged
196        // pointer, not on query pointers that are indexed off of them.  It'd
197        // be nice to handle that at some point.
198        AliasAnalysis::AliasResult R = AA->alias(II->getArgOperand(2), MemPtr);
199        if (R == AliasAnalysis::MustAlias) {
200          InvariantTag = II->getArgOperand(0);
201          continue;
202        }
203
204      // If we reach a lifetime begin or end marker, then the query ends here
205      // because the value is undefined.
206      } else if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
207        // FIXME: This only considers queries directly on the invariant-tagged
208        // pointer, not on query pointers that are indexed off of them.  It'd
209        // be nice to handle that at some point.
210        AliasAnalysis::AliasResult R = AA->alias(II->getArgOperand(1), MemPtr);
211        if (R == AliasAnalysis::MustAlias)
212          return MemDepResult::getDef(II);
213      }
214    }
215
216    // If we're querying on a load and we're in an invariant region, we're done
217    // at this point. Nothing a load depends on can live in an invariant region.
218    if (isLoad && InvariantTag) continue;
219
220    // Values depend on loads if the pointers are must aliased.  This means that
221    // a load depends on another must aliased load from the same value.
222    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
223      Value *Pointer = LI->getPointerOperand();
224      uint64_t PointerSize = AA->getTypeStoreSize(LI->getType());
225
226      // If we found a pointer, check if it could be the same as our pointer.
227      AliasAnalysis::AliasResult R =
228        AA->alias(Pointer, PointerSize, MemPtr, MemSize);
229      if (R == AliasAnalysis::NoAlias)
230        continue;
231
232      // May-alias loads don't depend on each other without a dependence.
233      if (isLoad && R == AliasAnalysis::MayAlias)
234        continue;
235      // Stores depend on may and must aliased loads, loads depend on must-alias
236      // loads.
237      return MemDepResult::getDef(Inst);
238    }
239
240    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
241      // There can't be stores to the value we care about inside an
242      // invariant region.
243      if (InvariantTag) continue;
244
245      // If alias analysis can tell that this store is guaranteed to not modify
246      // the query pointer, ignore it.  Use getModRefInfo to handle cases where
247      // the query pointer points to constant memory etc.
248      if (AA->getModRefInfo(SI, MemPtr, MemSize) == AliasAnalysis::NoModRef)
249        continue;
250
251      // Ok, this store might clobber the query pointer.  Check to see if it is
252      // a must alias: in this case, we want to return this as a def.
253      Value *Pointer = SI->getPointerOperand();
254      uint64_t PointerSize = AA->getTypeStoreSize(SI->getOperand(0)->getType());
255
256      // If we found a pointer, check if it could be the same as our pointer.
257      AliasAnalysis::AliasResult R =
258        AA->alias(Pointer, PointerSize, MemPtr, MemSize);
259
260      if (R == AliasAnalysis::NoAlias)
261        continue;
262      if (R == AliasAnalysis::MayAlias)
263        return MemDepResult::getClobber(Inst);
264      return MemDepResult::getDef(Inst);
265    }
266
267    // If this is an allocation, and if we know that the accessed pointer is to
268    // the allocation, return Def.  This means that there is no dependence and
269    // the access can be optimized based on that.  For example, a load could
270    // turn into undef.
271    // Note: Only determine this to be a malloc if Inst is the malloc call, not
272    // a subsequent bitcast of the malloc call result.  There can be stores to
273    // the malloced memory between the malloc call and its bitcast uses, and we
274    // need to continue scanning until the malloc call.
275    if (isa<AllocaInst>(Inst) ||
276        (isa<CallInst>(Inst) && extractMallocCall(Inst))) {
277      Value *AccessPtr = MemPtr->getUnderlyingObject();
278
279      if (AccessPtr == Inst ||
280          AA->alias(Inst, 1, AccessPtr, 1) == AliasAnalysis::MustAlias)
281        return MemDepResult::getDef(Inst);
282      continue;
283    }
284
285    // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
286    switch (AA->getModRefInfo(Inst, MemPtr, MemSize)) {
287    case AliasAnalysis::NoModRef:
288      // If the call has no effect on the queried pointer, just ignore it.
289      continue;
290    case AliasAnalysis::Mod:
291      // If we're in an invariant region, we can ignore calls that ONLY
292      // modify the pointer.
293      if (InvariantTag) continue;
294      return MemDepResult::getClobber(Inst);
295    case AliasAnalysis::Ref:
296      // If the call is known to never store to the pointer, and if this is a
297      // load query, we can safely ignore it (scan past it).
298      if (isLoad)
299        continue;
300    default:
301      // Otherwise, there is a potential dependence.  Return a clobber.
302      return MemDepResult::getClobber(Inst);
303    }
304  }
305
306  // No dependence found.  If this is the entry block of the function, it is a
307  // clobber, otherwise it is non-local.
308  if (BB != &BB->getParent()->getEntryBlock())
309    return MemDepResult::getNonLocal();
310  return MemDepResult::getClobber(ScanIt);
311}
312
313/// getDependency - Return the instruction on which a memory operation
314/// depends.
315MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
316  Instruction *ScanPos = QueryInst;
317
318  // Check for a cached result
319  MemDepResult &LocalCache = LocalDeps[QueryInst];
320
321  // If the cached entry is non-dirty, just return it.  Note that this depends
322  // on MemDepResult's default constructing to 'dirty'.
323  if (!LocalCache.isDirty())
324    return LocalCache;
325
326  // Otherwise, if we have a dirty entry, we know we can start the scan at that
327  // instruction, which may save us some work.
328  if (Instruction *Inst = LocalCache.getInst()) {
329    ScanPos = Inst;
330
331    RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
332  }
333
334  BasicBlock *QueryParent = QueryInst->getParent();
335
336  Value *MemPtr = 0;
337  uint64_t MemSize = 0;
338
339  // Do the scan.
340  if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
341    // No dependence found.  If this is the entry block of the function, it is a
342    // clobber, otherwise it is non-local.
343    if (QueryParent != &QueryParent->getParent()->getEntryBlock())
344      LocalCache = MemDepResult::getNonLocal();
345    else
346      LocalCache = MemDepResult::getClobber(QueryInst);
347  } else if (StoreInst *SI = dyn_cast<StoreInst>(QueryInst)) {
348    // If this is a volatile store, don't mess around with it.  Just return the
349    // previous instruction as a clobber.
350    if (SI->isVolatile())
351      LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
352    else {
353      MemPtr = SI->getPointerOperand();
354      MemSize = AA->getTypeStoreSize(SI->getOperand(0)->getType());
355    }
356  } else if (LoadInst *LI = dyn_cast<LoadInst>(QueryInst)) {
357    // If this is a volatile load, don't mess around with it.  Just return the
358    // previous instruction as a clobber.
359    if (LI->isVolatile())
360      LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
361    else {
362      MemPtr = LI->getPointerOperand();
363      MemSize = AA->getTypeStoreSize(LI->getType());
364    }
365  } else if (const CallInst *CI = isFreeCall(QueryInst)) {
366    MemPtr = CI->getArgOperand(0);
367    // calls to free() erase the entire structure, not just a field.
368    MemSize = ~0UL;
369  } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
370    int IntrinsicID = 0;  // Intrinsic IDs start at 1.
371    IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst);
372    if (II)
373      IntrinsicID = II->getIntrinsicID();
374
375    switch (IntrinsicID) {
376    case Intrinsic::lifetime_start:
377    case Intrinsic::lifetime_end:
378    case Intrinsic::invariant_start:
379      MemPtr = II->getArgOperand(1);
380      MemSize = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
381      break;
382    case Intrinsic::invariant_end:
383      MemPtr = II->getArgOperand(2);
384      MemSize = cast<ConstantInt>(II->getArgOperand(1))->getZExtValue();
385      break;
386    default:
387      CallSite QueryCS(QueryInst);
388      bool isReadOnly = AA->onlyReadsMemory(QueryCS);
389      LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
390                                             QueryParent);
391      break;
392    }
393  } else {
394    // Non-memory instruction.
395    LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
396  }
397
398  // If we need to do a pointer scan, make it happen.
399  if (MemPtr) {
400    bool isLoad = !QueryInst->mayWriteToMemory();
401    if (IntrinsicInst *II = dyn_cast<MemoryUseIntrinsic>(QueryInst)) {
402      isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_end;
403    }
404    LocalCache = getPointerDependencyFrom(MemPtr, MemSize, isLoad, ScanPos,
405                                          QueryParent);
406  }
407
408  // Remember the result!
409  if (Instruction *I = LocalCache.getInst())
410    ReverseLocalDeps[I].insert(QueryInst);
411
412  return LocalCache;
413}
414
415#ifndef NDEBUG
416/// AssertSorted - This method is used when -debug is specified to verify that
417/// cache arrays are properly kept sorted.
418static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
419                         int Count = -1) {
420  if (Count == -1) Count = Cache.size();
421  if (Count == 0) return;
422
423  for (unsigned i = 1; i != unsigned(Count); ++i)
424    assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!");
425}
426#endif
427
428/// getNonLocalCallDependency - Perform a full dependency query for the
429/// specified call, returning the set of blocks that the value is
430/// potentially live across.  The returned set of results will include a
431/// "NonLocal" result for all blocks where the value is live across.
432///
433/// This method assumes the instruction returns a "NonLocal" dependency
434/// within its own block.
435///
436/// This returns a reference to an internal data structure that may be
437/// invalidated on the next non-local query or when an instruction is
438/// removed.  Clients must copy this data if they want it around longer than
439/// that.
440const MemoryDependenceAnalysis::NonLocalDepInfo &
441MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
442  assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
443 "getNonLocalCallDependency should only be used on calls with non-local deps!");
444  PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
445  NonLocalDepInfo &Cache = CacheP.first;
446
447  /// DirtyBlocks - This is the set of blocks that need to be recomputed.  In
448  /// the cached case, this can happen due to instructions being deleted etc. In
449  /// the uncached case, this starts out as the set of predecessors we care
450  /// about.
451  SmallVector<BasicBlock*, 32> DirtyBlocks;
452
453  if (!Cache.empty()) {
454    // Okay, we have a cache entry.  If we know it is not dirty, just return it
455    // with no computation.
456    if (!CacheP.second) {
457      ++NumCacheNonLocal;
458      return Cache;
459    }
460
461    // If we already have a partially computed set of results, scan them to
462    // determine what is dirty, seeding our initial DirtyBlocks worklist.
463    for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
464       I != E; ++I)
465      if (I->getResult().isDirty())
466        DirtyBlocks.push_back(I->getBB());
467
468    // Sort the cache so that we can do fast binary search lookups below.
469    std::sort(Cache.begin(), Cache.end());
470
471    ++NumCacheDirtyNonLocal;
472    //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
473    //     << Cache.size() << " cached: " << *QueryInst;
474  } else {
475    // Seed DirtyBlocks with each of the preds of QueryInst's block.
476    BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
477    for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI)
478      DirtyBlocks.push_back(*PI);
479    ++NumUncacheNonLocal;
480  }
481
482  // isReadonlyCall - If this is a read-only call, we can be more aggressive.
483  bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
484
485  SmallPtrSet<BasicBlock*, 64> Visited;
486
487  unsigned NumSortedEntries = Cache.size();
488  DEBUG(AssertSorted(Cache));
489
490  // Iterate while we still have blocks to update.
491  while (!DirtyBlocks.empty()) {
492    BasicBlock *DirtyBB = DirtyBlocks.back();
493    DirtyBlocks.pop_back();
494
495    // Already processed this block?
496    if (!Visited.insert(DirtyBB))
497      continue;
498
499    // Do a binary search to see if we already have an entry for this block in
500    // the cache set.  If so, find it.
501    DEBUG(AssertSorted(Cache, NumSortedEntries));
502    NonLocalDepInfo::iterator Entry =
503      std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
504                       NonLocalDepEntry(DirtyBB));
505    if (Entry != Cache.begin() && prior(Entry)->getBB() == DirtyBB)
506      --Entry;
507
508    NonLocalDepEntry *ExistingResult = 0;
509    if (Entry != Cache.begin()+NumSortedEntries &&
510        Entry->getBB() == DirtyBB) {
511      // If we already have an entry, and if it isn't already dirty, the block
512      // is done.
513      if (!Entry->getResult().isDirty())
514        continue;
515
516      // Otherwise, remember this slot so we can update the value.
517      ExistingResult = &*Entry;
518    }
519
520    // If the dirty entry has a pointer, start scanning from it so we don't have
521    // to rescan the entire block.
522    BasicBlock::iterator ScanPos = DirtyBB->end();
523    if (ExistingResult) {
524      if (Instruction *Inst = ExistingResult->getResult().getInst()) {
525        ScanPos = Inst;
526        // We're removing QueryInst's use of Inst.
527        RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
528                             QueryCS.getInstruction());
529      }
530    }
531
532    // Find out if this block has a local dependency for QueryInst.
533    MemDepResult Dep;
534
535    if (ScanPos != DirtyBB->begin()) {
536      Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
537    } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
538      // No dependence found.  If this is the entry block of the function, it is
539      // a clobber, otherwise it is non-local.
540      Dep = MemDepResult::getNonLocal();
541    } else {
542      Dep = MemDepResult::getClobber(ScanPos);
543    }
544
545    // If we had a dirty entry for the block, update it.  Otherwise, just add
546    // a new entry.
547    if (ExistingResult)
548      ExistingResult->setResult(Dep);
549    else
550      Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
551
552    // If the block has a dependency (i.e. it isn't completely transparent to
553    // the value), remember the association!
554    if (!Dep.isNonLocal()) {
555      // Keep the ReverseNonLocalDeps map up to date so we can efficiently
556      // update this when we remove instructions.
557      if (Instruction *Inst = Dep.getInst())
558        ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
559    } else {
560
561      // If the block *is* completely transparent to the load, we need to check
562      // the predecessors of this block.  Add them to our worklist.
563      for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI)
564        DirtyBlocks.push_back(*PI);
565    }
566  }
567
568  return Cache;
569}
570
571/// getNonLocalPointerDependency - Perform a full dependency query for an
572/// access to the specified (non-volatile) memory location, returning the
573/// set of instructions that either define or clobber the value.
574///
575/// This method assumes the pointer has a "NonLocal" dependency within its
576/// own block.
577///
578void MemoryDependenceAnalysis::
579getNonLocalPointerDependency(Value *Pointer, bool isLoad, BasicBlock *FromBB,
580                             SmallVectorImpl<NonLocalDepResult> &Result) {
581  assert(Pointer->getType()->isPointerTy() &&
582         "Can't get pointer deps of a non-pointer!");
583  Result.clear();
584
585  // We know that the pointer value is live into FromBB find the def/clobbers
586  // from presecessors.
587  const Type *EltTy = cast<PointerType>(Pointer->getType())->getElementType();
588  uint64_t PointeeSize = AA->getTypeStoreSize(EltTy);
589
590  PHITransAddr Address(Pointer, TD);
591
592  // This is the set of blocks we've inspected, and the pointer we consider in
593  // each block.  Because of critical edges, we currently bail out if querying
594  // a block with multiple different pointers.  This can happen during PHI
595  // translation.
596  DenseMap<BasicBlock*, Value*> Visited;
597  if (!getNonLocalPointerDepFromBB(Address, PointeeSize, isLoad, FromBB,
598                                   Result, Visited, true))
599    return;
600  Result.clear();
601  Result.push_back(NonLocalDepResult(FromBB,
602                                     MemDepResult::getClobber(FromBB->begin()),
603                                     Pointer));
604}
605
606/// GetNonLocalInfoForBlock - Compute the memdep value for BB with
607/// Pointer/PointeeSize using either cached information in Cache or by doing a
608/// lookup (which may use dirty cache info if available).  If we do a lookup,
609/// add the result to the cache.
610MemDepResult MemoryDependenceAnalysis::
611GetNonLocalInfoForBlock(Value *Pointer, uint64_t PointeeSize,
612                        bool isLoad, BasicBlock *BB,
613                        NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
614
615  // Do a binary search to see if we already have an entry for this block in
616  // the cache set.  If so, find it.
617  NonLocalDepInfo::iterator Entry =
618    std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
619                     NonLocalDepEntry(BB));
620  if (Entry != Cache->begin() && (Entry-1)->getBB() == BB)
621    --Entry;
622
623  NonLocalDepEntry *ExistingResult = 0;
624  if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB)
625    ExistingResult = &*Entry;
626
627  // If we have a cached entry, and it is non-dirty, use it as the value for
628  // this dependency.
629  if (ExistingResult && !ExistingResult->getResult().isDirty()) {
630    ++NumCacheNonLocalPtr;
631    return ExistingResult->getResult();
632  }
633
634  // Otherwise, we have to scan for the value.  If we have a dirty cache
635  // entry, start scanning from its position, otherwise we scan from the end
636  // of the block.
637  BasicBlock::iterator ScanPos = BB->end();
638  if (ExistingResult && ExistingResult->getResult().getInst()) {
639    assert(ExistingResult->getResult().getInst()->getParent() == BB &&
640           "Instruction invalidated?");
641    ++NumCacheDirtyNonLocalPtr;
642    ScanPos = ExistingResult->getResult().getInst();
643
644    // Eliminating the dirty entry from 'Cache', so update the reverse info.
645    ValueIsLoadPair CacheKey(Pointer, isLoad);
646    RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey);
647  } else {
648    ++NumUncacheNonLocalPtr;
649  }
650
651  // Scan the block for the dependency.
652  MemDepResult Dep = getPointerDependencyFrom(Pointer, PointeeSize, isLoad,
653                                              ScanPos, BB);
654
655  // If we had a dirty entry for the block, update it.  Otherwise, just add
656  // a new entry.
657  if (ExistingResult)
658    ExistingResult->setResult(Dep);
659  else
660    Cache->push_back(NonLocalDepEntry(BB, Dep));
661
662  // If the block has a dependency (i.e. it isn't completely transparent to
663  // the value), remember the reverse association because we just added it
664  // to Cache!
665  if (Dep.isNonLocal())
666    return Dep;
667
668  // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
669  // update MemDep when we remove instructions.
670  Instruction *Inst = Dep.getInst();
671  assert(Inst && "Didn't depend on anything?");
672  ValueIsLoadPair CacheKey(Pointer, isLoad);
673  ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
674  return Dep;
675}
676
677/// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain
678/// number of elements in the array that are already properly ordered.  This is
679/// optimized for the case when only a few entries are added.
680static void
681SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
682                         unsigned NumSortedEntries) {
683  switch (Cache.size() - NumSortedEntries) {
684  case 0:
685    // done, no new entries.
686    break;
687  case 2: {
688    // Two new entries, insert the last one into place.
689    NonLocalDepEntry Val = Cache.back();
690    Cache.pop_back();
691    MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
692      std::upper_bound(Cache.begin(), Cache.end()-1, Val);
693    Cache.insert(Entry, Val);
694    // FALL THROUGH.
695  }
696  case 1:
697    // One new entry, Just insert the new value at the appropriate position.
698    if (Cache.size() != 1) {
699      NonLocalDepEntry Val = Cache.back();
700      Cache.pop_back();
701      MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
702        std::upper_bound(Cache.begin(), Cache.end(), Val);
703      Cache.insert(Entry, Val);
704    }
705    break;
706  default:
707    // Added many values, do a full scale sort.
708    std::sort(Cache.begin(), Cache.end());
709    break;
710  }
711}
712
713/// getNonLocalPointerDepFromBB - Perform a dependency query based on
714/// pointer/pointeesize starting at the end of StartBB.  Add any clobber/def
715/// results to the results vector and keep track of which blocks are visited in
716/// 'Visited'.
717///
718/// This has special behavior for the first block queries (when SkipFirstBlock
719/// is true).  In this special case, it ignores the contents of the specified
720/// block and starts returning dependence info for its predecessors.
721///
722/// This function returns false on success, or true to indicate that it could
723/// not compute dependence information for some reason.  This should be treated
724/// as a clobber dependence on the first instruction in the predecessor block.
725bool MemoryDependenceAnalysis::
726getNonLocalPointerDepFromBB(const PHITransAddr &Pointer, uint64_t PointeeSize,
727                            bool isLoad, BasicBlock *StartBB,
728                            SmallVectorImpl<NonLocalDepResult> &Result,
729                            DenseMap<BasicBlock*, Value*> &Visited,
730                            bool SkipFirstBlock) {
731
732  // Look up the cached info for Pointer.
733  ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
734
735  std::pair<BBSkipFirstBlockPair, NonLocalDepInfo> *CacheInfo =
736    &NonLocalPointerDeps[CacheKey];
737  NonLocalDepInfo *Cache = &CacheInfo->second;
738
739  // If we have valid cached information for exactly the block we are
740  // investigating, just return it with no recomputation.
741  if (CacheInfo->first == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
742    // We have a fully cached result for this query then we can just return the
743    // cached results and populate the visited set.  However, we have to verify
744    // that we don't already have conflicting results for these blocks.  Check
745    // to ensure that if a block in the results set is in the visited set that
746    // it was for the same pointer query.
747    if (!Visited.empty()) {
748      for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
749           I != E; ++I) {
750        DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB());
751        if (VI == Visited.end() || VI->second == Pointer.getAddr())
752          continue;
753
754        // We have a pointer mismatch in a block.  Just return clobber, saying
755        // that something was clobbered in this result.  We could also do a
756        // non-fully cached query, but there is little point in doing this.
757        return true;
758      }
759    }
760
761    Value *Addr = Pointer.getAddr();
762    for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
763         I != E; ++I) {
764      Visited.insert(std::make_pair(I->getBB(), Addr));
765      if (!I->getResult().isNonLocal())
766        Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr));
767    }
768    ++NumCacheCompleteNonLocalPtr;
769    return false;
770  }
771
772  // Otherwise, either this is a new block, a block with an invalid cache
773  // pointer or one that we're about to invalidate by putting more info into it
774  // than its valid cache info.  If empty, the result will be valid cache info,
775  // otherwise it isn't.
776  if (Cache->empty())
777    CacheInfo->first = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
778  else
779    CacheInfo->first = BBSkipFirstBlockPair();
780
781  SmallVector<BasicBlock*, 32> Worklist;
782  Worklist.push_back(StartBB);
783
784  // Keep track of the entries that we know are sorted.  Previously cached
785  // entries will all be sorted.  The entries we add we only sort on demand (we
786  // don't insert every element into its sorted position).  We know that we
787  // won't get any reuse from currently inserted values, because we don't
788  // revisit blocks after we insert info for them.
789  unsigned NumSortedEntries = Cache->size();
790  DEBUG(AssertSorted(*Cache));
791
792  while (!Worklist.empty()) {
793    BasicBlock *BB = Worklist.pop_back_val();
794
795    // Skip the first block if we have it.
796    if (!SkipFirstBlock) {
797      // Analyze the dependency of *Pointer in FromBB.  See if we already have
798      // been here.
799      assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
800
801      // Get the dependency info for Pointer in BB.  If we have cached
802      // information, we will use it, otherwise we compute it.
803      DEBUG(AssertSorted(*Cache, NumSortedEntries));
804      MemDepResult Dep = GetNonLocalInfoForBlock(Pointer.getAddr(), PointeeSize,
805                                                 isLoad, BB, Cache,
806                                                 NumSortedEntries);
807
808      // If we got a Def or Clobber, add this to the list of results.
809      if (!Dep.isNonLocal()) {
810        Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
811        continue;
812      }
813    }
814
815    // If 'Pointer' is an instruction defined in this block, then we need to do
816    // phi translation to change it into a value live in the predecessor block.
817    // If not, we just add the predecessors to the worklist and scan them with
818    // the same Pointer.
819    if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
820      SkipFirstBlock = false;
821      for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
822        // Verify that we haven't looked at this block yet.
823        std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
824          InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr()));
825        if (InsertRes.second) {
826          // First time we've looked at *PI.
827          Worklist.push_back(*PI);
828          continue;
829        }
830
831        // If we have seen this block before, but it was with a different
832        // pointer then we have a phi translation failure and we have to treat
833        // this as a clobber.
834        if (InsertRes.first->second != Pointer.getAddr())
835          goto PredTranslationFailure;
836      }
837      continue;
838    }
839
840    // We do need to do phi translation, if we know ahead of time we can't phi
841    // translate this value, don't even try.
842    if (!Pointer.IsPotentiallyPHITranslatable())
843      goto PredTranslationFailure;
844
845    // We may have added values to the cache list before this PHI translation.
846    // If so, we haven't done anything to ensure that the cache remains sorted.
847    // Sort it now (if needed) so that recursive invocations of
848    // getNonLocalPointerDepFromBB and other routines that could reuse the cache
849    // value will only see properly sorted cache arrays.
850    if (Cache && NumSortedEntries != Cache->size()) {
851      SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
852      NumSortedEntries = Cache->size();
853    }
854    Cache = 0;
855
856    for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
857      BasicBlock *Pred = *PI;
858
859      // Get the PHI translated pointer in this predecessor.  This can fail if
860      // not translatable, in which case the getAddr() returns null.
861      PHITransAddr PredPointer(Pointer);
862      PredPointer.PHITranslateValue(BB, Pred, 0);
863
864      Value *PredPtrVal = PredPointer.getAddr();
865
866      // Check to see if we have already visited this pred block with another
867      // pointer.  If so, we can't do this lookup.  This failure can occur
868      // with PHI translation when a critical edge exists and the PHI node in
869      // the successor translates to a pointer value different than the
870      // pointer the block was first analyzed with.
871      std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
872        InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal));
873
874      if (!InsertRes.second) {
875        // If the predecessor was visited with PredPtr, then we already did
876        // the analysis and can ignore it.
877        if (InsertRes.first->second == PredPtrVal)
878          continue;
879
880        // Otherwise, the block was previously analyzed with a different
881        // pointer.  We can't represent the result of this case, so we just
882        // treat this as a phi translation failure.
883        goto PredTranslationFailure;
884      }
885
886      // If PHI translation was unable to find an available pointer in this
887      // predecessor, then we have to assume that the pointer is clobbered in
888      // that predecessor.  We can still do PRE of the load, which would insert
889      // a computation of the pointer in this predecessor.
890      if (PredPtrVal == 0) {
891        // Add the entry to the Result list.
892        NonLocalDepResult Entry(Pred,
893                                MemDepResult::getClobber(Pred->getTerminator()),
894                                PredPtrVal);
895        Result.push_back(Entry);
896
897        // Since we had a phi translation failure, the cache for CacheKey won't
898        // include all of the entries that we need to immediately satisfy future
899        // queries.  Mark this in NonLocalPointerDeps by setting the
900        // BBSkipFirstBlockPair pointer to null.  This requires reuse of the
901        // cached value to do more work but not miss the phi trans failure.
902        NonLocalPointerDeps[CacheKey].first = BBSkipFirstBlockPair();
903        continue;
904      }
905
906      // FIXME: it is entirely possible that PHI translating will end up with
907      // the same value.  Consider PHI translating something like:
908      // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
909      // to recurse here, pedantically speaking.
910
911      // If we have a problem phi translating, fall through to the code below
912      // to handle the failure condition.
913      if (getNonLocalPointerDepFromBB(PredPointer, PointeeSize, isLoad, Pred,
914                                      Result, Visited))
915        goto PredTranslationFailure;
916    }
917
918    // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
919    CacheInfo = &NonLocalPointerDeps[CacheKey];
920    Cache = &CacheInfo->second;
921    NumSortedEntries = Cache->size();
922
923    // Since we did phi translation, the "Cache" set won't contain all of the
924    // results for the query.  This is ok (we can still use it to accelerate
925    // specific block queries) but we can't do the fastpath "return all
926    // results from the set"  Clear out the indicator for this.
927    CacheInfo->first = BBSkipFirstBlockPair();
928    SkipFirstBlock = false;
929    continue;
930
931  PredTranslationFailure:
932
933    if (Cache == 0) {
934      // Refresh the CacheInfo/Cache pointer if it got invalidated.
935      CacheInfo = &NonLocalPointerDeps[CacheKey];
936      Cache = &CacheInfo->second;
937      NumSortedEntries = Cache->size();
938    }
939
940    // Since we failed phi translation, the "Cache" set won't contain all of the
941    // results for the query.  This is ok (we can still use it to accelerate
942    // specific block queries) but we can't do the fastpath "return all
943    // results from the set".  Clear out the indicator for this.
944    CacheInfo->first = BBSkipFirstBlockPair();
945
946    // If *nothing* works, mark the pointer as being clobbered by the first
947    // instruction in this block.
948    //
949    // If this is the magic first block, return this as a clobber of the whole
950    // incoming value.  Since we can't phi translate to one of the predecessors,
951    // we have to bail out.
952    if (SkipFirstBlock)
953      return true;
954
955    for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
956      assert(I != Cache->rend() && "Didn't find current block??");
957      if (I->getBB() != BB)
958        continue;
959
960      assert(I->getResult().isNonLocal() &&
961             "Should only be here with transparent block");
962      I->setResult(MemDepResult::getClobber(BB->begin()));
963      ReverseNonLocalPtrDeps[BB->begin()].insert(CacheKey);
964      Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(),
965                                         Pointer.getAddr()));
966      break;
967    }
968  }
969
970  // Okay, we're done now.  If we added new values to the cache, re-sort it.
971  SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
972  DEBUG(AssertSorted(*Cache));
973  return false;
974}
975
976/// RemoveCachedNonLocalPointerDependencies - If P exists in
977/// CachedNonLocalPointerInfo, remove it.
978void MemoryDependenceAnalysis::
979RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
980  CachedNonLocalPointerInfo::iterator It =
981    NonLocalPointerDeps.find(P);
982  if (It == NonLocalPointerDeps.end()) return;
983
984  // Remove all of the entries in the BB->val map.  This involves removing
985  // instructions from the reverse map.
986  NonLocalDepInfo &PInfo = It->second.second;
987
988  for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
989    Instruction *Target = PInfo[i].getResult().getInst();
990    if (Target == 0) continue;  // Ignore non-local dep results.
991    assert(Target->getParent() == PInfo[i].getBB());
992
993    // Eliminating the dirty entry from 'Cache', so update the reverse info.
994    RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
995  }
996
997  // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
998  NonLocalPointerDeps.erase(It);
999}
1000
1001
1002/// invalidateCachedPointerInfo - This method is used to invalidate cached
1003/// information about the specified pointer, because it may be too
1004/// conservative in memdep.  This is an optional call that can be used when
1005/// the client detects an equivalence between the pointer and some other
1006/// value and replaces the other value with ptr. This can make Ptr available
1007/// in more places that cached info does not necessarily keep.
1008void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
1009  // If Ptr isn't really a pointer, just ignore it.
1010  if (!Ptr->getType()->isPointerTy()) return;
1011  // Flush store info for the pointer.
1012  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1013  // Flush load info for the pointer.
1014  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1015}
1016
1017/// invalidateCachedPredecessors - Clear the PredIteratorCache info.
1018/// This needs to be done when the CFG changes, e.g., due to splitting
1019/// critical edges.
1020void MemoryDependenceAnalysis::invalidateCachedPredecessors() {
1021  PredCache->clear();
1022}
1023
1024/// removeInstruction - Remove an instruction from the dependence analysis,
1025/// updating the dependence of instructions that previously depended on it.
1026/// This method attempts to keep the cache coherent using the reverse map.
1027void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
1028  // Walk through the Non-local dependencies, removing this one as the value
1029  // for any cached queries.
1030  NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1031  if (NLDI != NonLocalDeps.end()) {
1032    NonLocalDepInfo &BlockMap = NLDI->second.first;
1033    for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
1034         DI != DE; ++DI)
1035      if (Instruction *Inst = DI->getResult().getInst())
1036        RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1037    NonLocalDeps.erase(NLDI);
1038  }
1039
1040  // If we have a cached local dependence query for this instruction, remove it.
1041  //
1042  LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1043  if (LocalDepEntry != LocalDeps.end()) {
1044    // Remove us from DepInst's reverse set now that the local dep info is gone.
1045    if (Instruction *Inst = LocalDepEntry->second.getInst())
1046      RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1047
1048    // Remove this local dependency info.
1049    LocalDeps.erase(LocalDepEntry);
1050  }
1051
1052  // If we have any cached pointer dependencies on this instruction, remove
1053  // them.  If the instruction has non-pointer type, then it can't be a pointer
1054  // base.
1055
1056  // Remove it from both the load info and the store info.  The instruction
1057  // can't be in either of these maps if it is non-pointer.
1058  if (RemInst->getType()->isPointerTy()) {
1059    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1060    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1061  }
1062
1063  // Loop over all of the things that depend on the instruction we're removing.
1064  //
1065  SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
1066
1067  // If we find RemInst as a clobber or Def in any of the maps for other values,
1068  // we need to replace its entry with a dirty version of the instruction after
1069  // it.  If RemInst is a terminator, we use a null dirty value.
1070  //
1071  // Using a dirty version of the instruction after RemInst saves having to scan
1072  // the entire block to get to this point.
1073  MemDepResult NewDirtyVal;
1074  if (!RemInst->isTerminator())
1075    NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
1076
1077  ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1078  if (ReverseDepIt != ReverseLocalDeps.end()) {
1079    SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
1080    // RemInst can't be the terminator if it has local stuff depending on it.
1081    assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
1082           "Nothing can locally depend on a terminator");
1083
1084    for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
1085         E = ReverseDeps.end(); I != E; ++I) {
1086      Instruction *InstDependingOnRemInst = *I;
1087      assert(InstDependingOnRemInst != RemInst &&
1088             "Already removed our local dep info");
1089
1090      LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1091
1092      // Make sure to remember that new things depend on NewDepInst.
1093      assert(NewDirtyVal.getInst() && "There is no way something else can have "
1094             "a local dep on this if it is a terminator!");
1095      ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
1096                                                InstDependingOnRemInst));
1097    }
1098
1099    ReverseLocalDeps.erase(ReverseDepIt);
1100
1101    // Add new reverse deps after scanning the set, to avoid invalidating the
1102    // 'ReverseDeps' reference.
1103    while (!ReverseDepsToAdd.empty()) {
1104      ReverseLocalDeps[ReverseDepsToAdd.back().first]
1105        .insert(ReverseDepsToAdd.back().second);
1106      ReverseDepsToAdd.pop_back();
1107    }
1108  }
1109
1110  ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1111  if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1112    SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second;
1113    for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end();
1114         I != E; ++I) {
1115      assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
1116
1117      PerInstNLInfo &INLD = NonLocalDeps[*I];
1118      // The information is now dirty!
1119      INLD.second = true;
1120
1121      for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
1122           DE = INLD.first.end(); DI != DE; ++DI) {
1123        if (DI->getResult().getInst() != RemInst) continue;
1124
1125        // Convert to a dirty entry for the subsequent instruction.
1126        DI->setResult(NewDirtyVal);
1127
1128        if (Instruction *NextI = NewDirtyVal.getInst())
1129          ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
1130      }
1131    }
1132
1133    ReverseNonLocalDeps.erase(ReverseDepIt);
1134
1135    // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1136    while (!ReverseDepsToAdd.empty()) {
1137      ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
1138        .insert(ReverseDepsToAdd.back().second);
1139      ReverseDepsToAdd.pop_back();
1140    }
1141  }
1142
1143  // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1144  // value in the NonLocalPointerDeps info.
1145  ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1146    ReverseNonLocalPtrDeps.find(RemInst);
1147  if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1148    SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second;
1149    SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
1150
1151    for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(),
1152         E = Set.end(); I != E; ++I) {
1153      ValueIsLoadPair P = *I;
1154      assert(P.getPointer() != RemInst &&
1155             "Already removed NonLocalPointerDeps info for RemInst");
1156
1157      NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].second;
1158
1159      // The cache is not valid for any specific block anymore.
1160      NonLocalPointerDeps[P].first = BBSkipFirstBlockPair();
1161
1162      // Update any entries for RemInst to use the instruction after it.
1163      for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
1164           DI != DE; ++DI) {
1165        if (DI->getResult().getInst() != RemInst) continue;
1166
1167        // Convert to a dirty entry for the subsequent instruction.
1168        DI->setResult(NewDirtyVal);
1169
1170        if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1171          ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1172      }
1173
1174      // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
1175      // subsequent value may invalidate the sortedness.
1176      std::sort(NLPDI.begin(), NLPDI.end());
1177    }
1178
1179    ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1180
1181    while (!ReversePtrDepsToAdd.empty()) {
1182      ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
1183        .insert(ReversePtrDepsToAdd.back().second);
1184      ReversePtrDepsToAdd.pop_back();
1185    }
1186  }
1187
1188
1189  assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1190  AA->deleteValue(RemInst);
1191  DEBUG(verifyRemoved(RemInst));
1192}
1193/// verifyRemoved - Verify that the specified instruction does not occur
1194/// in our internal data structures.
1195void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
1196  for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
1197       E = LocalDeps.end(); I != E; ++I) {
1198    assert(I->first != D && "Inst occurs in data structures");
1199    assert(I->second.getInst() != D &&
1200           "Inst occurs in data structures");
1201  }
1202
1203  for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
1204       E = NonLocalPointerDeps.end(); I != E; ++I) {
1205    assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
1206    const NonLocalDepInfo &Val = I->second.second;
1207    for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
1208         II != E; ++II)
1209      assert(II->getResult().getInst() != D && "Inst occurs as NLPD value");
1210  }
1211
1212  for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
1213       E = NonLocalDeps.end(); I != E; ++I) {
1214    assert(I->first != D && "Inst occurs in data structures");
1215    const PerInstNLInfo &INLD = I->second;
1216    for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
1217         EE = INLD.first.end(); II  != EE; ++II)
1218      assert(II->getResult().getInst() != D && "Inst occurs in data structures");
1219  }
1220
1221  for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
1222       E = ReverseLocalDeps.end(); I != E; ++I) {
1223    assert(I->first != D && "Inst occurs in data structures");
1224    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1225         EE = I->second.end(); II != EE; ++II)
1226      assert(*II != D && "Inst occurs in data structures");
1227  }
1228
1229  for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
1230       E = ReverseNonLocalDeps.end();
1231       I != E; ++I) {
1232    assert(I->first != D && "Inst occurs in data structures");
1233    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1234         EE = I->second.end(); II != EE; ++II)
1235      assert(*II != D && "Inst occurs in data structures");
1236  }
1237
1238  for (ReverseNonLocalPtrDepTy::const_iterator
1239       I = ReverseNonLocalPtrDeps.begin(),
1240       E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
1241    assert(I->first != D && "Inst occurs in rev NLPD map");
1242
1243    for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(),
1244         E = I->second.end(); II != E; ++II)
1245      assert(*II != ValueIsLoadPair(D, false) &&
1246             *II != ValueIsLoadPair(D, true) &&
1247             "Inst occurs in ReverseNonLocalPtrDeps map");
1248  }
1249
1250}
1251