MemoryDependenceAnalysis.cpp revision a85a66423d966bf6210daf9587dba7ec1ff8d64e
1//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation  --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements an analysis that determines, for a given memory
11// operation, what preceding memory operations it depends on.  It builds on
12// alias analysis information, and tries to provide a lazy, caching interface to
13// a common kind of alias information query.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "memdep"
18#include "llvm/Analysis/MemoryDependenceAnalysis.h"
19#include "llvm/Instructions.h"
20#include "llvm/IntrinsicInst.h"
21#include "llvm/Function.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/Analysis/MemoryBuiltins.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/Support/PredIteratorCache.h"
27#include "llvm/Support/Debug.h"
28using namespace llvm;
29
30STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
31STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
32STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
33
34STATISTIC(NumCacheNonLocalPtr,
35          "Number of fully cached non-local ptr responses");
36STATISTIC(NumCacheDirtyNonLocalPtr,
37          "Number of cached, but dirty, non-local ptr responses");
38STATISTIC(NumUncacheNonLocalPtr,
39          "Number of uncached non-local ptr responses");
40STATISTIC(NumCacheCompleteNonLocalPtr,
41          "Number of block queries that were completely cached");
42
43char MemoryDependenceAnalysis::ID = 0;
44
45// Register this pass...
46static RegisterPass<MemoryDependenceAnalysis> X("memdep",
47                                     "Memory Dependence Analysis", false, true);
48
49MemoryDependenceAnalysis::MemoryDependenceAnalysis()
50: FunctionPass(&ID), PredCache(0) {
51}
52MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
53}
54
55/// Clean up memory in between runs
56void MemoryDependenceAnalysis::releaseMemory() {
57  LocalDeps.clear();
58  NonLocalDeps.clear();
59  NonLocalPointerDeps.clear();
60  ReverseLocalDeps.clear();
61  ReverseNonLocalDeps.clear();
62  ReverseNonLocalPtrDeps.clear();
63  PredCache->clear();
64}
65
66
67
68/// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
69///
70void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
71  AU.setPreservesAll();
72  AU.addRequiredTransitive<AliasAnalysis>();
73}
74
75bool MemoryDependenceAnalysis::runOnFunction(Function &) {
76  AA = &getAnalysis<AliasAnalysis>();
77  if (PredCache == 0)
78    PredCache.reset(new PredIteratorCache());
79  return false;
80}
81
82/// RemoveFromReverseMap - This is a helper function that removes Val from
83/// 'Inst's set in ReverseMap.  If the set becomes empty, remove Inst's entry.
84template <typename KeyTy>
85static void RemoveFromReverseMap(DenseMap<Instruction*,
86                                 SmallPtrSet<KeyTy, 4> > &ReverseMap,
87                                 Instruction *Inst, KeyTy Val) {
88  typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
89  InstIt = ReverseMap.find(Inst);
90  assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
91  bool Found = InstIt->second.erase(Val);
92  assert(Found && "Invalid reverse map!"); Found=Found;
93  if (InstIt->second.empty())
94    ReverseMap.erase(InstIt);
95}
96
97
98/// getCallSiteDependencyFrom - Private helper for finding the local
99/// dependencies of a call site.
100MemDepResult MemoryDependenceAnalysis::
101getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
102                          BasicBlock::iterator ScanIt, BasicBlock *BB) {
103  // Walk backwards through the block, looking for dependencies
104  while (ScanIt != BB->begin()) {
105    Instruction *Inst = --ScanIt;
106
107    // If this inst is a memory op, get the pointer it accessed
108    Value *Pointer = 0;
109    uint64_t PointerSize = 0;
110    if (StoreInst *S = dyn_cast<StoreInst>(Inst)) {
111      Pointer = S->getPointerOperand();
112      PointerSize = AA->getTypeStoreSize(S->getOperand(0)->getType());
113    } else if (VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
114      Pointer = V->getOperand(0);
115      PointerSize = AA->getTypeStoreSize(V->getType());
116    } else if (isFreeCall(Inst)) {
117      Pointer = Inst->getOperand(1);
118      // calls to free() erase the entire structure
119      PointerSize = ~0ULL;
120    } else if (isFreeCall(Inst)) {
121      Pointer = Inst->getOperand(0);
122      // calls to free() erase the entire structure
123      PointerSize = ~0ULL;
124    } else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
125      // Debug intrinsics don't cause dependences.
126      if (isa<DbgInfoIntrinsic>(Inst)) continue;
127      CallSite InstCS = CallSite::get(Inst);
128      // If these two calls do not interfere, look past it.
129      switch (AA->getModRefInfo(CS, InstCS)) {
130      case AliasAnalysis::NoModRef:
131        // If the two calls don't interact (e.g. InstCS is readnone) keep
132        // scanning.
133        continue;
134      case AliasAnalysis::Ref:
135        // If the two calls read the same memory locations and CS is a readonly
136        // function, then we have two cases: 1) the calls may not interfere with
137        // each other at all.  2) the calls may produce the same value.  In case
138        // #1 we want to ignore the values, in case #2, we want to return Inst
139        // as a Def dependence.  This allows us to CSE in cases like:
140        //   X = strlen(P);
141        //    memchr(...);
142        //   Y = strlen(P);  // Y = X
143        if (isReadOnlyCall) {
144          if (CS.getCalledFunction() != 0 &&
145              CS.getCalledFunction() == InstCS.getCalledFunction())
146            return MemDepResult::getDef(Inst);
147          // Ignore unrelated read/read call dependences.
148          continue;
149        }
150        // FALL THROUGH
151      default:
152        return MemDepResult::getClobber(Inst);
153      }
154    } else {
155      // Non-memory instruction.
156      continue;
157    }
158
159    if (AA->getModRefInfo(CS, Pointer, PointerSize) != AliasAnalysis::NoModRef)
160      return MemDepResult::getClobber(Inst);
161  }
162
163  // No dependence found.  If this is the entry block of the function, it is a
164  // clobber, otherwise it is non-local.
165  if (BB != &BB->getParent()->getEntryBlock())
166    return MemDepResult::getNonLocal();
167  return MemDepResult::getClobber(ScanIt);
168}
169
170/// getPointerDependencyFrom - Return the instruction on which a memory
171/// location depends.  If isLoad is true, this routine ignore may-aliases with
172/// read-only operations.
173MemDepResult MemoryDependenceAnalysis::
174getPointerDependencyFrom(Value *MemPtr, uint64_t MemSize, bool isLoad,
175                         BasicBlock::iterator ScanIt, BasicBlock *BB) {
176
177  Value* invariantTag = 0;
178
179  // Walk backwards through the basic block, looking for dependencies.
180  while (ScanIt != BB->begin()) {
181    Instruction *Inst = --ScanIt;
182
183    // If we're in an invariant region, no dependencies can be found before
184    // we pass an invariant-begin marker.
185    if (invariantTag == Inst) {
186      invariantTag = 0;
187      continue;
188
189    // If we pass an invariant-end marker, then we've just entered an invariant
190    // region and can start ignoring dependencies.
191    } else if (IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst)) {
192      if (II->getIntrinsicID() == Intrinsic::invariant_end) {
193        uint64_t invariantSize = ~0ULL;
194        if (ConstantInt* CI = dyn_cast<ConstantInt>(II->getOperand(2)))
195          invariantSize = CI->getZExtValue();
196
197        AliasAnalysis::AliasResult R =
198          AA->alias(II->getOperand(3), invariantSize, MemPtr, MemSize);
199        if (R == AliasAnalysis::MustAlias) {
200          invariantTag = II->getOperand(1);
201          continue;
202        }
203      }
204    }
205
206    // If we're querying on a load and we're in an invariant region, we're done
207    // at this point. Nothing a load depends on can live in an invariant region.
208    if (isLoad && invariantTag) continue;
209
210    // Debug intrinsics don't cause dependences.
211    if (isa<DbgInfoIntrinsic>(Inst)) continue;
212
213    // Values depend on loads if the pointers are must aliased.  This means that
214    // a load depends on another must aliased load from the same value.
215    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
216      Value *Pointer = LI->getPointerOperand();
217      uint64_t PointerSize = AA->getTypeStoreSize(LI->getType());
218
219      // If we found a pointer, check if it could be the same as our pointer.
220      AliasAnalysis::AliasResult R =
221        AA->alias(Pointer, PointerSize, MemPtr, MemSize);
222      if (R == AliasAnalysis::NoAlias)
223        continue;
224
225      // May-alias loads don't depend on each other without a dependence.
226      if (isLoad && R == AliasAnalysis::MayAlias)
227        continue;
228      // Stores depend on may and must aliased loads, loads depend on must-alias
229      // loads.
230      return MemDepResult::getDef(Inst);
231    }
232
233    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
234      // There can't be stores to the value we care about inside an
235      // invariant region.
236      if (invariantTag) continue;
237
238      // If alias analysis can tell that this store is guaranteed to not modify
239      // the query pointer, ignore it.  Use getModRefInfo to handle cases where
240      // the query pointer points to constant memory etc.
241      if (AA->getModRefInfo(SI, MemPtr, MemSize) == AliasAnalysis::NoModRef)
242        continue;
243
244      // Ok, this store might clobber the query pointer.  Check to see if it is
245      // a must alias: in this case, we want to return this as a def.
246      Value *Pointer = SI->getPointerOperand();
247      uint64_t PointerSize = AA->getTypeStoreSize(SI->getOperand(0)->getType());
248
249      // If we found a pointer, check if it could be the same as our pointer.
250      AliasAnalysis::AliasResult R =
251        AA->alias(Pointer, PointerSize, MemPtr, MemSize);
252
253      if (R == AliasAnalysis::NoAlias)
254        continue;
255      if (R == AliasAnalysis::MayAlias)
256        return MemDepResult::getClobber(Inst);
257      return MemDepResult::getDef(Inst);
258    }
259
260    // If this is an allocation, and if we know that the accessed pointer is to
261    // the allocation, return Def.  This means that there is no dependence and
262    // the access can be optimized based on that.  For example, a load could
263    // turn into undef.
264    // Note: Only determine this to be a malloc if Inst is the malloc call, not
265    // a subsequent bitcast of the malloc call result.  There can be stores to
266    // the malloced memory between the malloc call and its bitcast uses, and we
267    // need to continue scanning until the malloc call.
268    if (isa<AllocaInst>(Inst) || extractMallocCall(Inst)) {
269      Value *AccessPtr = MemPtr->getUnderlyingObject();
270
271      if (AccessPtr == Inst ||
272          AA->alias(Inst, 1, AccessPtr, 1) == AliasAnalysis::MustAlias)
273        return MemDepResult::getDef(Inst);
274      continue;
275    }
276
277    // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
278    switch (AA->getModRefInfo(Inst, MemPtr, MemSize)) {
279    case AliasAnalysis::NoModRef:
280      // If the call has no effect on the queried pointer, just ignore it.
281      continue;
282    case AliasAnalysis::Mod:
283      // If we're in an invariant region, we can ignore calls that ONLY
284      // modify the pointer.
285      if (invariantTag) continue;
286      return MemDepResult::getClobber(Inst);
287    case AliasAnalysis::Ref:
288      // If the call is known to never store to the pointer, and if this is a
289      // load query, we can safely ignore it (scan past it).
290      if (isLoad)
291        continue;
292    default:
293      // Otherwise, there is a potential dependence.  Return a clobber.
294      return MemDepResult::getClobber(Inst);
295    }
296  }
297
298  // No dependence found.  If this is the entry block of the function, it is a
299  // clobber, otherwise it is non-local.
300  if (BB != &BB->getParent()->getEntryBlock())
301    return MemDepResult::getNonLocal();
302  return MemDepResult::getClobber(ScanIt);
303}
304
305/// getDependency - Return the instruction on which a memory operation
306/// depends.
307MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
308  Instruction *ScanPos = QueryInst;
309
310  // Check for a cached result
311  MemDepResult &LocalCache = LocalDeps[QueryInst];
312
313  // If the cached entry is non-dirty, just return it.  Note that this depends
314  // on MemDepResult's default constructing to 'dirty'.
315  if (!LocalCache.isDirty())
316    return LocalCache;
317
318  // Otherwise, if we have a dirty entry, we know we can start the scan at that
319  // instruction, which may save us some work.
320  if (Instruction *Inst = LocalCache.getInst()) {
321    ScanPos = Inst;
322
323    RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
324  }
325
326  BasicBlock *QueryParent = QueryInst->getParent();
327
328  Value *MemPtr = 0;
329  uint64_t MemSize = 0;
330
331  // Do the scan.
332  if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
333    // No dependence found.  If this is the entry block of the function, it is a
334    // clobber, otherwise it is non-local.
335    if (QueryParent != &QueryParent->getParent()->getEntryBlock())
336      LocalCache = MemDepResult::getNonLocal();
337    else
338      LocalCache = MemDepResult::getClobber(QueryInst);
339  } else if (StoreInst *SI = dyn_cast<StoreInst>(QueryInst)) {
340    // If this is a volatile store, don't mess around with it.  Just return the
341    // previous instruction as a clobber.
342    if (SI->isVolatile())
343      LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
344    else {
345      MemPtr = SI->getPointerOperand();
346      MemSize = AA->getTypeStoreSize(SI->getOperand(0)->getType());
347    }
348  } else if (LoadInst *LI = dyn_cast<LoadInst>(QueryInst)) {
349    // If this is a volatile load, don't mess around with it.  Just return the
350    // previous instruction as a clobber.
351    if (LI->isVolatile())
352      LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
353    else {
354      MemPtr = LI->getPointerOperand();
355      MemSize = AA->getTypeStoreSize(LI->getType());
356    }
357  } else if (isFreeCall(QueryInst)) {
358    MemPtr = QueryInst->getOperand(1);
359    // calls to free() erase the entire structure, not just a field.
360    MemSize = ~0UL;
361  } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
362    CallSite QueryCS = CallSite::get(QueryInst);
363    bool isReadOnly = AA->onlyReadsMemory(QueryCS);
364    LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
365                                           QueryParent);
366  } else {
367    // Non-memory instruction.
368    LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
369  }
370
371  // If we need to do a pointer scan, make it happen.
372  if (MemPtr)
373    LocalCache = getPointerDependencyFrom(MemPtr, MemSize,
374                                          isa<LoadInst>(QueryInst),
375                                          ScanPos, QueryParent);
376
377  // Remember the result!
378  if (Instruction *I = LocalCache.getInst())
379    ReverseLocalDeps[I].insert(QueryInst);
380
381  return LocalCache;
382}
383
384#ifndef NDEBUG
385/// AssertSorted - This method is used when -debug is specified to verify that
386/// cache arrays are properly kept sorted.
387static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
388                         int Count = -1) {
389  if (Count == -1) Count = Cache.size();
390  if (Count == 0) return;
391
392  for (unsigned i = 1; i != unsigned(Count); ++i)
393    assert(Cache[i-1] <= Cache[i] && "Cache isn't sorted!");
394}
395#endif
396
397/// getNonLocalCallDependency - Perform a full dependency query for the
398/// specified call, returning the set of blocks that the value is
399/// potentially live across.  The returned set of results will include a
400/// "NonLocal" result for all blocks where the value is live across.
401///
402/// This method assumes the instruction returns a "NonLocal" dependency
403/// within its own block.
404///
405/// This returns a reference to an internal data structure that may be
406/// invalidated on the next non-local query or when an instruction is
407/// removed.  Clients must copy this data if they want it around longer than
408/// that.
409const MemoryDependenceAnalysis::NonLocalDepInfo &
410MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
411  assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
412 "getNonLocalCallDependency should only be used on calls with non-local deps!");
413  PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
414  NonLocalDepInfo &Cache = CacheP.first;
415
416  /// DirtyBlocks - This is the set of blocks that need to be recomputed.  In
417  /// the cached case, this can happen due to instructions being deleted etc. In
418  /// the uncached case, this starts out as the set of predecessors we care
419  /// about.
420  SmallVector<BasicBlock*, 32> DirtyBlocks;
421
422  if (!Cache.empty()) {
423    // Okay, we have a cache entry.  If we know it is not dirty, just return it
424    // with no computation.
425    if (!CacheP.second) {
426      NumCacheNonLocal++;
427      return Cache;
428    }
429
430    // If we already have a partially computed set of results, scan them to
431    // determine what is dirty, seeding our initial DirtyBlocks worklist.
432    for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
433       I != E; ++I)
434      if (I->second.isDirty())
435        DirtyBlocks.push_back(I->first);
436
437    // Sort the cache so that we can do fast binary search lookups below.
438    std::sort(Cache.begin(), Cache.end());
439
440    ++NumCacheDirtyNonLocal;
441    //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
442    //     << Cache.size() << " cached: " << *QueryInst;
443  } else {
444    // Seed DirtyBlocks with each of the preds of QueryInst's block.
445    BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
446    for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI)
447      DirtyBlocks.push_back(*PI);
448    NumUncacheNonLocal++;
449  }
450
451  // isReadonlyCall - If this is a read-only call, we can be more aggressive.
452  bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
453
454  SmallPtrSet<BasicBlock*, 64> Visited;
455
456  unsigned NumSortedEntries = Cache.size();
457  DEBUG(AssertSorted(Cache));
458
459  // Iterate while we still have blocks to update.
460  while (!DirtyBlocks.empty()) {
461    BasicBlock *DirtyBB = DirtyBlocks.back();
462    DirtyBlocks.pop_back();
463
464    // Already processed this block?
465    if (!Visited.insert(DirtyBB))
466      continue;
467
468    // Do a binary search to see if we already have an entry for this block in
469    // the cache set.  If so, find it.
470    DEBUG(AssertSorted(Cache, NumSortedEntries));
471    NonLocalDepInfo::iterator Entry =
472      std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
473                       std::make_pair(DirtyBB, MemDepResult()));
474    if (Entry != Cache.begin() && prior(Entry)->first == DirtyBB)
475      --Entry;
476
477    MemDepResult *ExistingResult = 0;
478    if (Entry != Cache.begin()+NumSortedEntries &&
479        Entry->first == DirtyBB) {
480      // If we already have an entry, and if it isn't already dirty, the block
481      // is done.
482      if (!Entry->second.isDirty())
483        continue;
484
485      // Otherwise, remember this slot so we can update the value.
486      ExistingResult = &Entry->second;
487    }
488
489    // If the dirty entry has a pointer, start scanning from it so we don't have
490    // to rescan the entire block.
491    BasicBlock::iterator ScanPos = DirtyBB->end();
492    if (ExistingResult) {
493      if (Instruction *Inst = ExistingResult->getInst()) {
494        ScanPos = Inst;
495        // We're removing QueryInst's use of Inst.
496        RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
497                             QueryCS.getInstruction());
498      }
499    }
500
501    // Find out if this block has a local dependency for QueryInst.
502    MemDepResult Dep;
503
504    if (ScanPos != DirtyBB->begin()) {
505      Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
506    } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
507      // No dependence found.  If this is the entry block of the function, it is
508      // a clobber, otherwise it is non-local.
509      Dep = MemDepResult::getNonLocal();
510    } else {
511      Dep = MemDepResult::getClobber(ScanPos);
512    }
513
514    // If we had a dirty entry for the block, update it.  Otherwise, just add
515    // a new entry.
516    if (ExistingResult)
517      *ExistingResult = Dep;
518    else
519      Cache.push_back(std::make_pair(DirtyBB, Dep));
520
521    // If the block has a dependency (i.e. it isn't completely transparent to
522    // the value), remember the association!
523    if (!Dep.isNonLocal()) {
524      // Keep the ReverseNonLocalDeps map up to date so we can efficiently
525      // update this when we remove instructions.
526      if (Instruction *Inst = Dep.getInst())
527        ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
528    } else {
529
530      // If the block *is* completely transparent to the load, we need to check
531      // the predecessors of this block.  Add them to our worklist.
532      for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI)
533        DirtyBlocks.push_back(*PI);
534    }
535  }
536
537  return Cache;
538}
539
540/// getNonLocalPointerDependency - Perform a full dependency query for an
541/// access to the specified (non-volatile) memory location, returning the
542/// set of instructions that either define or clobber the value.
543///
544/// This method assumes the pointer has a "NonLocal" dependency within its
545/// own block.
546///
547void MemoryDependenceAnalysis::
548getNonLocalPointerDependency(Value *Pointer, bool isLoad, BasicBlock *FromBB,
549                             SmallVectorImpl<NonLocalDepEntry> &Result) {
550  assert(isa<PointerType>(Pointer->getType()) &&
551         "Can't get pointer deps of a non-pointer!");
552  Result.clear();
553
554  // We know that the pointer value is live into FromBB find the def/clobbers
555  // from presecessors.
556  const Type *EltTy = cast<PointerType>(Pointer->getType())->getElementType();
557  uint64_t PointeeSize = AA->getTypeStoreSize(EltTy);
558
559  // This is the set of blocks we've inspected, and the pointer we consider in
560  // each block.  Because of critical edges, we currently bail out if querying
561  // a block with multiple different pointers.  This can happen during PHI
562  // translation.
563  DenseMap<BasicBlock*, Value*> Visited;
564  if (!getNonLocalPointerDepFromBB(Pointer, PointeeSize, isLoad, FromBB,
565                                   Result, Visited, true))
566    return;
567  Result.clear();
568  Result.push_back(std::make_pair(FromBB,
569                                  MemDepResult::getClobber(FromBB->begin())));
570}
571
572/// GetNonLocalInfoForBlock - Compute the memdep value for BB with
573/// Pointer/PointeeSize using either cached information in Cache or by doing a
574/// lookup (which may use dirty cache info if available).  If we do a lookup,
575/// add the result to the cache.
576MemDepResult MemoryDependenceAnalysis::
577GetNonLocalInfoForBlock(Value *Pointer, uint64_t PointeeSize,
578                        bool isLoad, BasicBlock *BB,
579                        NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
580
581  // Do a binary search to see if we already have an entry for this block in
582  // the cache set.  If so, find it.
583  NonLocalDepInfo::iterator Entry =
584    std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
585                     std::make_pair(BB, MemDepResult()));
586  if (Entry != Cache->begin() && prior(Entry)->first == BB)
587    --Entry;
588
589  MemDepResult *ExistingResult = 0;
590  if (Entry != Cache->begin()+NumSortedEntries && Entry->first == BB)
591    ExistingResult = &Entry->second;
592
593  // If we have a cached entry, and it is non-dirty, use it as the value for
594  // this dependency.
595  if (ExistingResult && !ExistingResult->isDirty()) {
596    ++NumCacheNonLocalPtr;
597    return *ExistingResult;
598  }
599
600  // Otherwise, we have to scan for the value.  If we have a dirty cache
601  // entry, start scanning from its position, otherwise we scan from the end
602  // of the block.
603  BasicBlock::iterator ScanPos = BB->end();
604  if (ExistingResult && ExistingResult->getInst()) {
605    assert(ExistingResult->getInst()->getParent() == BB &&
606           "Instruction invalidated?");
607    ++NumCacheDirtyNonLocalPtr;
608    ScanPos = ExistingResult->getInst();
609
610    // Eliminating the dirty entry from 'Cache', so update the reverse info.
611    ValueIsLoadPair CacheKey(Pointer, isLoad);
612    RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey);
613  } else {
614    ++NumUncacheNonLocalPtr;
615  }
616
617  // Scan the block for the dependency.
618  MemDepResult Dep = getPointerDependencyFrom(Pointer, PointeeSize, isLoad,
619                                              ScanPos, BB);
620
621  // If we had a dirty entry for the block, update it.  Otherwise, just add
622  // a new entry.
623  if (ExistingResult)
624    *ExistingResult = Dep;
625  else
626    Cache->push_back(std::make_pair(BB, Dep));
627
628  // If the block has a dependency (i.e. it isn't completely transparent to
629  // the value), remember the reverse association because we just added it
630  // to Cache!
631  if (Dep.isNonLocal())
632    return Dep;
633
634  // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
635  // update MemDep when we remove instructions.
636  Instruction *Inst = Dep.getInst();
637  assert(Inst && "Didn't depend on anything?");
638  ValueIsLoadPair CacheKey(Pointer, isLoad);
639  ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
640  return Dep;
641}
642
643/// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain
644/// number of elements in the array that are already properly ordered.  This is
645/// optimized for the case when only a few entries are added.
646static void
647SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
648                         unsigned NumSortedEntries) {
649  switch (Cache.size() - NumSortedEntries) {
650  case 0:
651    // done, no new entries.
652    break;
653  case 2: {
654    // Two new entries, insert the last one into place.
655    MemoryDependenceAnalysis::NonLocalDepEntry Val = Cache.back();
656    Cache.pop_back();
657    MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
658      std::upper_bound(Cache.begin(), Cache.end()-1, Val);
659    Cache.insert(Entry, Val);
660    // FALL THROUGH.
661  }
662  case 1:
663    // One new entry, Just insert the new value at the appropriate position.
664    if (Cache.size() != 1) {
665      MemoryDependenceAnalysis::NonLocalDepEntry Val = Cache.back();
666      Cache.pop_back();
667      MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
668        std::upper_bound(Cache.begin(), Cache.end(), Val);
669      Cache.insert(Entry, Val);
670    }
671    break;
672  default:
673    // Added many values, do a full scale sort.
674    std::sort(Cache.begin(), Cache.end());
675    break;
676  }
677}
678
679
680/// getNonLocalPointerDepFromBB - Perform a dependency query based on
681/// pointer/pointeesize starting at the end of StartBB.  Add any clobber/def
682/// results to the results vector and keep track of which blocks are visited in
683/// 'Visited'.
684///
685/// This has special behavior for the first block queries (when SkipFirstBlock
686/// is true).  In this special case, it ignores the contents of the specified
687/// block and starts returning dependence info for its predecessors.
688///
689/// This function returns false on success, or true to indicate that it could
690/// not compute dependence information for some reason.  This should be treated
691/// as a clobber dependence on the first instruction in the predecessor block.
692bool MemoryDependenceAnalysis::
693getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize,
694                            bool isLoad, BasicBlock *StartBB,
695                            SmallVectorImpl<NonLocalDepEntry> &Result,
696                            DenseMap<BasicBlock*, Value*> &Visited,
697                            bool SkipFirstBlock) {
698
699  // Look up the cached info for Pointer.
700  ValueIsLoadPair CacheKey(Pointer, isLoad);
701
702  std::pair<BBSkipFirstBlockPair, NonLocalDepInfo> *CacheInfo =
703    &NonLocalPointerDeps[CacheKey];
704  NonLocalDepInfo *Cache = &CacheInfo->second;
705
706  // If we have valid cached information for exactly the block we are
707  // investigating, just return it with no recomputation.
708  if (CacheInfo->first == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
709    // We have a fully cached result for this query then we can just return the
710    // cached results and populate the visited set.  However, we have to verify
711    // that we don't already have conflicting results for these blocks.  Check
712    // to ensure that if a block in the results set is in the visited set that
713    // it was for the same pointer query.
714    if (!Visited.empty()) {
715      for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
716           I != E; ++I) {
717        DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->first);
718        if (VI == Visited.end() || VI->second == Pointer) continue;
719
720        // We have a pointer mismatch in a block.  Just return clobber, saying
721        // that something was clobbered in this result.  We could also do a
722        // non-fully cached query, but there is little point in doing this.
723        return true;
724      }
725    }
726
727    for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
728         I != E; ++I) {
729      Visited.insert(std::make_pair(I->first, Pointer));
730      if (!I->second.isNonLocal())
731        Result.push_back(*I);
732    }
733    ++NumCacheCompleteNonLocalPtr;
734    return false;
735  }
736
737  // Otherwise, either this is a new block, a block with an invalid cache
738  // pointer or one that we're about to invalidate by putting more info into it
739  // than its valid cache info.  If empty, the result will be valid cache info,
740  // otherwise it isn't.
741  if (Cache->empty())
742    CacheInfo->first = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
743  else
744    CacheInfo->first = BBSkipFirstBlockPair();
745
746  SmallVector<BasicBlock*, 32> Worklist;
747  Worklist.push_back(StartBB);
748
749  // Keep track of the entries that we know are sorted.  Previously cached
750  // entries will all be sorted.  The entries we add we only sort on demand (we
751  // don't insert every element into its sorted position).  We know that we
752  // won't get any reuse from currently inserted values, because we don't
753  // revisit blocks after we insert info for them.
754  unsigned NumSortedEntries = Cache->size();
755  DEBUG(AssertSorted(*Cache));
756
757  while (!Worklist.empty()) {
758    BasicBlock *BB = Worklist.pop_back_val();
759
760    // Skip the first block if we have it.
761    if (!SkipFirstBlock) {
762      // Analyze the dependency of *Pointer in FromBB.  See if we already have
763      // been here.
764      assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
765
766      // Get the dependency info for Pointer in BB.  If we have cached
767      // information, we will use it, otherwise we compute it.
768      DEBUG(AssertSorted(*Cache, NumSortedEntries));
769      MemDepResult Dep = GetNonLocalInfoForBlock(Pointer, PointeeSize, isLoad,
770                                                 BB, Cache, NumSortedEntries);
771
772      // If we got a Def or Clobber, add this to the list of results.
773      if (!Dep.isNonLocal()) {
774        Result.push_back(NonLocalDepEntry(BB, Dep));
775        continue;
776      }
777    }
778
779    // If 'Pointer' is an instruction defined in this block, then we need to do
780    // phi translation to change it into a value live in the predecessor block.
781    // If phi translation fails, then we can't continue dependence analysis.
782    Instruction *PtrInst = dyn_cast<Instruction>(Pointer);
783    bool NeedsPHITranslation = PtrInst && PtrInst->getParent() == BB;
784
785    // If no PHI translation is needed, just add all the predecessors of this
786    // block to scan them as well.
787    if (!NeedsPHITranslation) {
788      SkipFirstBlock = false;
789      for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
790        // Verify that we haven't looked at this block yet.
791        std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
792          InsertRes = Visited.insert(std::make_pair(*PI, Pointer));
793        if (InsertRes.second) {
794          // First time we've looked at *PI.
795          Worklist.push_back(*PI);
796          continue;
797        }
798
799        // If we have seen this block before, but it was with a different
800        // pointer then we have a phi translation failure and we have to treat
801        // this as a clobber.
802        if (InsertRes.first->second != Pointer)
803          goto PredTranslationFailure;
804      }
805      continue;
806    }
807
808    // If we do need to do phi translation, then there are a bunch of different
809    // cases, because we have to find a Value* live in the predecessor block. We
810    // know that PtrInst is defined in this block at least.
811
812    // We may have added values to the cache list before this PHI translation.
813    // If so, we haven't done anything to ensure that the cache remains sorted.
814    // Sort it now (if needed) so that recursive invocations of
815    // getNonLocalPointerDepFromBB and other routines that could reuse the cache
816    // value will only see properly sorted cache arrays.
817    if (Cache && NumSortedEntries != Cache->size()) {
818      SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
819      NumSortedEntries = Cache->size();
820    }
821
822    // If this is directly a PHI node, just use the incoming values for each
823    // pred as the phi translated version.
824    if (PHINode *PtrPHI = dyn_cast<PHINode>(PtrInst)) {
825      Cache = 0;
826
827      for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
828        BasicBlock *Pred = *PI;
829        Value *PredPtr = PtrPHI->getIncomingValueForBlock(Pred);
830
831        // Check to see if we have already visited this pred block with another
832        // pointer.  If so, we can't do this lookup.  This failure can occur
833        // with PHI translation when a critical edge exists and the PHI node in
834        // the successor translates to a pointer value different than the
835        // pointer the block was first analyzed with.
836        std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
837          InsertRes = Visited.insert(std::make_pair(Pred, PredPtr));
838
839        if (!InsertRes.second) {
840          // If the predecessor was visited with PredPtr, then we already did
841          // the analysis and can ignore it.
842          if (InsertRes.first->second == PredPtr)
843            continue;
844
845          // Otherwise, the block was previously analyzed with a different
846          // pointer.  We can't represent the result of this case, so we just
847          // treat this as a phi translation failure.
848          goto PredTranslationFailure;
849        }
850
851        // FIXME: it is entirely possible that PHI translating will end up with
852        // the same value.  Consider PHI translating something like:
853        // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
854        // to recurse here, pedantically speaking.
855
856        // If we have a problem phi translating, fall through to the code below
857        // to handle the failure condition.
858        if (getNonLocalPointerDepFromBB(PredPtr, PointeeSize, isLoad, Pred,
859                                        Result, Visited))
860          goto PredTranslationFailure;
861      }
862
863      // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
864      CacheInfo = &NonLocalPointerDeps[CacheKey];
865      Cache = &CacheInfo->second;
866      NumSortedEntries = Cache->size();
867
868      // Since we did phi translation, the "Cache" set won't contain all of the
869      // results for the query.  This is ok (we can still use it to accelerate
870      // specific block queries) but we can't do the fastpath "return all
871      // results from the set"  Clear out the indicator for this.
872      CacheInfo->first = BBSkipFirstBlockPair();
873      SkipFirstBlock = false;
874      continue;
875    }
876
877    // TODO: BITCAST, GEP.
878
879    //   cerr << "MEMDEP: Could not PHI translate: " << *Pointer;
880    //   if (isa<BitCastInst>(PtrInst) || isa<GetElementPtrInst>(PtrInst))
881    //     cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0);
882  PredTranslationFailure:
883
884    if (Cache == 0) {
885      // Refresh the CacheInfo/Cache pointer if it got invalidated.
886      CacheInfo = &NonLocalPointerDeps[CacheKey];
887      Cache = &CacheInfo->second;
888      NumSortedEntries = Cache->size();
889    }
890
891    // Since we did phi translation, the "Cache" set won't contain all of the
892    // results for the query.  This is ok (we can still use it to accelerate
893    // specific block queries) but we can't do the fastpath "return all
894    // results from the set"  Clear out the indicator for this.
895    CacheInfo->first = BBSkipFirstBlockPair();
896
897    // If *nothing* works, mark the pointer as being clobbered by the first
898    // instruction in this block.
899    //
900    // If this is the magic first block, return this as a clobber of the whole
901    // incoming value.  Since we can't phi translate to one of the predecessors,
902    // we have to bail out.
903    if (SkipFirstBlock)
904      return true;
905
906    for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
907      assert(I != Cache->rend() && "Didn't find current block??");
908      if (I->first != BB)
909        continue;
910
911      assert(I->second.isNonLocal() &&
912             "Should only be here with transparent block");
913      I->second = MemDepResult::getClobber(BB->begin());
914      ReverseNonLocalPtrDeps[BB->begin()].insert(CacheKey);
915      Result.push_back(*I);
916      break;
917    }
918  }
919
920  // Okay, we're done now.  If we added new values to the cache, re-sort it.
921  SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
922  DEBUG(AssertSorted(*Cache));
923  return false;
924}
925
926/// RemoveCachedNonLocalPointerDependencies - If P exists in
927/// CachedNonLocalPointerInfo, remove it.
928void MemoryDependenceAnalysis::
929RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
930  CachedNonLocalPointerInfo::iterator It =
931    NonLocalPointerDeps.find(P);
932  if (It == NonLocalPointerDeps.end()) return;
933
934  // Remove all of the entries in the BB->val map.  This involves removing
935  // instructions from the reverse map.
936  NonLocalDepInfo &PInfo = It->second.second;
937
938  for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
939    Instruction *Target = PInfo[i].second.getInst();
940    if (Target == 0) continue;  // Ignore non-local dep results.
941    assert(Target->getParent() == PInfo[i].first);
942
943    // Eliminating the dirty entry from 'Cache', so update the reverse info.
944    RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
945  }
946
947  // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
948  NonLocalPointerDeps.erase(It);
949}
950
951
952/// invalidateCachedPointerInfo - This method is used to invalidate cached
953/// information about the specified pointer, because it may be too
954/// conservative in memdep.  This is an optional call that can be used when
955/// the client detects an equivalence between the pointer and some other
956/// value and replaces the other value with ptr. This can make Ptr available
957/// in more places that cached info does not necessarily keep.
958void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
959  // If Ptr isn't really a pointer, just ignore it.
960  if (!isa<PointerType>(Ptr->getType())) return;
961  // Flush store info for the pointer.
962  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
963  // Flush load info for the pointer.
964  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
965}
966
967/// removeInstruction - Remove an instruction from the dependence analysis,
968/// updating the dependence of instructions that previously depended on it.
969/// This method attempts to keep the cache coherent using the reverse map.
970void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
971  // Walk through the Non-local dependencies, removing this one as the value
972  // for any cached queries.
973  NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
974  if (NLDI != NonLocalDeps.end()) {
975    NonLocalDepInfo &BlockMap = NLDI->second.first;
976    for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
977         DI != DE; ++DI)
978      if (Instruction *Inst = DI->second.getInst())
979        RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
980    NonLocalDeps.erase(NLDI);
981  }
982
983  // If we have a cached local dependence query for this instruction, remove it.
984  //
985  LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
986  if (LocalDepEntry != LocalDeps.end()) {
987    // Remove us from DepInst's reverse set now that the local dep info is gone.
988    if (Instruction *Inst = LocalDepEntry->second.getInst())
989      RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
990
991    // Remove this local dependency info.
992    LocalDeps.erase(LocalDepEntry);
993  }
994
995  // If we have any cached pointer dependencies on this instruction, remove
996  // them.  If the instruction has non-pointer type, then it can't be a pointer
997  // base.
998
999  // Remove it from both the load info and the store info.  The instruction
1000  // can't be in either of these maps if it is non-pointer.
1001  if (isa<PointerType>(RemInst->getType())) {
1002    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1003    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1004  }
1005
1006  // Loop over all of the things that depend on the instruction we're removing.
1007  //
1008  SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
1009
1010  // If we find RemInst as a clobber or Def in any of the maps for other values,
1011  // we need to replace its entry with a dirty version of the instruction after
1012  // it.  If RemInst is a terminator, we use a null dirty value.
1013  //
1014  // Using a dirty version of the instruction after RemInst saves having to scan
1015  // the entire block to get to this point.
1016  MemDepResult NewDirtyVal;
1017  if (!RemInst->isTerminator())
1018    NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
1019
1020  ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1021  if (ReverseDepIt != ReverseLocalDeps.end()) {
1022    SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
1023    // RemInst can't be the terminator if it has local stuff depending on it.
1024    assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
1025           "Nothing can locally depend on a terminator");
1026
1027    for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
1028         E = ReverseDeps.end(); I != E; ++I) {
1029      Instruction *InstDependingOnRemInst = *I;
1030      assert(InstDependingOnRemInst != RemInst &&
1031             "Already removed our local dep info");
1032
1033      LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1034
1035      // Make sure to remember that new things depend on NewDepInst.
1036      assert(NewDirtyVal.getInst() && "There is no way something else can have "
1037             "a local dep on this if it is a terminator!");
1038      ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
1039                                                InstDependingOnRemInst));
1040    }
1041
1042    ReverseLocalDeps.erase(ReverseDepIt);
1043
1044    // Add new reverse deps after scanning the set, to avoid invalidating the
1045    // 'ReverseDeps' reference.
1046    while (!ReverseDepsToAdd.empty()) {
1047      ReverseLocalDeps[ReverseDepsToAdd.back().first]
1048        .insert(ReverseDepsToAdd.back().second);
1049      ReverseDepsToAdd.pop_back();
1050    }
1051  }
1052
1053  ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1054  if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1055    SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second;
1056    for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end();
1057         I != E; ++I) {
1058      assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
1059
1060      PerInstNLInfo &INLD = NonLocalDeps[*I];
1061      // The information is now dirty!
1062      INLD.second = true;
1063
1064      for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
1065           DE = INLD.first.end(); DI != DE; ++DI) {
1066        if (DI->second.getInst() != RemInst) continue;
1067
1068        // Convert to a dirty entry for the subsequent instruction.
1069        DI->second = NewDirtyVal;
1070
1071        if (Instruction *NextI = NewDirtyVal.getInst())
1072          ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
1073      }
1074    }
1075
1076    ReverseNonLocalDeps.erase(ReverseDepIt);
1077
1078    // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1079    while (!ReverseDepsToAdd.empty()) {
1080      ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
1081        .insert(ReverseDepsToAdd.back().second);
1082      ReverseDepsToAdd.pop_back();
1083    }
1084  }
1085
1086  // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1087  // value in the NonLocalPointerDeps info.
1088  ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1089    ReverseNonLocalPtrDeps.find(RemInst);
1090  if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1091    SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second;
1092    SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
1093
1094    for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(),
1095         E = Set.end(); I != E; ++I) {
1096      ValueIsLoadPair P = *I;
1097      assert(P.getPointer() != RemInst &&
1098             "Already removed NonLocalPointerDeps info for RemInst");
1099
1100      NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].second;
1101
1102      // The cache is not valid for any specific block anymore.
1103      NonLocalPointerDeps[P].first = BBSkipFirstBlockPair();
1104
1105      // Update any entries for RemInst to use the instruction after it.
1106      for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
1107           DI != DE; ++DI) {
1108        if (DI->second.getInst() != RemInst) continue;
1109
1110        // Convert to a dirty entry for the subsequent instruction.
1111        DI->second = NewDirtyVal;
1112
1113        if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1114          ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1115      }
1116
1117      // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
1118      // subsequent value may invalidate the sortedness.
1119      std::sort(NLPDI.begin(), NLPDI.end());
1120    }
1121
1122    ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1123
1124    while (!ReversePtrDepsToAdd.empty()) {
1125      ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
1126        .insert(ReversePtrDepsToAdd.back().second);
1127      ReversePtrDepsToAdd.pop_back();
1128    }
1129  }
1130
1131
1132  assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1133  AA->deleteValue(RemInst);
1134  DEBUG(verifyRemoved(RemInst));
1135}
1136/// verifyRemoved - Verify that the specified instruction does not occur
1137/// in our internal data structures.
1138void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
1139  for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
1140       E = LocalDeps.end(); I != E; ++I) {
1141    assert(I->first != D && "Inst occurs in data structures");
1142    assert(I->second.getInst() != D &&
1143           "Inst occurs in data structures");
1144  }
1145
1146  for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
1147       E = NonLocalPointerDeps.end(); I != E; ++I) {
1148    assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
1149    const NonLocalDepInfo &Val = I->second.second;
1150    for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
1151         II != E; ++II)
1152      assert(II->second.getInst() != D && "Inst occurs as NLPD value");
1153  }
1154
1155  for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
1156       E = NonLocalDeps.end(); I != E; ++I) {
1157    assert(I->first != D && "Inst occurs in data structures");
1158    const PerInstNLInfo &INLD = I->second;
1159    for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
1160         EE = INLD.first.end(); II  != EE; ++II)
1161      assert(II->second.getInst() != D && "Inst occurs in data structures");
1162  }
1163
1164  for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
1165       E = ReverseLocalDeps.end(); I != E; ++I) {
1166    assert(I->first != D && "Inst occurs in data structures");
1167    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1168         EE = I->second.end(); II != EE; ++II)
1169      assert(*II != D && "Inst occurs in data structures");
1170  }
1171
1172  for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
1173       E = ReverseNonLocalDeps.end();
1174       I != E; ++I) {
1175    assert(I->first != D && "Inst occurs in data structures");
1176    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1177         EE = I->second.end(); II != EE; ++II)
1178      assert(*II != D && "Inst occurs in data structures");
1179  }
1180
1181  for (ReverseNonLocalPtrDepTy::const_iterator
1182       I = ReverseNonLocalPtrDeps.begin(),
1183       E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
1184    assert(I->first != D && "Inst occurs in rev NLPD map");
1185
1186    for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(),
1187         E = I->second.end(); II != E; ++II)
1188      assert(*II != ValueIsLoadPair(D, false) &&
1189             *II != ValueIsLoadPair(D, true) &&
1190             "Inst occurs in ReverseNonLocalPtrDeps map");
1191  }
1192
1193}
1194