MemoryDependenceAnalysis.cpp revision d58b50b99b04bcb8199c2b0273618b6a37d61015
1//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation  --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements an analysis that determines, for a given memory
11// operation, what preceding memory operations it depends on.  It builds on
12// alias analysis information, and tries to provide a lazy, caching interface to
13// a common kind of alias information query.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "memdep"
18#include "llvm/Analysis/MemoryDependenceAnalysis.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/Analysis/AliasAnalysis.h"
22#include "llvm/Analysis/Dominators.h"
23#include "llvm/Analysis/InstructionSimplify.h"
24#include "llvm/Analysis/MemoryBuiltins.h"
25#include "llvm/Analysis/PHITransAddr.h"
26#include "llvm/Analysis/ValueTracking.h"
27#include "llvm/IR/DataLayout.h"
28#include "llvm/IR/Function.h"
29#include "llvm/IR/Instructions.h"
30#include "llvm/IR/IntrinsicInst.h"
31#include "llvm/IR/LLVMContext.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/PredIteratorCache.h"
34using namespace llvm;
35
36STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
37STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
38STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
39
40STATISTIC(NumCacheNonLocalPtr,
41          "Number of fully cached non-local ptr responses");
42STATISTIC(NumCacheDirtyNonLocalPtr,
43          "Number of cached, but dirty, non-local ptr responses");
44STATISTIC(NumUncacheNonLocalPtr,
45          "Number of uncached non-local ptr responses");
46STATISTIC(NumCacheCompleteNonLocalPtr,
47          "Number of block queries that were completely cached");
48
49// Limit for the number of instructions to scan in a block.
50static const int BlockScanLimit = 100;
51
52char MemoryDependenceAnalysis::ID = 0;
53
54// Register this pass...
55INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep",
56                "Memory Dependence Analysis", false, true)
57INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
58INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep",
59                      "Memory Dependence Analysis", false, true)
60
61MemoryDependenceAnalysis::MemoryDependenceAnalysis()
62: FunctionPass(ID), PredCache(0) {
63  initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry());
64}
65MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
66}
67
68/// Clean up memory in between runs
69void MemoryDependenceAnalysis::releaseMemory() {
70  LocalDeps.clear();
71  NonLocalDeps.clear();
72  NonLocalPointerDeps.clear();
73  ReverseLocalDeps.clear();
74  ReverseNonLocalDeps.clear();
75  ReverseNonLocalPtrDeps.clear();
76  PredCache->clear();
77}
78
79
80
81/// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
82///
83void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
84  AU.setPreservesAll();
85  AU.addRequiredTransitive<AliasAnalysis>();
86}
87
88bool MemoryDependenceAnalysis::runOnFunction(Function &) {
89  AA = &getAnalysis<AliasAnalysis>();
90  TD = getAnalysisIfAvailable<DataLayout>();
91  DT = getAnalysisIfAvailable<DominatorTree>();
92  if (PredCache == 0)
93    PredCache.reset(new PredIteratorCache());
94  return false;
95}
96
97/// RemoveFromReverseMap - This is a helper function that removes Val from
98/// 'Inst's set in ReverseMap.  If the set becomes empty, remove Inst's entry.
99template <typename KeyTy>
100static void RemoveFromReverseMap(DenseMap<Instruction*,
101                                 SmallPtrSet<KeyTy, 4> > &ReverseMap,
102                                 Instruction *Inst, KeyTy Val) {
103  typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
104  InstIt = ReverseMap.find(Inst);
105  assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
106  bool Found = InstIt->second.erase(Val);
107  assert(Found && "Invalid reverse map!"); (void)Found;
108  if (InstIt->second.empty())
109    ReverseMap.erase(InstIt);
110}
111
112/// GetLocation - If the given instruction references a specific memory
113/// location, fill in Loc with the details, otherwise set Loc.Ptr to null.
114/// Return a ModRefInfo value describing the general behavior of the
115/// instruction.
116static
117AliasAnalysis::ModRefResult GetLocation(const Instruction *Inst,
118                                        AliasAnalysis::Location &Loc,
119                                        AliasAnalysis *AA) {
120  if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
121    if (LI->isUnordered()) {
122      Loc = AA->getLocation(LI);
123      return AliasAnalysis::Ref;
124    }
125    if (LI->getOrdering() == Monotonic) {
126      Loc = AA->getLocation(LI);
127      return AliasAnalysis::ModRef;
128    }
129    Loc = AliasAnalysis::Location();
130    return AliasAnalysis::ModRef;
131  }
132
133  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
134    if (SI->isUnordered()) {
135      Loc = AA->getLocation(SI);
136      return AliasAnalysis::Mod;
137    }
138    if (SI->getOrdering() == Monotonic) {
139      Loc = AA->getLocation(SI);
140      return AliasAnalysis::ModRef;
141    }
142    Loc = AliasAnalysis::Location();
143    return AliasAnalysis::ModRef;
144  }
145
146  if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
147    Loc = AA->getLocation(V);
148    return AliasAnalysis::ModRef;
149  }
150
151  if (const CallInst *CI = isFreeCall(Inst, AA->getTargetLibraryInfo())) {
152    // calls to free() deallocate the entire structure
153    Loc = AliasAnalysis::Location(CI->getArgOperand(0));
154    return AliasAnalysis::Mod;
155  }
156
157  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
158    switch (II->getIntrinsicID()) {
159    case Intrinsic::lifetime_start:
160    case Intrinsic::lifetime_end:
161    case Intrinsic::invariant_start:
162      Loc = AliasAnalysis::Location(II->getArgOperand(1),
163                                    cast<ConstantInt>(II->getArgOperand(0))
164                                      ->getZExtValue(),
165                                    II->getMetadata(LLVMContext::MD_tbaa));
166      // These intrinsics don't really modify the memory, but returning Mod
167      // will allow them to be handled conservatively.
168      return AliasAnalysis::Mod;
169    case Intrinsic::invariant_end:
170      Loc = AliasAnalysis::Location(II->getArgOperand(2),
171                                    cast<ConstantInt>(II->getArgOperand(1))
172                                      ->getZExtValue(),
173                                    II->getMetadata(LLVMContext::MD_tbaa));
174      // These intrinsics don't really modify the memory, but returning Mod
175      // will allow them to be handled conservatively.
176      return AliasAnalysis::Mod;
177    default:
178      break;
179    }
180
181  // Otherwise, just do the coarse-grained thing that always works.
182  if (Inst->mayWriteToMemory())
183    return AliasAnalysis::ModRef;
184  if (Inst->mayReadFromMemory())
185    return AliasAnalysis::Ref;
186  return AliasAnalysis::NoModRef;
187}
188
189/// getCallSiteDependencyFrom - Private helper for finding the local
190/// dependencies of a call site.
191MemDepResult MemoryDependenceAnalysis::
192getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
193                          BasicBlock::iterator ScanIt, BasicBlock *BB) {
194  unsigned Limit = BlockScanLimit;
195
196  // Walk backwards through the block, looking for dependencies
197  while (ScanIt != BB->begin()) {
198    // Limit the amount of scanning we do so we don't end up with quadratic
199    // running time on extreme testcases.
200    --Limit;
201    if (!Limit)
202      return MemDepResult::getUnknown();
203
204    Instruction *Inst = --ScanIt;
205
206    // If this inst is a memory op, get the pointer it accessed
207    AliasAnalysis::Location Loc;
208    AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA);
209    if (Loc.Ptr) {
210      // A simple instruction.
211      if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef)
212        return MemDepResult::getClobber(Inst);
213      continue;
214    }
215
216    if (CallSite InstCS = cast<Value>(Inst)) {
217      // Debug intrinsics don't cause dependences.
218      if (isa<DbgInfoIntrinsic>(Inst)) continue;
219      // If these two calls do not interfere, look past it.
220      switch (AA->getModRefInfo(CS, InstCS)) {
221      case AliasAnalysis::NoModRef:
222        // If the two calls are the same, return InstCS as a Def, so that
223        // CS can be found redundant and eliminated.
224        if (isReadOnlyCall && !(MR & AliasAnalysis::Mod) &&
225            CS.getInstruction()->isIdenticalToWhenDefined(Inst))
226          return MemDepResult::getDef(Inst);
227
228        // Otherwise if the two calls don't interact (e.g. InstCS is readnone)
229        // keep scanning.
230        continue;
231      default:
232        return MemDepResult::getClobber(Inst);
233      }
234    }
235
236    // If we could not obtain a pointer for the instruction and the instruction
237    // touches memory then assume that this is a dependency.
238    if (MR != AliasAnalysis::NoModRef)
239      return MemDepResult::getClobber(Inst);
240  }
241
242  // No dependence found.  If this is the entry block of the function, it is
243  // unknown, otherwise it is non-local.
244  if (BB != &BB->getParent()->getEntryBlock())
245    return MemDepResult::getNonLocal();
246  return MemDepResult::getNonFuncLocal();
247}
248
249/// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that
250/// would fully overlap MemLoc if done as a wider legal integer load.
251///
252/// MemLocBase, MemLocOffset are lazily computed here the first time the
253/// base/offs of memloc is needed.
254static bool
255isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location &MemLoc,
256                                       const Value *&MemLocBase,
257                                       int64_t &MemLocOffs,
258                                       const LoadInst *LI,
259                                       const DataLayout *TD) {
260  // If we have no target data, we can't do this.
261  if (TD == 0) return false;
262
263  // If we haven't already computed the base/offset of MemLoc, do so now.
264  if (MemLocBase == 0)
265    MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, TD);
266
267  unsigned Size = MemoryDependenceAnalysis::
268    getLoadLoadClobberFullWidthSize(MemLocBase, MemLocOffs, MemLoc.Size,
269                                    LI, *TD);
270  return Size != 0;
271}
272
273/// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that
274/// looks at a memory location for a load (specified by MemLocBase, Offs,
275/// and Size) and compares it against a load.  If the specified load could
276/// be safely widened to a larger integer load that is 1) still efficient,
277/// 2) safe for the target, and 3) would provide the specified memory
278/// location value, then this function returns the size in bytes of the
279/// load width to use.  If not, this returns zero.
280unsigned MemoryDependenceAnalysis::
281getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs,
282                                unsigned MemLocSize, const LoadInst *LI,
283                                const DataLayout &TD) {
284  // We can only extend simple integer loads.
285  if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0;
286
287  // Load widening is hostile to ThreadSanitizer: it may cause false positives
288  // or make the reports more cryptic (access sizes are wrong).
289  if (LI->getParent()->getParent()->getAttributes().
290      hasAttribute(AttributeSet::FunctionIndex, Attribute::SanitizeThread))
291    return 0;
292
293  // Get the base of this load.
294  int64_t LIOffs = 0;
295  const Value *LIBase =
296    GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, &TD);
297
298  // If the two pointers are not based on the same pointer, we can't tell that
299  // they are related.
300  if (LIBase != MemLocBase) return 0;
301
302  // Okay, the two values are based on the same pointer, but returned as
303  // no-alias.  This happens when we have things like two byte loads at "P+1"
304  // and "P+3".  Check to see if increasing the size of the "LI" load up to its
305  // alignment (or the largest native integer type) will allow us to load all
306  // the bits required by MemLoc.
307
308  // If MemLoc is before LI, then no widening of LI will help us out.
309  if (MemLocOffs < LIOffs) return 0;
310
311  // Get the alignment of the load in bytes.  We assume that it is safe to load
312  // any legal integer up to this size without a problem.  For example, if we're
313  // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
314  // widen it up to an i32 load.  If it is known 2-byte aligned, we can widen it
315  // to i16.
316  unsigned LoadAlign = LI->getAlignment();
317
318  int64_t MemLocEnd = MemLocOffs+MemLocSize;
319
320  // If no amount of rounding up will let MemLoc fit into LI, then bail out.
321  if (LIOffs+LoadAlign < MemLocEnd) return 0;
322
323  // This is the size of the load to try.  Start with the next larger power of
324  // two.
325  unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U;
326  NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
327
328  while (1) {
329    // If this load size is bigger than our known alignment or would not fit
330    // into a native integer register, then we fail.
331    if (NewLoadByteSize > LoadAlign ||
332        !TD.fitsInLegalInteger(NewLoadByteSize*8))
333      return 0;
334
335    if (LIOffs+NewLoadByteSize > MemLocEnd &&
336        LI->getParent()->getParent()->getAttributes().
337          hasAttribute(AttributeSet::FunctionIndex, Attribute::SanitizeAddress))
338      // We will be reading past the location accessed by the original program.
339      // While this is safe in a regular build, Address Safety analysis tools
340      // may start reporting false warnings. So, don't do widening.
341      return 0;
342
343    // If a load of this width would include all of MemLoc, then we succeed.
344    if (LIOffs+NewLoadByteSize >= MemLocEnd)
345      return NewLoadByteSize;
346
347    NewLoadByteSize <<= 1;
348  }
349}
350
351/// getPointerDependencyFrom - Return the instruction on which a memory
352/// location depends.  If isLoad is true, this routine ignores may-aliases with
353/// read-only operations.  If isLoad is false, this routine ignores may-aliases
354/// with reads from read-only locations.  If possible, pass the query
355/// instruction as well; this function may take advantage of the metadata
356/// annotated to the query instruction to refine the result.
357MemDepResult MemoryDependenceAnalysis::
358getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad,
359                         BasicBlock::iterator ScanIt, BasicBlock *BB,
360                         Instruction *QueryInst) {
361
362  const Value *MemLocBase = 0;
363  int64_t MemLocOffset = 0;
364  unsigned Limit = BlockScanLimit;
365  bool isInvariantLoad = false;
366  if (isLoad && QueryInst) {
367    LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
368    if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != 0)
369      isInvariantLoad = true;
370  }
371
372  // Walk backwards through the basic block, looking for dependencies.
373  while (ScanIt != BB->begin()) {
374    // Limit the amount of scanning we do so we don't end up with quadratic
375    // running time on extreme testcases.
376    --Limit;
377    if (!Limit)
378      return MemDepResult::getUnknown();
379
380    Instruction *Inst = --ScanIt;
381
382    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
383      // Debug intrinsics don't (and can't) cause dependences.
384      if (isa<DbgInfoIntrinsic>(II)) continue;
385
386      // If we reach a lifetime begin or end marker, then the query ends here
387      // because the value is undefined.
388      if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
389        // FIXME: This only considers queries directly on the invariant-tagged
390        // pointer, not on query pointers that are indexed off of them.  It'd
391        // be nice to handle that at some point (the right approach is to use
392        // GetPointerBaseWithConstantOffset).
393        if (AA->isMustAlias(AliasAnalysis::Location(II->getArgOperand(1)),
394                            MemLoc))
395          return MemDepResult::getDef(II);
396        continue;
397      }
398    }
399
400    // Values depend on loads if the pointers are must aliased.  This means that
401    // a load depends on another must aliased load from the same value.
402    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
403      // Atomic loads have complications involved.
404      // FIXME: This is overly conservative.
405      if (!LI->isUnordered())
406        return MemDepResult::getClobber(LI);
407
408      AliasAnalysis::Location LoadLoc = AA->getLocation(LI);
409
410      // If we found a pointer, check if it could be the same as our pointer.
411      AliasAnalysis::AliasResult R = AA->alias(LoadLoc, MemLoc);
412
413      if (isLoad) {
414        if (R == AliasAnalysis::NoAlias) {
415          // If this is an over-aligned integer load (for example,
416          // "load i8* %P, align 4") see if it would obviously overlap with the
417          // queried location if widened to a larger load (e.g. if the queried
418          // location is 1 byte at P+1).  If so, return it as a load/load
419          // clobber result, allowing the client to decide to widen the load if
420          // it wants to.
421          if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType()))
422            if (LI->getAlignment()*8 > ITy->getPrimitiveSizeInBits() &&
423                isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase,
424                                                       MemLocOffset, LI, TD))
425              return MemDepResult::getClobber(Inst);
426
427          continue;
428        }
429
430        // Must aliased loads are defs of each other.
431        if (R == AliasAnalysis::MustAlias)
432          return MemDepResult::getDef(Inst);
433
434#if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
435      // in terms of clobbering loads, but since it does this by looking
436      // at the clobbering load directly, it doesn't know about any
437      // phi translation that may have happened along the way.
438
439        // If we have a partial alias, then return this as a clobber for the
440        // client to handle.
441        if (R == AliasAnalysis::PartialAlias)
442          return MemDepResult::getClobber(Inst);
443#endif
444
445        // Random may-alias loads don't depend on each other without a
446        // dependence.
447        continue;
448      }
449
450      // Stores don't depend on other no-aliased accesses.
451      if (R == AliasAnalysis::NoAlias)
452        continue;
453
454      // Stores don't alias loads from read-only memory.
455      if (AA->pointsToConstantMemory(LoadLoc))
456        continue;
457
458      // Stores depend on may/must aliased loads.
459      return MemDepResult::getDef(Inst);
460    }
461
462    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
463      // Atomic stores have complications involved.
464      // FIXME: This is overly conservative.
465      if (!SI->isUnordered())
466        return MemDepResult::getClobber(SI);
467
468      // If alias analysis can tell that this store is guaranteed to not modify
469      // the query pointer, ignore it.  Use getModRefInfo to handle cases where
470      // the query pointer points to constant memory etc.
471      if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef)
472        continue;
473
474      // Ok, this store might clobber the query pointer.  Check to see if it is
475      // a must alias: in this case, we want to return this as a def.
476      AliasAnalysis::Location StoreLoc = AA->getLocation(SI);
477
478      // If we found a pointer, check if it could be the same as our pointer.
479      AliasAnalysis::AliasResult R = AA->alias(StoreLoc, MemLoc);
480
481      if (R == AliasAnalysis::NoAlias)
482        continue;
483      if (R == AliasAnalysis::MustAlias)
484        return MemDepResult::getDef(Inst);
485      if (isInvariantLoad)
486       continue;
487      return MemDepResult::getClobber(Inst);
488    }
489
490    // If this is an allocation, and if we know that the accessed pointer is to
491    // the allocation, return Def.  This means that there is no dependence and
492    // the access can be optimized based on that.  For example, a load could
493    // turn into undef.
494    // Note: Only determine this to be a malloc if Inst is the malloc call, not
495    // a subsequent bitcast of the malloc call result.  There can be stores to
496    // the malloced memory between the malloc call and its bitcast uses, and we
497    // need to continue scanning until the malloc call.
498    const TargetLibraryInfo *TLI = AA->getTargetLibraryInfo();
499    if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, TLI)) {
500      const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, TD);
501
502      if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr))
503        return MemDepResult::getDef(Inst);
504      // Be conservative if the accessed pointer may alias the allocation.
505      if (AA->alias(Inst, AccessPtr) != AliasAnalysis::NoAlias)
506        return MemDepResult::getClobber(Inst);
507      // If the allocation is not aliased and does not read memory (like
508      // strdup), it is safe to ignore.
509      if (isa<AllocaInst>(Inst) ||
510          isMallocLikeFn(Inst, TLI) || isCallocLikeFn(Inst, TLI))
511        continue;
512    }
513
514    // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
515    AliasAnalysis::ModRefResult MR = AA->getModRefInfo(Inst, MemLoc);
516    // If necessary, perform additional analysis.
517    if (MR == AliasAnalysis::ModRef)
518      MR = AA->callCapturesBefore(Inst, MemLoc, DT);
519    switch (MR) {
520    case AliasAnalysis::NoModRef:
521      // If the call has no effect on the queried pointer, just ignore it.
522      continue;
523    case AliasAnalysis::Mod:
524      return MemDepResult::getClobber(Inst);
525    case AliasAnalysis::Ref:
526      // If the call is known to never store to the pointer, and if this is a
527      // load query, we can safely ignore it (scan past it).
528      if (isLoad)
529        continue;
530    default:
531      // Otherwise, there is a potential dependence.  Return a clobber.
532      return MemDepResult::getClobber(Inst);
533    }
534  }
535
536  // No dependence found.  If this is the entry block of the function, it is
537  // unknown, otherwise it is non-local.
538  if (BB != &BB->getParent()->getEntryBlock())
539    return MemDepResult::getNonLocal();
540  return MemDepResult::getNonFuncLocal();
541}
542
543/// getDependency - Return the instruction on which a memory operation
544/// depends.
545MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
546  Instruction *ScanPos = QueryInst;
547
548  // Check for a cached result
549  MemDepResult &LocalCache = LocalDeps[QueryInst];
550
551  // If the cached entry is non-dirty, just return it.  Note that this depends
552  // on MemDepResult's default constructing to 'dirty'.
553  if (!LocalCache.isDirty())
554    return LocalCache;
555
556  // Otherwise, if we have a dirty entry, we know we can start the scan at that
557  // instruction, which may save us some work.
558  if (Instruction *Inst = LocalCache.getInst()) {
559    ScanPos = Inst;
560
561    RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
562  }
563
564  BasicBlock *QueryParent = QueryInst->getParent();
565
566  // Do the scan.
567  if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
568    // No dependence found.  If this is the entry block of the function, it is
569    // unknown, otherwise it is non-local.
570    if (QueryParent != &QueryParent->getParent()->getEntryBlock())
571      LocalCache = MemDepResult::getNonLocal();
572    else
573      LocalCache = MemDepResult::getNonFuncLocal();
574  } else {
575    AliasAnalysis::Location MemLoc;
576    AliasAnalysis::ModRefResult MR = GetLocation(QueryInst, MemLoc, AA);
577    if (MemLoc.Ptr) {
578      // If we can do a pointer scan, make it happen.
579      bool isLoad = !(MR & AliasAnalysis::Mod);
580      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst))
581        isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
582
583      LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos,
584                                            QueryParent, QueryInst);
585    } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
586      CallSite QueryCS(QueryInst);
587      bool isReadOnly = AA->onlyReadsMemory(QueryCS);
588      LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
589                                             QueryParent);
590    } else
591      // Non-memory instruction.
592      LocalCache = MemDepResult::getUnknown();
593  }
594
595  // Remember the result!
596  if (Instruction *I = LocalCache.getInst())
597    ReverseLocalDeps[I].insert(QueryInst);
598
599  return LocalCache;
600}
601
602#ifndef NDEBUG
603/// AssertSorted - This method is used when -debug is specified to verify that
604/// cache arrays are properly kept sorted.
605static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
606                         int Count = -1) {
607  if (Count == -1) Count = Cache.size();
608  if (Count == 0) return;
609
610  for (unsigned i = 1; i != unsigned(Count); ++i)
611    assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!");
612}
613#endif
614
615/// getNonLocalCallDependency - Perform a full dependency query for the
616/// specified call, returning the set of blocks that the value is
617/// potentially live across.  The returned set of results will include a
618/// "NonLocal" result for all blocks where the value is live across.
619///
620/// This method assumes the instruction returns a "NonLocal" dependency
621/// within its own block.
622///
623/// This returns a reference to an internal data structure that may be
624/// invalidated on the next non-local query or when an instruction is
625/// removed.  Clients must copy this data if they want it around longer than
626/// that.
627const MemoryDependenceAnalysis::NonLocalDepInfo &
628MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
629  assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
630 "getNonLocalCallDependency should only be used on calls with non-local deps!");
631  PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
632  NonLocalDepInfo &Cache = CacheP.first;
633
634  /// DirtyBlocks - This is the set of blocks that need to be recomputed.  In
635  /// the cached case, this can happen due to instructions being deleted etc. In
636  /// the uncached case, this starts out as the set of predecessors we care
637  /// about.
638  SmallVector<BasicBlock*, 32> DirtyBlocks;
639
640  if (!Cache.empty()) {
641    // Okay, we have a cache entry.  If we know it is not dirty, just return it
642    // with no computation.
643    if (!CacheP.second) {
644      ++NumCacheNonLocal;
645      return Cache;
646    }
647
648    // If we already have a partially computed set of results, scan them to
649    // determine what is dirty, seeding our initial DirtyBlocks worklist.
650    for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
651       I != E; ++I)
652      if (I->getResult().isDirty())
653        DirtyBlocks.push_back(I->getBB());
654
655    // Sort the cache so that we can do fast binary search lookups below.
656    std::sort(Cache.begin(), Cache.end());
657
658    ++NumCacheDirtyNonLocal;
659    //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
660    //     << Cache.size() << " cached: " << *QueryInst;
661  } else {
662    // Seed DirtyBlocks with each of the preds of QueryInst's block.
663    BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
664    for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI)
665      DirtyBlocks.push_back(*PI);
666    ++NumUncacheNonLocal;
667  }
668
669  // isReadonlyCall - If this is a read-only call, we can be more aggressive.
670  bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
671
672  SmallPtrSet<BasicBlock*, 64> Visited;
673
674  unsigned NumSortedEntries = Cache.size();
675  DEBUG(AssertSorted(Cache));
676
677  // Iterate while we still have blocks to update.
678  while (!DirtyBlocks.empty()) {
679    BasicBlock *DirtyBB = DirtyBlocks.back();
680    DirtyBlocks.pop_back();
681
682    // Already processed this block?
683    if (!Visited.insert(DirtyBB))
684      continue;
685
686    // Do a binary search to see if we already have an entry for this block in
687    // the cache set.  If so, find it.
688    DEBUG(AssertSorted(Cache, NumSortedEntries));
689    NonLocalDepInfo::iterator Entry =
690      std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
691                       NonLocalDepEntry(DirtyBB));
692    if (Entry != Cache.begin() && prior(Entry)->getBB() == DirtyBB)
693      --Entry;
694
695    NonLocalDepEntry *ExistingResult = 0;
696    if (Entry != Cache.begin()+NumSortedEntries &&
697        Entry->getBB() == DirtyBB) {
698      // If we already have an entry, and if it isn't already dirty, the block
699      // is done.
700      if (!Entry->getResult().isDirty())
701        continue;
702
703      // Otherwise, remember this slot so we can update the value.
704      ExistingResult = &*Entry;
705    }
706
707    // If the dirty entry has a pointer, start scanning from it so we don't have
708    // to rescan the entire block.
709    BasicBlock::iterator ScanPos = DirtyBB->end();
710    if (ExistingResult) {
711      if (Instruction *Inst = ExistingResult->getResult().getInst()) {
712        ScanPos = Inst;
713        // We're removing QueryInst's use of Inst.
714        RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
715                             QueryCS.getInstruction());
716      }
717    }
718
719    // Find out if this block has a local dependency for QueryInst.
720    MemDepResult Dep;
721
722    if (ScanPos != DirtyBB->begin()) {
723      Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
724    } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
725      // No dependence found.  If this is the entry block of the function, it is
726      // a clobber, otherwise it is unknown.
727      Dep = MemDepResult::getNonLocal();
728    } else {
729      Dep = MemDepResult::getNonFuncLocal();
730    }
731
732    // If we had a dirty entry for the block, update it.  Otherwise, just add
733    // a new entry.
734    if (ExistingResult)
735      ExistingResult->setResult(Dep);
736    else
737      Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
738
739    // If the block has a dependency (i.e. it isn't completely transparent to
740    // the value), remember the association!
741    if (!Dep.isNonLocal()) {
742      // Keep the ReverseNonLocalDeps map up to date so we can efficiently
743      // update this when we remove instructions.
744      if (Instruction *Inst = Dep.getInst())
745        ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
746    } else {
747
748      // If the block *is* completely transparent to the load, we need to check
749      // the predecessors of this block.  Add them to our worklist.
750      for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI)
751        DirtyBlocks.push_back(*PI);
752    }
753  }
754
755  return Cache;
756}
757
758/// getNonLocalPointerDependency - Perform a full dependency query for an
759/// access to the specified (non-volatile) memory location, returning the
760/// set of instructions that either define or clobber the value.
761///
762/// This method assumes the pointer has a "NonLocal" dependency within its
763/// own block.
764///
765void MemoryDependenceAnalysis::
766getNonLocalPointerDependency(const AliasAnalysis::Location &Loc, bool isLoad,
767                             BasicBlock *FromBB,
768                             SmallVectorImpl<NonLocalDepResult> &Result) {
769  assert(Loc.Ptr->getType()->isPointerTy() &&
770         "Can't get pointer deps of a non-pointer!");
771  Result.clear();
772
773  PHITransAddr Address(const_cast<Value *>(Loc.Ptr), TD);
774
775  // This is the set of blocks we've inspected, and the pointer we consider in
776  // each block.  Because of critical edges, we currently bail out if querying
777  // a block with multiple different pointers.  This can happen during PHI
778  // translation.
779  DenseMap<BasicBlock*, Value*> Visited;
780  if (!getNonLocalPointerDepFromBB(Address, Loc, isLoad, FromBB,
781                                   Result, Visited, true))
782    return;
783  Result.clear();
784  Result.push_back(NonLocalDepResult(FromBB,
785                                     MemDepResult::getUnknown(),
786                                     const_cast<Value *>(Loc.Ptr)));
787}
788
789/// GetNonLocalInfoForBlock - Compute the memdep value for BB with
790/// Pointer/PointeeSize using either cached information in Cache or by doing a
791/// lookup (which may use dirty cache info if available).  If we do a lookup,
792/// add the result to the cache.
793MemDepResult MemoryDependenceAnalysis::
794GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc,
795                        bool isLoad, BasicBlock *BB,
796                        NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
797
798  // Do a binary search to see if we already have an entry for this block in
799  // the cache set.  If so, find it.
800  NonLocalDepInfo::iterator Entry =
801    std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
802                     NonLocalDepEntry(BB));
803  if (Entry != Cache->begin() && (Entry-1)->getBB() == BB)
804    --Entry;
805
806  NonLocalDepEntry *ExistingResult = 0;
807  if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB)
808    ExistingResult = &*Entry;
809
810  // If we have a cached entry, and it is non-dirty, use it as the value for
811  // this dependency.
812  if (ExistingResult && !ExistingResult->getResult().isDirty()) {
813    ++NumCacheNonLocalPtr;
814    return ExistingResult->getResult();
815  }
816
817  // Otherwise, we have to scan for the value.  If we have a dirty cache
818  // entry, start scanning from its position, otherwise we scan from the end
819  // of the block.
820  BasicBlock::iterator ScanPos = BB->end();
821  if (ExistingResult && ExistingResult->getResult().getInst()) {
822    assert(ExistingResult->getResult().getInst()->getParent() == BB &&
823           "Instruction invalidated?");
824    ++NumCacheDirtyNonLocalPtr;
825    ScanPos = ExistingResult->getResult().getInst();
826
827    // Eliminating the dirty entry from 'Cache', so update the reverse info.
828    ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
829    RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey);
830  } else {
831    ++NumUncacheNonLocalPtr;
832  }
833
834  // Scan the block for the dependency.
835  MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB);
836
837  // If we had a dirty entry for the block, update it.  Otherwise, just add
838  // a new entry.
839  if (ExistingResult)
840    ExistingResult->setResult(Dep);
841  else
842    Cache->push_back(NonLocalDepEntry(BB, Dep));
843
844  // If the block has a dependency (i.e. it isn't completely transparent to
845  // the value), remember the reverse association because we just added it
846  // to Cache!
847  if (!Dep.isDef() && !Dep.isClobber())
848    return Dep;
849
850  // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
851  // update MemDep when we remove instructions.
852  Instruction *Inst = Dep.getInst();
853  assert(Inst && "Didn't depend on anything?");
854  ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
855  ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
856  return Dep;
857}
858
859/// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain
860/// number of elements in the array that are already properly ordered.  This is
861/// optimized for the case when only a few entries are added.
862static void
863SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
864                         unsigned NumSortedEntries) {
865  switch (Cache.size() - NumSortedEntries) {
866  case 0:
867    // done, no new entries.
868    break;
869  case 2: {
870    // Two new entries, insert the last one into place.
871    NonLocalDepEntry Val = Cache.back();
872    Cache.pop_back();
873    MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
874      std::upper_bound(Cache.begin(), Cache.end()-1, Val);
875    Cache.insert(Entry, Val);
876    // FALL THROUGH.
877  }
878  case 1:
879    // One new entry, Just insert the new value at the appropriate position.
880    if (Cache.size() != 1) {
881      NonLocalDepEntry Val = Cache.back();
882      Cache.pop_back();
883      MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
884        std::upper_bound(Cache.begin(), Cache.end(), Val);
885      Cache.insert(Entry, Val);
886    }
887    break;
888  default:
889    // Added many values, do a full scale sort.
890    std::sort(Cache.begin(), Cache.end());
891    break;
892  }
893}
894
895/// getNonLocalPointerDepFromBB - Perform a dependency query based on
896/// pointer/pointeesize starting at the end of StartBB.  Add any clobber/def
897/// results to the results vector and keep track of which blocks are visited in
898/// 'Visited'.
899///
900/// This has special behavior for the first block queries (when SkipFirstBlock
901/// is true).  In this special case, it ignores the contents of the specified
902/// block and starts returning dependence info for its predecessors.
903///
904/// This function returns false on success, or true to indicate that it could
905/// not compute dependence information for some reason.  This should be treated
906/// as a clobber dependence on the first instruction in the predecessor block.
907bool MemoryDependenceAnalysis::
908getNonLocalPointerDepFromBB(const PHITransAddr &Pointer,
909                            const AliasAnalysis::Location &Loc,
910                            bool isLoad, BasicBlock *StartBB,
911                            SmallVectorImpl<NonLocalDepResult> &Result,
912                            DenseMap<BasicBlock*, Value*> &Visited,
913                            bool SkipFirstBlock) {
914
915  // Look up the cached info for Pointer.
916  ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
917
918  // Set up a temporary NLPI value. If the map doesn't yet have an entry for
919  // CacheKey, this value will be inserted as the associated value. Otherwise,
920  // it'll be ignored, and we'll have to check to see if the cached size and
921  // tbaa tag are consistent with the current query.
922  NonLocalPointerInfo InitialNLPI;
923  InitialNLPI.Size = Loc.Size;
924  InitialNLPI.TBAATag = Loc.TBAATag;
925
926  // Get the NLPI for CacheKey, inserting one into the map if it doesn't
927  // already have one.
928  std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
929    NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
930  NonLocalPointerInfo *CacheInfo = &Pair.first->second;
931
932  // If we already have a cache entry for this CacheKey, we may need to do some
933  // work to reconcile the cache entry and the current query.
934  if (!Pair.second) {
935    if (CacheInfo->Size < Loc.Size) {
936      // The query's Size is greater than the cached one. Throw out the
937      // cached data and proceed with the query at the greater size.
938      CacheInfo->Pair = BBSkipFirstBlockPair();
939      CacheInfo->Size = Loc.Size;
940      for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
941           DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
942        if (Instruction *Inst = DI->getResult().getInst())
943          RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
944      CacheInfo->NonLocalDeps.clear();
945    } else if (CacheInfo->Size > Loc.Size) {
946      // This query's Size is less than the cached one. Conservatively restart
947      // the query using the greater size.
948      return getNonLocalPointerDepFromBB(Pointer,
949                                         Loc.getWithNewSize(CacheInfo->Size),
950                                         isLoad, StartBB, Result, Visited,
951                                         SkipFirstBlock);
952    }
953
954    // If the query's TBAATag is inconsistent with the cached one,
955    // conservatively throw out the cached data and restart the query with
956    // no tag if needed.
957    if (CacheInfo->TBAATag != Loc.TBAATag) {
958      if (CacheInfo->TBAATag) {
959        CacheInfo->Pair = BBSkipFirstBlockPair();
960        CacheInfo->TBAATag = 0;
961        for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
962             DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
963          if (Instruction *Inst = DI->getResult().getInst())
964            RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
965        CacheInfo->NonLocalDeps.clear();
966      }
967      if (Loc.TBAATag)
968        return getNonLocalPointerDepFromBB(Pointer, Loc.getWithoutTBAATag(),
969                                           isLoad, StartBB, Result, Visited,
970                                           SkipFirstBlock);
971    }
972  }
973
974  NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
975
976  // If we have valid cached information for exactly the block we are
977  // investigating, just return it with no recomputation.
978  if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
979    // We have a fully cached result for this query then we can just return the
980    // cached results and populate the visited set.  However, we have to verify
981    // that we don't already have conflicting results for these blocks.  Check
982    // to ensure that if a block in the results set is in the visited set that
983    // it was for the same pointer query.
984    if (!Visited.empty()) {
985      for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
986           I != E; ++I) {
987        DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB());
988        if (VI == Visited.end() || VI->second == Pointer.getAddr())
989          continue;
990
991        // We have a pointer mismatch in a block.  Just return clobber, saying
992        // that something was clobbered in this result.  We could also do a
993        // non-fully cached query, but there is little point in doing this.
994        return true;
995      }
996    }
997
998    Value *Addr = Pointer.getAddr();
999    for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
1000         I != E; ++I) {
1001      Visited.insert(std::make_pair(I->getBB(), Addr));
1002      if (!I->getResult().isNonLocal() && DT->isReachableFromEntry(I->getBB()))
1003        Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr));
1004    }
1005    ++NumCacheCompleteNonLocalPtr;
1006    return false;
1007  }
1008
1009  // Otherwise, either this is a new block, a block with an invalid cache
1010  // pointer or one that we're about to invalidate by putting more info into it
1011  // than its valid cache info.  If empty, the result will be valid cache info,
1012  // otherwise it isn't.
1013  if (Cache->empty())
1014    CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
1015  else
1016    CacheInfo->Pair = BBSkipFirstBlockPair();
1017
1018  SmallVector<BasicBlock*, 32> Worklist;
1019  Worklist.push_back(StartBB);
1020
1021  // PredList used inside loop.
1022  SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList;
1023
1024  // Keep track of the entries that we know are sorted.  Previously cached
1025  // entries will all be sorted.  The entries we add we only sort on demand (we
1026  // don't insert every element into its sorted position).  We know that we
1027  // won't get any reuse from currently inserted values, because we don't
1028  // revisit blocks after we insert info for them.
1029  unsigned NumSortedEntries = Cache->size();
1030  DEBUG(AssertSorted(*Cache));
1031
1032  while (!Worklist.empty()) {
1033    BasicBlock *BB = Worklist.pop_back_val();
1034
1035    // Skip the first block if we have it.
1036    if (!SkipFirstBlock) {
1037      // Analyze the dependency of *Pointer in FromBB.  See if we already have
1038      // been here.
1039      assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
1040
1041      // Get the dependency info for Pointer in BB.  If we have cached
1042      // information, we will use it, otherwise we compute it.
1043      DEBUG(AssertSorted(*Cache, NumSortedEntries));
1044      MemDepResult Dep = GetNonLocalInfoForBlock(Loc, isLoad, BB, Cache,
1045                                                 NumSortedEntries);
1046
1047      // If we got a Def or Clobber, add this to the list of results.
1048      if (!Dep.isNonLocal() && DT->isReachableFromEntry(BB)) {
1049        Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
1050        continue;
1051      }
1052    }
1053
1054    // If 'Pointer' is an instruction defined in this block, then we need to do
1055    // phi translation to change it into a value live in the predecessor block.
1056    // If not, we just add the predecessors to the worklist and scan them with
1057    // the same Pointer.
1058    if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
1059      SkipFirstBlock = false;
1060      SmallVector<BasicBlock*, 16> NewBlocks;
1061      for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
1062        // Verify that we haven't looked at this block yet.
1063        std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
1064          InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr()));
1065        if (InsertRes.second) {
1066          // First time we've looked at *PI.
1067          NewBlocks.push_back(*PI);
1068          continue;
1069        }
1070
1071        // If we have seen this block before, but it was with a different
1072        // pointer then we have a phi translation failure and we have to treat
1073        // this as a clobber.
1074        if (InsertRes.first->second != Pointer.getAddr()) {
1075          // Make sure to clean up the Visited map before continuing on to
1076          // PredTranslationFailure.
1077          for (unsigned i = 0; i < NewBlocks.size(); i++)
1078            Visited.erase(NewBlocks[i]);
1079          goto PredTranslationFailure;
1080        }
1081      }
1082      Worklist.append(NewBlocks.begin(), NewBlocks.end());
1083      continue;
1084    }
1085
1086    // We do need to do phi translation, if we know ahead of time we can't phi
1087    // translate this value, don't even try.
1088    if (!Pointer.IsPotentiallyPHITranslatable())
1089      goto PredTranslationFailure;
1090
1091    // We may have added values to the cache list before this PHI translation.
1092    // If so, we haven't done anything to ensure that the cache remains sorted.
1093    // Sort it now (if needed) so that recursive invocations of
1094    // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1095    // value will only see properly sorted cache arrays.
1096    if (Cache && NumSortedEntries != Cache->size()) {
1097      SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1098      NumSortedEntries = Cache->size();
1099    }
1100    Cache = 0;
1101
1102    PredList.clear();
1103    for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
1104      BasicBlock *Pred = *PI;
1105      PredList.push_back(std::make_pair(Pred, Pointer));
1106
1107      // Get the PHI translated pointer in this predecessor.  This can fail if
1108      // not translatable, in which case the getAddr() returns null.
1109      PHITransAddr &PredPointer = PredList.back().second;
1110      PredPointer.PHITranslateValue(BB, Pred, 0);
1111
1112      Value *PredPtrVal = PredPointer.getAddr();
1113
1114      // Check to see if we have already visited this pred block with another
1115      // pointer.  If so, we can't do this lookup.  This failure can occur
1116      // with PHI translation when a critical edge exists and the PHI node in
1117      // the successor translates to a pointer value different than the
1118      // pointer the block was first analyzed with.
1119      std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
1120        InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal));
1121
1122      if (!InsertRes.second) {
1123        // We found the pred; take it off the list of preds to visit.
1124        PredList.pop_back();
1125
1126        // If the predecessor was visited with PredPtr, then we already did
1127        // the analysis and can ignore it.
1128        if (InsertRes.first->second == PredPtrVal)
1129          continue;
1130
1131        // Otherwise, the block was previously analyzed with a different
1132        // pointer.  We can't represent the result of this case, so we just
1133        // treat this as a phi translation failure.
1134
1135        // Make sure to clean up the Visited map before continuing on to
1136        // PredTranslationFailure.
1137        for (unsigned i = 0, n = PredList.size(); i < n; ++i)
1138          Visited.erase(PredList[i].first);
1139
1140        goto PredTranslationFailure;
1141      }
1142    }
1143
1144    // Actually process results here; this need to be a separate loop to avoid
1145    // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1146    // any results for.  (getNonLocalPointerDepFromBB will modify our
1147    // datastructures in ways the code after the PredTranslationFailure label
1148    // doesn't expect.)
1149    for (unsigned i = 0, n = PredList.size(); i < n; ++i) {
1150      BasicBlock *Pred = PredList[i].first;
1151      PHITransAddr &PredPointer = PredList[i].second;
1152      Value *PredPtrVal = PredPointer.getAddr();
1153
1154      bool CanTranslate = true;
1155      // If PHI translation was unable to find an available pointer in this
1156      // predecessor, then we have to assume that the pointer is clobbered in
1157      // that predecessor.  We can still do PRE of the load, which would insert
1158      // a computation of the pointer in this predecessor.
1159      if (PredPtrVal == 0)
1160        CanTranslate = false;
1161
1162      // FIXME: it is entirely possible that PHI translating will end up with
1163      // the same value.  Consider PHI translating something like:
1164      // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
1165      // to recurse here, pedantically speaking.
1166
1167      // If getNonLocalPointerDepFromBB fails here, that means the cached
1168      // result conflicted with the Visited list; we have to conservatively
1169      // assume it is unknown, but this also does not block PRE of the load.
1170      if (!CanTranslate ||
1171          getNonLocalPointerDepFromBB(PredPointer,
1172                                      Loc.getWithNewPtr(PredPtrVal),
1173                                      isLoad, Pred,
1174                                      Result, Visited)) {
1175        // Add the entry to the Result list.
1176        NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1177        Result.push_back(Entry);
1178
1179        // Since we had a phi translation failure, the cache for CacheKey won't
1180        // include all of the entries that we need to immediately satisfy future
1181        // queries.  Mark this in NonLocalPointerDeps by setting the
1182        // BBSkipFirstBlockPair pointer to null.  This requires reuse of the
1183        // cached value to do more work but not miss the phi trans failure.
1184        NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1185        NLPI.Pair = BBSkipFirstBlockPair();
1186        continue;
1187      }
1188    }
1189
1190    // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1191    CacheInfo = &NonLocalPointerDeps[CacheKey];
1192    Cache = &CacheInfo->NonLocalDeps;
1193    NumSortedEntries = Cache->size();
1194
1195    // Since we did phi translation, the "Cache" set won't contain all of the
1196    // results for the query.  This is ok (we can still use it to accelerate
1197    // specific block queries) but we can't do the fastpath "return all
1198    // results from the set"  Clear out the indicator for this.
1199    CacheInfo->Pair = BBSkipFirstBlockPair();
1200    SkipFirstBlock = false;
1201    continue;
1202
1203  PredTranslationFailure:
1204    // The following code is "failure"; we can't produce a sane translation
1205    // for the given block.  It assumes that we haven't modified any of
1206    // our datastructures while processing the current block.
1207
1208    if (Cache == 0) {
1209      // Refresh the CacheInfo/Cache pointer if it got invalidated.
1210      CacheInfo = &NonLocalPointerDeps[CacheKey];
1211      Cache = &CacheInfo->NonLocalDeps;
1212      NumSortedEntries = Cache->size();
1213    }
1214
1215    // Since we failed phi translation, the "Cache" set won't contain all of the
1216    // results for the query.  This is ok (we can still use it to accelerate
1217    // specific block queries) but we can't do the fastpath "return all
1218    // results from the set".  Clear out the indicator for this.
1219    CacheInfo->Pair = BBSkipFirstBlockPair();
1220
1221    // If *nothing* works, mark the pointer as unknown.
1222    //
1223    // If this is the magic first block, return this as a clobber of the whole
1224    // incoming value.  Since we can't phi translate to one of the predecessors,
1225    // we have to bail out.
1226    if (SkipFirstBlock)
1227      return true;
1228
1229    for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
1230      assert(I != Cache->rend() && "Didn't find current block??");
1231      if (I->getBB() != BB)
1232        continue;
1233
1234      assert(I->getResult().isNonLocal() &&
1235             "Should only be here with transparent block");
1236      I->setResult(MemDepResult::getUnknown());
1237      Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(),
1238                                         Pointer.getAddr()));
1239      break;
1240    }
1241  }
1242
1243  // Okay, we're done now.  If we added new values to the cache, re-sort it.
1244  SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1245  DEBUG(AssertSorted(*Cache));
1246  return false;
1247}
1248
1249/// RemoveCachedNonLocalPointerDependencies - If P exists in
1250/// CachedNonLocalPointerInfo, remove it.
1251void MemoryDependenceAnalysis::
1252RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
1253  CachedNonLocalPointerInfo::iterator It =
1254    NonLocalPointerDeps.find(P);
1255  if (It == NonLocalPointerDeps.end()) return;
1256
1257  // Remove all of the entries in the BB->val map.  This involves removing
1258  // instructions from the reverse map.
1259  NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1260
1261  for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1262    Instruction *Target = PInfo[i].getResult().getInst();
1263    if (Target == 0) continue;  // Ignore non-local dep results.
1264    assert(Target->getParent() == PInfo[i].getBB());
1265
1266    // Eliminating the dirty entry from 'Cache', so update the reverse info.
1267    RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1268  }
1269
1270  // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1271  NonLocalPointerDeps.erase(It);
1272}
1273
1274
1275/// invalidateCachedPointerInfo - This method is used to invalidate cached
1276/// information about the specified pointer, because it may be too
1277/// conservative in memdep.  This is an optional call that can be used when
1278/// the client detects an equivalence between the pointer and some other
1279/// value and replaces the other value with ptr. This can make Ptr available
1280/// in more places that cached info does not necessarily keep.
1281void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
1282  // If Ptr isn't really a pointer, just ignore it.
1283  if (!Ptr->getType()->isPointerTy()) return;
1284  // Flush store info for the pointer.
1285  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1286  // Flush load info for the pointer.
1287  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1288}
1289
1290/// invalidateCachedPredecessors - Clear the PredIteratorCache info.
1291/// This needs to be done when the CFG changes, e.g., due to splitting
1292/// critical edges.
1293void MemoryDependenceAnalysis::invalidateCachedPredecessors() {
1294  PredCache->clear();
1295}
1296
1297/// removeInstruction - Remove an instruction from the dependence analysis,
1298/// updating the dependence of instructions that previously depended on it.
1299/// This method attempts to keep the cache coherent using the reverse map.
1300void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
1301  // Walk through the Non-local dependencies, removing this one as the value
1302  // for any cached queries.
1303  NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1304  if (NLDI != NonLocalDeps.end()) {
1305    NonLocalDepInfo &BlockMap = NLDI->second.first;
1306    for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
1307         DI != DE; ++DI)
1308      if (Instruction *Inst = DI->getResult().getInst())
1309        RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1310    NonLocalDeps.erase(NLDI);
1311  }
1312
1313  // If we have a cached local dependence query for this instruction, remove it.
1314  //
1315  LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1316  if (LocalDepEntry != LocalDeps.end()) {
1317    // Remove us from DepInst's reverse set now that the local dep info is gone.
1318    if (Instruction *Inst = LocalDepEntry->second.getInst())
1319      RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1320
1321    // Remove this local dependency info.
1322    LocalDeps.erase(LocalDepEntry);
1323  }
1324
1325  // If we have any cached pointer dependencies on this instruction, remove
1326  // them.  If the instruction has non-pointer type, then it can't be a pointer
1327  // base.
1328
1329  // Remove it from both the load info and the store info.  The instruction
1330  // can't be in either of these maps if it is non-pointer.
1331  if (RemInst->getType()->isPointerTy()) {
1332    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1333    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1334  }
1335
1336  // Loop over all of the things that depend on the instruction we're removing.
1337  //
1338  SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
1339
1340  // If we find RemInst as a clobber or Def in any of the maps for other values,
1341  // we need to replace its entry with a dirty version of the instruction after
1342  // it.  If RemInst is a terminator, we use a null dirty value.
1343  //
1344  // Using a dirty version of the instruction after RemInst saves having to scan
1345  // the entire block to get to this point.
1346  MemDepResult NewDirtyVal;
1347  if (!RemInst->isTerminator())
1348    NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
1349
1350  ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1351  if (ReverseDepIt != ReverseLocalDeps.end()) {
1352    SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
1353    // RemInst can't be the terminator if it has local stuff depending on it.
1354    assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
1355           "Nothing can locally depend on a terminator");
1356
1357    for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
1358         E = ReverseDeps.end(); I != E; ++I) {
1359      Instruction *InstDependingOnRemInst = *I;
1360      assert(InstDependingOnRemInst != RemInst &&
1361             "Already removed our local dep info");
1362
1363      LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1364
1365      // Make sure to remember that new things depend on NewDepInst.
1366      assert(NewDirtyVal.getInst() && "There is no way something else can have "
1367             "a local dep on this if it is a terminator!");
1368      ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
1369                                                InstDependingOnRemInst));
1370    }
1371
1372    ReverseLocalDeps.erase(ReverseDepIt);
1373
1374    // Add new reverse deps after scanning the set, to avoid invalidating the
1375    // 'ReverseDeps' reference.
1376    while (!ReverseDepsToAdd.empty()) {
1377      ReverseLocalDeps[ReverseDepsToAdd.back().first]
1378        .insert(ReverseDepsToAdd.back().second);
1379      ReverseDepsToAdd.pop_back();
1380    }
1381  }
1382
1383  ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1384  if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1385    SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second;
1386    for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end();
1387         I != E; ++I) {
1388      assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
1389
1390      PerInstNLInfo &INLD = NonLocalDeps[*I];
1391      // The information is now dirty!
1392      INLD.second = true;
1393
1394      for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
1395           DE = INLD.first.end(); DI != DE; ++DI) {
1396        if (DI->getResult().getInst() != RemInst) continue;
1397
1398        // Convert to a dirty entry for the subsequent instruction.
1399        DI->setResult(NewDirtyVal);
1400
1401        if (Instruction *NextI = NewDirtyVal.getInst())
1402          ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
1403      }
1404    }
1405
1406    ReverseNonLocalDeps.erase(ReverseDepIt);
1407
1408    // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1409    while (!ReverseDepsToAdd.empty()) {
1410      ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
1411        .insert(ReverseDepsToAdd.back().second);
1412      ReverseDepsToAdd.pop_back();
1413    }
1414  }
1415
1416  // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1417  // value in the NonLocalPointerDeps info.
1418  ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1419    ReverseNonLocalPtrDeps.find(RemInst);
1420  if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1421    SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second;
1422    SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
1423
1424    for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(),
1425         E = Set.end(); I != E; ++I) {
1426      ValueIsLoadPair P = *I;
1427      assert(P.getPointer() != RemInst &&
1428             "Already removed NonLocalPointerDeps info for RemInst");
1429
1430      NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1431
1432      // The cache is not valid for any specific block anymore.
1433      NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1434
1435      // Update any entries for RemInst to use the instruction after it.
1436      for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
1437           DI != DE; ++DI) {
1438        if (DI->getResult().getInst() != RemInst) continue;
1439
1440        // Convert to a dirty entry for the subsequent instruction.
1441        DI->setResult(NewDirtyVal);
1442
1443        if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1444          ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1445      }
1446
1447      // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
1448      // subsequent value may invalidate the sortedness.
1449      std::sort(NLPDI.begin(), NLPDI.end());
1450    }
1451
1452    ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1453
1454    while (!ReversePtrDepsToAdd.empty()) {
1455      ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
1456        .insert(ReversePtrDepsToAdd.back().second);
1457      ReversePtrDepsToAdd.pop_back();
1458    }
1459  }
1460
1461
1462  assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1463  AA->deleteValue(RemInst);
1464  DEBUG(verifyRemoved(RemInst));
1465}
1466/// verifyRemoved - Verify that the specified instruction does not occur
1467/// in our internal data structures.
1468void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
1469  for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
1470       E = LocalDeps.end(); I != E; ++I) {
1471    assert(I->first != D && "Inst occurs in data structures");
1472    assert(I->second.getInst() != D &&
1473           "Inst occurs in data structures");
1474  }
1475
1476  for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
1477       E = NonLocalPointerDeps.end(); I != E; ++I) {
1478    assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
1479    const NonLocalDepInfo &Val = I->second.NonLocalDeps;
1480    for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
1481         II != E; ++II)
1482      assert(II->getResult().getInst() != D && "Inst occurs as NLPD value");
1483  }
1484
1485  for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
1486       E = NonLocalDeps.end(); I != E; ++I) {
1487    assert(I->first != D && "Inst occurs in data structures");
1488    const PerInstNLInfo &INLD = I->second;
1489    for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
1490         EE = INLD.first.end(); II  != EE; ++II)
1491      assert(II->getResult().getInst() != D && "Inst occurs in data structures");
1492  }
1493
1494  for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
1495       E = ReverseLocalDeps.end(); I != E; ++I) {
1496    assert(I->first != D && "Inst occurs in data structures");
1497    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1498         EE = I->second.end(); II != EE; ++II)
1499      assert(*II != D && "Inst occurs in data structures");
1500  }
1501
1502  for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
1503       E = ReverseNonLocalDeps.end();
1504       I != E; ++I) {
1505    assert(I->first != D && "Inst occurs in data structures");
1506    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1507         EE = I->second.end(); II != EE; ++II)
1508      assert(*II != D && "Inst occurs in data structures");
1509  }
1510
1511  for (ReverseNonLocalPtrDepTy::const_iterator
1512       I = ReverseNonLocalPtrDeps.begin(),
1513       E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
1514    assert(I->first != D && "Inst occurs in rev NLPD map");
1515
1516    for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(),
1517         E = I->second.end(); II != E; ++II)
1518      assert(*II != ValueIsLoadPair(D, false) &&
1519             *II != ValueIsLoadPair(D, true) &&
1520             "Inst occurs in ReverseNonLocalPtrDeps map");
1521  }
1522
1523}
1524