ScalarEvolutionExpander.cpp revision 0a2a60ace9b79164b71794ce7ff981171c61e442
1//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution expander,
11// which is used to generate the code corresponding to a given scalar evolution
12// expression.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/ScalarEvolutionExpander.h"
17#include "llvm/Analysis/LoopInfo.h"
18#include "llvm/IntrinsicInst.h"
19#include "llvm/LLVMContext.h"
20#include "llvm/Target/TargetData.h"
21#include "llvm/ADT/STLExtras.h"
22
23using namespace llvm;
24
25/// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
26/// reusing an existing cast if a suitable one exists, moving an existing
27/// cast if a suitable one exists but isn't in the right place, or
28/// creating a new one.
29Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
30                                       Instruction::CastOps Op,
31                                       BasicBlock::iterator IP) {
32  // Check to see if there is already a cast!
33  for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
34       UI != E; ++UI) {
35    User *U = *UI;
36    if (U->getType() == Ty)
37      if (CastInst *CI = dyn_cast<CastInst>(U))
38        if (CI->getOpcode() == Op) {
39          // If the cast isn't where we want it, fix it.
40          if (BasicBlock::iterator(CI) != IP) {
41            // Create a new cast, and leave the old cast in place in case
42            // it is being used as an insert point. Clear its operand
43            // so that it doesn't hold anything live.
44            Instruction *NewCI = CastInst::Create(Op, V, Ty, "", IP);
45            NewCI->takeName(CI);
46            CI->replaceAllUsesWith(NewCI);
47            CI->setOperand(0, UndefValue::get(V->getType()));
48            rememberInstruction(NewCI);
49            return NewCI;
50          }
51          rememberInstruction(CI);
52          return CI;
53        }
54  }
55
56  // Create a new cast.
57  Instruction *I = CastInst::Create(Op, V, Ty, V->getName(), IP);
58  rememberInstruction(I);
59  return I;
60}
61
62/// InsertNoopCastOfTo - Insert a cast of V to the specified type,
63/// which must be possible with a noop cast, doing what we can to share
64/// the casts.
65Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
66  Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
67  assert((Op == Instruction::BitCast ||
68          Op == Instruction::PtrToInt ||
69          Op == Instruction::IntToPtr) &&
70         "InsertNoopCastOfTo cannot perform non-noop casts!");
71  assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
72         "InsertNoopCastOfTo cannot change sizes!");
73
74  // Short-circuit unnecessary bitcasts.
75  if (Op == Instruction::BitCast && V->getType() == Ty)
76    return V;
77
78  // Short-circuit unnecessary inttoptr<->ptrtoint casts.
79  if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
80      SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
81    if (CastInst *CI = dyn_cast<CastInst>(V))
82      if ((CI->getOpcode() == Instruction::PtrToInt ||
83           CI->getOpcode() == Instruction::IntToPtr) &&
84          SE.getTypeSizeInBits(CI->getType()) ==
85          SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
86        return CI->getOperand(0);
87    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
88      if ((CE->getOpcode() == Instruction::PtrToInt ||
89           CE->getOpcode() == Instruction::IntToPtr) &&
90          SE.getTypeSizeInBits(CE->getType()) ==
91          SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
92        return CE->getOperand(0);
93  }
94
95  // Fold a cast of a constant.
96  if (Constant *C = dyn_cast<Constant>(V))
97    return ConstantExpr::getCast(Op, C, Ty);
98
99  // Cast the argument at the beginning of the entry block, after
100  // any bitcasts of other arguments.
101  if (Argument *A = dyn_cast<Argument>(V)) {
102    BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
103    while ((isa<BitCastInst>(IP) &&
104            isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
105            cast<BitCastInst>(IP)->getOperand(0) != A) ||
106           isa<DbgInfoIntrinsic>(IP))
107      ++IP;
108    return ReuseOrCreateCast(A, Ty, Op, IP);
109  }
110
111  // Cast the instruction immediately after the instruction.
112  Instruction *I = cast<Instruction>(V);
113  BasicBlock::iterator IP = I; ++IP;
114  if (InvokeInst *II = dyn_cast<InvokeInst>(I))
115    IP = II->getNormalDest()->begin();
116  while (isa<PHINode>(IP) || isa<DbgInfoIntrinsic>(IP)) ++IP;
117  return ReuseOrCreateCast(I, Ty, Op, IP);
118}
119
120/// InsertBinop - Insert the specified binary operator, doing a small amount
121/// of work to avoid inserting an obviously redundant operation.
122Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
123                                 Value *LHS, Value *RHS) {
124  // Fold a binop with constant operands.
125  if (Constant *CLHS = dyn_cast<Constant>(LHS))
126    if (Constant *CRHS = dyn_cast<Constant>(RHS))
127      return ConstantExpr::get(Opcode, CLHS, CRHS);
128
129  // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
130  unsigned ScanLimit = 6;
131  BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
132  // Scanning starts from the last instruction before the insertion point.
133  BasicBlock::iterator IP = Builder.GetInsertPoint();
134  if (IP != BlockBegin) {
135    --IP;
136    for (; ScanLimit; --IP, --ScanLimit) {
137      // Don't count dbg.value against the ScanLimit, to avoid perturbing the
138      // generated code.
139      if (isa<DbgInfoIntrinsic>(IP))
140        ScanLimit++;
141      if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
142          IP->getOperand(1) == RHS)
143        return IP;
144      if (IP == BlockBegin) break;
145    }
146  }
147
148  // Save the original insertion point so we can restore it when we're done.
149  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
150  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
151
152  // Move the insertion point out of as many loops as we can.
153  while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
154    if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
155    BasicBlock *Preheader = L->getLoopPreheader();
156    if (!Preheader) break;
157
158    // Ok, move up a level.
159    Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
160  }
161
162  // If we haven't found this binop, insert it.
163  Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS, "tmp"));
164  BO->setDebugLoc(SaveInsertPt->getDebugLoc());
165  rememberInstruction(BO);
166
167  // Restore the original insert point.
168  if (SaveInsertBB)
169    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
170
171  return BO;
172}
173
174/// FactorOutConstant - Test if S is divisible by Factor, using signed
175/// division. If so, update S with Factor divided out and return true.
176/// S need not be evenly divisible if a reasonable remainder can be
177/// computed.
178/// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
179/// unnecessary; in its place, just signed-divide Ops[i] by the scale and
180/// check to see if the divide was folded.
181static bool FactorOutConstant(const SCEV *&S,
182                              const SCEV *&Remainder,
183                              const SCEV *Factor,
184                              ScalarEvolution &SE,
185                              const TargetData *TD) {
186  // Everything is divisible by one.
187  if (Factor->isOne())
188    return true;
189
190  // x/x == 1.
191  if (S == Factor) {
192    S = SE.getConstant(S->getType(), 1);
193    return true;
194  }
195
196  // For a Constant, check for a multiple of the given factor.
197  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
198    // 0/x == 0.
199    if (C->isZero())
200      return true;
201    // Check for divisibility.
202    if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
203      ConstantInt *CI =
204        ConstantInt::get(SE.getContext(),
205                         C->getValue()->getValue().sdiv(
206                                                   FC->getValue()->getValue()));
207      // If the quotient is zero and the remainder is non-zero, reject
208      // the value at this scale. It will be considered for subsequent
209      // smaller scales.
210      if (!CI->isZero()) {
211        const SCEV *Div = SE.getConstant(CI);
212        S = Div;
213        Remainder =
214          SE.getAddExpr(Remainder,
215                        SE.getConstant(C->getValue()->getValue().srem(
216                                                  FC->getValue()->getValue())));
217        return true;
218      }
219    }
220  }
221
222  // In a Mul, check if there is a constant operand which is a multiple
223  // of the given factor.
224  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
225    if (TD) {
226      // With TargetData, the size is known. Check if there is a constant
227      // operand which is a multiple of the given factor. If so, we can
228      // factor it.
229      const SCEVConstant *FC = cast<SCEVConstant>(Factor);
230      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
231        if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) {
232          SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
233          NewMulOps[0] =
234            SE.getConstant(C->getValue()->getValue().sdiv(
235                                                   FC->getValue()->getValue()));
236          S = SE.getMulExpr(NewMulOps);
237          return true;
238        }
239    } else {
240      // Without TargetData, check if Factor can be factored out of any of the
241      // Mul's operands. If so, we can just remove it.
242      for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
243        const SCEV *SOp = M->getOperand(i);
244        const SCEV *Remainder = SE.getConstant(SOp->getType(), 0);
245        if (FactorOutConstant(SOp, Remainder, Factor, SE, TD) &&
246            Remainder->isZero()) {
247          SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
248          NewMulOps[i] = SOp;
249          S = SE.getMulExpr(NewMulOps);
250          return true;
251        }
252      }
253    }
254  }
255
256  // In an AddRec, check if both start and step are divisible.
257  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
258    const SCEV *Step = A->getStepRecurrence(SE);
259    const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
260    if (!FactorOutConstant(Step, StepRem, Factor, SE, TD))
261      return false;
262    if (!StepRem->isZero())
263      return false;
264    const SCEV *Start = A->getStart();
265    if (!FactorOutConstant(Start, Remainder, Factor, SE, TD))
266      return false;
267    // FIXME: can use A->getNoWrapFlags(FlagNW)
268    S = SE.getAddRecExpr(Start, Step, A->getLoop(), SCEV::FlagAnyWrap);
269    return true;
270  }
271
272  return false;
273}
274
275/// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
276/// is the number of SCEVAddRecExprs present, which are kept at the end of
277/// the list.
278///
279static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
280                                Type *Ty,
281                                ScalarEvolution &SE) {
282  unsigned NumAddRecs = 0;
283  for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
284    ++NumAddRecs;
285  // Group Ops into non-addrecs and addrecs.
286  SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
287  SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
288  // Let ScalarEvolution sort and simplify the non-addrecs list.
289  const SCEV *Sum = NoAddRecs.empty() ?
290                    SE.getConstant(Ty, 0) :
291                    SE.getAddExpr(NoAddRecs);
292  // If it returned an add, use the operands. Otherwise it simplified
293  // the sum into a single value, so just use that.
294  Ops.clear();
295  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
296    Ops.append(Add->op_begin(), Add->op_end());
297  else if (!Sum->isZero())
298    Ops.push_back(Sum);
299  // Then append the addrecs.
300  Ops.append(AddRecs.begin(), AddRecs.end());
301}
302
303/// SplitAddRecs - Flatten a list of add operands, moving addrec start values
304/// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
305/// This helps expose more opportunities for folding parts of the expressions
306/// into GEP indices.
307///
308static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
309                         Type *Ty,
310                         ScalarEvolution &SE) {
311  // Find the addrecs.
312  SmallVector<const SCEV *, 8> AddRecs;
313  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
314    while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
315      const SCEV *Start = A->getStart();
316      if (Start->isZero()) break;
317      const SCEV *Zero = SE.getConstant(Ty, 0);
318      AddRecs.push_back(SE.getAddRecExpr(Zero,
319                                         A->getStepRecurrence(SE),
320                                         A->getLoop(),
321                                         // FIXME: A->getNoWrapFlags(FlagNW)
322                                         SCEV::FlagAnyWrap));
323      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
324        Ops[i] = Zero;
325        Ops.append(Add->op_begin(), Add->op_end());
326        e += Add->getNumOperands();
327      } else {
328        Ops[i] = Start;
329      }
330    }
331  if (!AddRecs.empty()) {
332    // Add the addrecs onto the end of the list.
333    Ops.append(AddRecs.begin(), AddRecs.end());
334    // Resort the operand list, moving any constants to the front.
335    SimplifyAddOperands(Ops, Ty, SE);
336  }
337}
338
339/// expandAddToGEP - Expand an addition expression with a pointer type into
340/// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
341/// BasicAliasAnalysis and other passes analyze the result. See the rules
342/// for getelementptr vs. inttoptr in
343/// http://llvm.org/docs/LangRef.html#pointeraliasing
344/// for details.
345///
346/// Design note: The correctness of using getelementptr here depends on
347/// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
348/// they may introduce pointer arithmetic which may not be safely converted
349/// into getelementptr.
350///
351/// Design note: It might seem desirable for this function to be more
352/// loop-aware. If some of the indices are loop-invariant while others
353/// aren't, it might seem desirable to emit multiple GEPs, keeping the
354/// loop-invariant portions of the overall computation outside the loop.
355/// However, there are a few reasons this is not done here. Hoisting simple
356/// arithmetic is a low-level optimization that often isn't very
357/// important until late in the optimization process. In fact, passes
358/// like InstructionCombining will combine GEPs, even if it means
359/// pushing loop-invariant computation down into loops, so even if the
360/// GEPs were split here, the work would quickly be undone. The
361/// LoopStrengthReduction pass, which is usually run quite late (and
362/// after the last InstructionCombining pass), takes care of hoisting
363/// loop-invariant portions of expressions, after considering what
364/// can be folded using target addressing modes.
365///
366Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
367                                    const SCEV *const *op_end,
368                                    PointerType *PTy,
369                                    Type *Ty,
370                                    Value *V) {
371  Type *ElTy = PTy->getElementType();
372  SmallVector<Value *, 4> GepIndices;
373  SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
374  bool AnyNonZeroIndices = false;
375
376  // Split AddRecs up into parts as either of the parts may be usable
377  // without the other.
378  SplitAddRecs(Ops, Ty, SE);
379
380  // Descend down the pointer's type and attempt to convert the other
381  // operands into GEP indices, at each level. The first index in a GEP
382  // indexes into the array implied by the pointer operand; the rest of
383  // the indices index into the element or field type selected by the
384  // preceding index.
385  for (;;) {
386    // If the scale size is not 0, attempt to factor out a scale for
387    // array indexing.
388    SmallVector<const SCEV *, 8> ScaledOps;
389    if (ElTy->isSized()) {
390      const SCEV *ElSize = SE.getSizeOfExpr(ElTy);
391      if (!ElSize->isZero()) {
392        SmallVector<const SCEV *, 8> NewOps;
393        for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
394          const SCEV *Op = Ops[i];
395          const SCEV *Remainder = SE.getConstant(Ty, 0);
396          if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.TD)) {
397            // Op now has ElSize factored out.
398            ScaledOps.push_back(Op);
399            if (!Remainder->isZero())
400              NewOps.push_back(Remainder);
401            AnyNonZeroIndices = true;
402          } else {
403            // The operand was not divisible, so add it to the list of operands
404            // we'll scan next iteration.
405            NewOps.push_back(Ops[i]);
406          }
407        }
408        // If we made any changes, update Ops.
409        if (!ScaledOps.empty()) {
410          Ops = NewOps;
411          SimplifyAddOperands(Ops, Ty, SE);
412        }
413      }
414    }
415
416    // Record the scaled array index for this level of the type. If
417    // we didn't find any operands that could be factored, tentatively
418    // assume that element zero was selected (since the zero offset
419    // would obviously be folded away).
420    Value *Scaled = ScaledOps.empty() ?
421                    Constant::getNullValue(Ty) :
422                    expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
423    GepIndices.push_back(Scaled);
424
425    // Collect struct field index operands.
426    while (StructType *STy = dyn_cast<StructType>(ElTy)) {
427      bool FoundFieldNo = false;
428      // An empty struct has no fields.
429      if (STy->getNumElements() == 0) break;
430      if (SE.TD) {
431        // With TargetData, field offsets are known. See if a constant offset
432        // falls within any of the struct fields.
433        if (Ops.empty()) break;
434        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
435          if (SE.getTypeSizeInBits(C->getType()) <= 64) {
436            const StructLayout &SL = *SE.TD->getStructLayout(STy);
437            uint64_t FullOffset = C->getValue()->getZExtValue();
438            if (FullOffset < SL.getSizeInBytes()) {
439              unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
440              GepIndices.push_back(
441                  ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
442              ElTy = STy->getTypeAtIndex(ElIdx);
443              Ops[0] =
444                SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
445              AnyNonZeroIndices = true;
446              FoundFieldNo = true;
447            }
448          }
449      } else {
450        // Without TargetData, just check for an offsetof expression of the
451        // appropriate struct type.
452        for (unsigned i = 0, e = Ops.size(); i != e; ++i)
453          if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Ops[i])) {
454            Type *CTy;
455            Constant *FieldNo;
456            if (U->isOffsetOf(CTy, FieldNo) && CTy == STy) {
457              GepIndices.push_back(FieldNo);
458              ElTy =
459                STy->getTypeAtIndex(cast<ConstantInt>(FieldNo)->getZExtValue());
460              Ops[i] = SE.getConstant(Ty, 0);
461              AnyNonZeroIndices = true;
462              FoundFieldNo = true;
463              break;
464            }
465          }
466      }
467      // If no struct field offsets were found, tentatively assume that
468      // field zero was selected (since the zero offset would obviously
469      // be folded away).
470      if (!FoundFieldNo) {
471        ElTy = STy->getTypeAtIndex(0u);
472        GepIndices.push_back(
473          Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
474      }
475    }
476
477    if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
478      ElTy = ATy->getElementType();
479    else
480      break;
481  }
482
483  // If none of the operands were convertible to proper GEP indices, cast
484  // the base to i8* and do an ugly getelementptr with that. It's still
485  // better than ptrtoint+arithmetic+inttoptr at least.
486  if (!AnyNonZeroIndices) {
487    // Cast the base to i8*.
488    V = InsertNoopCastOfTo(V,
489       Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
490
491    // Expand the operands for a plain byte offset.
492    Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
493
494    // Fold a GEP with constant operands.
495    if (Constant *CLHS = dyn_cast<Constant>(V))
496      if (Constant *CRHS = dyn_cast<Constant>(Idx))
497        return ConstantExpr::getGetElementPtr(CLHS, CRHS);
498
499    // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
500    unsigned ScanLimit = 6;
501    BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
502    // Scanning starts from the last instruction before the insertion point.
503    BasicBlock::iterator IP = Builder.GetInsertPoint();
504    if (IP != BlockBegin) {
505      --IP;
506      for (; ScanLimit; --IP, --ScanLimit) {
507        // Don't count dbg.value against the ScanLimit, to avoid perturbing the
508        // generated code.
509        if (isa<DbgInfoIntrinsic>(IP))
510          ScanLimit++;
511        if (IP->getOpcode() == Instruction::GetElementPtr &&
512            IP->getOperand(0) == V && IP->getOperand(1) == Idx)
513          return IP;
514        if (IP == BlockBegin) break;
515      }
516    }
517
518    // Save the original insertion point so we can restore it when we're done.
519    BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
520    BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
521
522    // Move the insertion point out of as many loops as we can.
523    while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
524      if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
525      BasicBlock *Preheader = L->getLoopPreheader();
526      if (!Preheader) break;
527
528      // Ok, move up a level.
529      Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
530    }
531
532    // Emit a GEP.
533    Value *GEP = Builder.CreateGEP(V, Idx, "uglygep");
534    rememberInstruction(GEP);
535
536    // Restore the original insert point.
537    if (SaveInsertBB)
538      restoreInsertPoint(SaveInsertBB, SaveInsertPt);
539
540    return GEP;
541  }
542
543  // Save the original insertion point so we can restore it when we're done.
544  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
545  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
546
547  // Move the insertion point out of as many loops as we can.
548  while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
549    if (!L->isLoopInvariant(V)) break;
550
551    bool AnyIndexNotLoopInvariant = false;
552    for (SmallVectorImpl<Value *>::const_iterator I = GepIndices.begin(),
553         E = GepIndices.end(); I != E; ++I)
554      if (!L->isLoopInvariant(*I)) {
555        AnyIndexNotLoopInvariant = true;
556        break;
557      }
558    if (AnyIndexNotLoopInvariant)
559      break;
560
561    BasicBlock *Preheader = L->getLoopPreheader();
562    if (!Preheader) break;
563
564    // Ok, move up a level.
565    Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
566  }
567
568  // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
569  // because ScalarEvolution may have changed the address arithmetic to
570  // compute a value which is beyond the end of the allocated object.
571  Value *Casted = V;
572  if (V->getType() != PTy)
573    Casted = InsertNoopCastOfTo(Casted, PTy);
574  Value *GEP = Builder.CreateGEP(Casted,
575                                 GepIndices,
576                                 "scevgep");
577  Ops.push_back(SE.getUnknown(GEP));
578  rememberInstruction(GEP);
579
580  // Restore the original insert point.
581  if (SaveInsertBB)
582    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
583
584  return expand(SE.getAddExpr(Ops));
585}
586
587/// isNonConstantNegative - Return true if the specified scev is negated, but
588/// not a constant.
589static bool isNonConstantNegative(const SCEV *F) {
590  const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(F);
591  if (!Mul) return false;
592
593  // If there is a constant factor, it will be first.
594  const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
595  if (!SC) return false;
596
597  // Return true if the value is negative, this matches things like (-42 * V).
598  return SC->getValue()->getValue().isNegative();
599}
600
601/// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
602/// SCEV expansion. If they are nested, this is the most nested. If they are
603/// neighboring, pick the later.
604static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
605                                        DominatorTree &DT) {
606  if (!A) return B;
607  if (!B) return A;
608  if (A->contains(B)) return B;
609  if (B->contains(A)) return A;
610  if (DT.dominates(A->getHeader(), B->getHeader())) return B;
611  if (DT.dominates(B->getHeader(), A->getHeader())) return A;
612  return A; // Arbitrarily break the tie.
613}
614
615/// getRelevantLoop - Get the most relevant loop associated with the given
616/// expression, according to PickMostRelevantLoop.
617const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
618  // Test whether we've already computed the most relevant loop for this SCEV.
619  std::pair<DenseMap<const SCEV *, const Loop *>::iterator, bool> Pair =
620    RelevantLoops.insert(std::make_pair(S, static_cast<const Loop *>(0)));
621  if (!Pair.second)
622    return Pair.first->second;
623
624  if (isa<SCEVConstant>(S))
625    // A constant has no relevant loops.
626    return 0;
627  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
628    if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
629      return Pair.first->second = SE.LI->getLoopFor(I->getParent());
630    // A non-instruction has no relevant loops.
631    return 0;
632  }
633  if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
634    const Loop *L = 0;
635    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
636      L = AR->getLoop();
637    for (SCEVNAryExpr::op_iterator I = N->op_begin(), E = N->op_end();
638         I != E; ++I)
639      L = PickMostRelevantLoop(L, getRelevantLoop(*I), *SE.DT);
640    return RelevantLoops[N] = L;
641  }
642  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
643    const Loop *Result = getRelevantLoop(C->getOperand());
644    return RelevantLoops[C] = Result;
645  }
646  if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
647    const Loop *Result =
648      PickMostRelevantLoop(getRelevantLoop(D->getLHS()),
649                           getRelevantLoop(D->getRHS()),
650                           *SE.DT);
651    return RelevantLoops[D] = Result;
652  }
653  llvm_unreachable("Unexpected SCEV type!");
654  return 0;
655}
656
657namespace {
658
659/// LoopCompare - Compare loops by PickMostRelevantLoop.
660class LoopCompare {
661  DominatorTree &DT;
662public:
663  explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
664
665  bool operator()(std::pair<const Loop *, const SCEV *> LHS,
666                  std::pair<const Loop *, const SCEV *> RHS) const {
667    // Keep pointer operands sorted at the end.
668    if (LHS.second->getType()->isPointerTy() !=
669        RHS.second->getType()->isPointerTy())
670      return LHS.second->getType()->isPointerTy();
671
672    // Compare loops with PickMostRelevantLoop.
673    if (LHS.first != RHS.first)
674      return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
675
676    // If one operand is a non-constant negative and the other is not,
677    // put the non-constant negative on the right so that a sub can
678    // be used instead of a negate and add.
679    if (isNonConstantNegative(LHS.second)) {
680      if (!isNonConstantNegative(RHS.second))
681        return false;
682    } else if (isNonConstantNegative(RHS.second))
683      return true;
684
685    // Otherwise they are equivalent according to this comparison.
686    return false;
687  }
688};
689
690}
691
692Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
693  Type *Ty = SE.getEffectiveSCEVType(S->getType());
694
695  // Collect all the add operands in a loop, along with their associated loops.
696  // Iterate in reverse so that constants are emitted last, all else equal, and
697  // so that pointer operands are inserted first, which the code below relies on
698  // to form more involved GEPs.
699  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
700  for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
701       E(S->op_begin()); I != E; ++I)
702    OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
703
704  // Sort by loop. Use a stable sort so that constants follow non-constants and
705  // pointer operands precede non-pointer operands.
706  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
707
708  // Emit instructions to add all the operands. Hoist as much as possible
709  // out of loops, and form meaningful getelementptrs where possible.
710  Value *Sum = 0;
711  for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
712       I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
713    const Loop *CurLoop = I->first;
714    const SCEV *Op = I->second;
715    if (!Sum) {
716      // This is the first operand. Just expand it.
717      Sum = expand(Op);
718      ++I;
719    } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
720      // The running sum expression is a pointer. Try to form a getelementptr
721      // at this level with that as the base.
722      SmallVector<const SCEV *, 4> NewOps;
723      for (; I != E && I->first == CurLoop; ++I) {
724        // If the operand is SCEVUnknown and not instructions, peek through
725        // it, to enable more of it to be folded into the GEP.
726        const SCEV *X = I->second;
727        if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
728          if (!isa<Instruction>(U->getValue()))
729            X = SE.getSCEV(U->getValue());
730        NewOps.push_back(X);
731      }
732      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
733    } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
734      // The running sum is an integer, and there's a pointer at this level.
735      // Try to form a getelementptr. If the running sum is instructions,
736      // use a SCEVUnknown to avoid re-analyzing them.
737      SmallVector<const SCEV *, 4> NewOps;
738      NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
739                                               SE.getSCEV(Sum));
740      for (++I; I != E && I->first == CurLoop; ++I)
741        NewOps.push_back(I->second);
742      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
743    } else if (isNonConstantNegative(Op)) {
744      // Instead of doing a negate and add, just do a subtract.
745      Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
746      Sum = InsertNoopCastOfTo(Sum, Ty);
747      Sum = InsertBinop(Instruction::Sub, Sum, W);
748      ++I;
749    } else {
750      // A simple add.
751      Value *W = expandCodeFor(Op, Ty);
752      Sum = InsertNoopCastOfTo(Sum, Ty);
753      // Canonicalize a constant to the RHS.
754      if (isa<Constant>(Sum)) std::swap(Sum, W);
755      Sum = InsertBinop(Instruction::Add, Sum, W);
756      ++I;
757    }
758  }
759
760  return Sum;
761}
762
763Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
764  Type *Ty = SE.getEffectiveSCEVType(S->getType());
765
766  // Collect all the mul operands in a loop, along with their associated loops.
767  // Iterate in reverse so that constants are emitted last, all else equal.
768  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
769  for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
770       E(S->op_begin()); I != E; ++I)
771    OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
772
773  // Sort by loop. Use a stable sort so that constants follow non-constants.
774  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
775
776  // Emit instructions to mul all the operands. Hoist as much as possible
777  // out of loops.
778  Value *Prod = 0;
779  for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
780       I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
781    const SCEV *Op = I->second;
782    if (!Prod) {
783      // This is the first operand. Just expand it.
784      Prod = expand(Op);
785      ++I;
786    } else if (Op->isAllOnesValue()) {
787      // Instead of doing a multiply by negative one, just do a negate.
788      Prod = InsertNoopCastOfTo(Prod, Ty);
789      Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod);
790      ++I;
791    } else {
792      // A simple mul.
793      Value *W = expandCodeFor(Op, Ty);
794      Prod = InsertNoopCastOfTo(Prod, Ty);
795      // Canonicalize a constant to the RHS.
796      if (isa<Constant>(Prod)) std::swap(Prod, W);
797      Prod = InsertBinop(Instruction::Mul, Prod, W);
798      ++I;
799    }
800  }
801
802  return Prod;
803}
804
805Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
806  Type *Ty = SE.getEffectiveSCEVType(S->getType());
807
808  Value *LHS = expandCodeFor(S->getLHS(), Ty);
809  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
810    const APInt &RHS = SC->getValue()->getValue();
811    if (RHS.isPowerOf2())
812      return InsertBinop(Instruction::LShr, LHS,
813                         ConstantInt::get(Ty, RHS.logBase2()));
814  }
815
816  Value *RHS = expandCodeFor(S->getRHS(), Ty);
817  return InsertBinop(Instruction::UDiv, LHS, RHS);
818}
819
820/// Move parts of Base into Rest to leave Base with the minimal
821/// expression that provides a pointer operand suitable for a
822/// GEP expansion.
823static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
824                              ScalarEvolution &SE) {
825  while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
826    Base = A->getStart();
827    Rest = SE.getAddExpr(Rest,
828                         SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
829                                          A->getStepRecurrence(SE),
830                                          A->getLoop(),
831                                          // FIXME: A->getNoWrapFlags(FlagNW)
832                                          SCEV::FlagAnyWrap));
833  }
834  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
835    Base = A->getOperand(A->getNumOperands()-1);
836    SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
837    NewAddOps.back() = Rest;
838    Rest = SE.getAddExpr(NewAddOps);
839    ExposePointerBase(Base, Rest, SE);
840  }
841}
842
843/// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
844/// the base addrec, which is the addrec without any non-loop-dominating
845/// values, and return the PHI.
846PHINode *
847SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
848                                        const Loop *L,
849                                        Type *ExpandTy,
850                                        Type *IntTy) {
851  assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
852
853  // Reuse a previously-inserted PHI, if present.
854  for (BasicBlock::iterator I = L->getHeader()->begin();
855       PHINode *PN = dyn_cast<PHINode>(I); ++I)
856    if (SE.isSCEVable(PN->getType()) &&
857        (SE.getEffectiveSCEVType(PN->getType()) ==
858         SE.getEffectiveSCEVType(Normalized->getType())) &&
859        SE.getSCEV(PN) == Normalized)
860      if (BasicBlock *LatchBlock = L->getLoopLatch()) {
861        Instruction *IncV =
862          cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
863
864        // Determine if this is a well-behaved chain of instructions leading
865        // back to the PHI. It probably will be, if we're scanning an inner
866        // loop already visited by LSR for example, but it wouldn't have
867        // to be.
868        do {
869          if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
870              (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV))) {
871            IncV = 0;
872            break;
873          }
874          // If any of the operands don't dominate the insert position, bail.
875          // Addrec operands are always loop-invariant, so this can only happen
876          // if there are instructions which haven't been hoisted.
877          if (L == IVIncInsertLoop) {
878            for (User::op_iterator OI = IncV->op_begin()+1,
879                   OE = IncV->op_end(); OI != OE; ++OI)
880              if (Instruction *OInst = dyn_cast<Instruction>(OI))
881                if (!SE.DT->dominates(OInst, IVIncInsertPos)) {
882                  IncV = 0;
883                  break;
884                }
885          }
886          if (!IncV)
887            break;
888          // Advance to the next instruction.
889          IncV = dyn_cast<Instruction>(IncV->getOperand(0));
890          if (!IncV)
891            break;
892          if (IncV->mayHaveSideEffects()) {
893            IncV = 0;
894            break;
895          }
896        } while (IncV != PN);
897
898        if (IncV) {
899          // Ok, the add recurrence looks usable.
900          // Remember this PHI, even in post-inc mode.
901          InsertedValues.insert(PN);
902          // Remember the increment.
903          IncV = cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
904          rememberInstruction(IncV);
905          if (L == IVIncInsertLoop)
906            do {
907              if (SE.DT->dominates(IncV, IVIncInsertPos))
908                break;
909              // Make sure the increment is where we want it. But don't move it
910              // down past a potential existing post-inc user.
911              IncV->moveBefore(IVIncInsertPos);
912              IVIncInsertPos = IncV;
913              IncV = cast<Instruction>(IncV->getOperand(0));
914            } while (IncV != PN);
915          return PN;
916        }
917      }
918
919  // Save the original insertion point so we can restore it when we're done.
920  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
921  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
922
923  // Expand code for the start value.
924  Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
925                                L->getHeader()->begin());
926
927  // StartV must be hoisted into L's preheader to dominate the new phi.
928  assert(!isa<Instruction>(StartV) ||
929         SE.DT->properlyDominates(cast<Instruction>(StartV)->getParent(),
930                                  L->getHeader()));
931
932  // Expand code for the step value. Insert instructions right before the
933  // terminator corresponding to the back-edge. Do this before creating the PHI
934  // so that PHI reuse code doesn't see an incomplete PHI. If the stride is
935  // negative, insert a sub instead of an add for the increment (unless it's a
936  // constant, because subtracts of constants are canonicalized to adds).
937  const SCEV *Step = Normalized->getStepRecurrence(SE);
938  bool isPointer = ExpandTy->isPointerTy();
939  bool isNegative = !isPointer && isNonConstantNegative(Step);
940  if (isNegative)
941    Step = SE.getNegativeSCEV(Step);
942  Value *StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
943
944  // Create the PHI.
945  BasicBlock *Header = L->getHeader();
946  Builder.SetInsertPoint(Header, Header->begin());
947  pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
948  PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
949                                  Twine(IVName) + ".iv");
950  rememberInstruction(PN);
951
952  // Create the step instructions and populate the PHI.
953  for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
954    BasicBlock *Pred = *HPI;
955
956    // Add a start value.
957    if (!L->contains(Pred)) {
958      PN->addIncoming(StartV, Pred);
959      continue;
960    }
961
962    // Create a step value and add it to the PHI. If IVIncInsertLoop is
963    // non-null and equal to the addrec's loop, insert the instructions
964    // at IVIncInsertPos.
965    Instruction *InsertPos = L == IVIncInsertLoop ?
966      IVIncInsertPos : Pred->getTerminator();
967    Builder.SetInsertPoint(InsertPos);
968    Value *IncV;
969    // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
970    if (isPointer) {
971      PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
972      // If the step isn't constant, don't use an implicitly scaled GEP, because
973      // that would require a multiply inside the loop.
974      if (!isa<ConstantInt>(StepV))
975        GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
976                                    GEPPtrTy->getAddressSpace());
977      const SCEV *const StepArray[1] = { SE.getSCEV(StepV) };
978      IncV = expandAddToGEP(StepArray, StepArray+1, GEPPtrTy, IntTy, PN);
979      if (IncV->getType() != PN->getType()) {
980        IncV = Builder.CreateBitCast(IncV, PN->getType(), "tmp");
981        rememberInstruction(IncV);
982      }
983    } else {
984      IncV = isNegative ?
985        Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
986        Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
987      rememberInstruction(IncV);
988    }
989    PN->addIncoming(IncV, Pred);
990  }
991
992  // Restore the original insert point.
993  if (SaveInsertBB)
994    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
995
996  // Remember this PHI, even in post-inc mode.
997  InsertedValues.insert(PN);
998
999  return PN;
1000}
1001
1002Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1003  Type *STy = S->getType();
1004  Type *IntTy = SE.getEffectiveSCEVType(STy);
1005  const Loop *L = S->getLoop();
1006
1007  // Determine a normalized form of this expression, which is the expression
1008  // before any post-inc adjustment is made.
1009  const SCEVAddRecExpr *Normalized = S;
1010  if (PostIncLoops.count(L)) {
1011    PostIncLoopSet Loops;
1012    Loops.insert(L);
1013    Normalized =
1014      cast<SCEVAddRecExpr>(TransformForPostIncUse(Normalize, S, 0, 0,
1015                                                  Loops, SE, *SE.DT));
1016  }
1017
1018  // Strip off any non-loop-dominating component from the addrec start.
1019  const SCEV *Start = Normalized->getStart();
1020  const SCEV *PostLoopOffset = 0;
1021  if (!SE.properlyDominates(Start, L->getHeader())) {
1022    PostLoopOffset = Start;
1023    Start = SE.getConstant(Normalized->getType(), 0);
1024    Normalized = cast<SCEVAddRecExpr>(
1025      SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
1026                       Normalized->getLoop(),
1027                       // FIXME: Normalized->getNoWrapFlags(FlagNW)
1028                       SCEV::FlagAnyWrap));
1029  }
1030
1031  // Strip off any non-loop-dominating component from the addrec step.
1032  const SCEV *Step = Normalized->getStepRecurrence(SE);
1033  const SCEV *PostLoopScale = 0;
1034  if (!SE.dominates(Step, L->getHeader())) {
1035    PostLoopScale = Step;
1036    Step = SE.getConstant(Normalized->getType(), 1);
1037    Normalized =
1038      cast<SCEVAddRecExpr>(SE.getAddRecExpr(Start, Step,
1039                                            Normalized->getLoop(),
1040                                            // FIXME: Normalized
1041                                            // ->getNoWrapFlags(FlagNW)
1042                                            SCEV::FlagAnyWrap));
1043  }
1044
1045  // Expand the core addrec. If we need post-loop scaling, force it to
1046  // expand to an integer type to avoid the need for additional casting.
1047  Type *ExpandTy = PostLoopScale ? IntTy : STy;
1048  PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy);
1049
1050  // Accommodate post-inc mode, if necessary.
1051  Value *Result;
1052  if (!PostIncLoops.count(L))
1053    Result = PN;
1054  else {
1055    // In PostInc mode, use the post-incremented value.
1056    BasicBlock *LatchBlock = L->getLoopLatch();
1057    assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1058    Result = PN->getIncomingValueForBlock(LatchBlock);
1059  }
1060
1061  // Re-apply any non-loop-dominating scale.
1062  if (PostLoopScale) {
1063    Result = InsertNoopCastOfTo(Result, IntTy);
1064    Result = Builder.CreateMul(Result,
1065                               expandCodeFor(PostLoopScale, IntTy));
1066    rememberInstruction(Result);
1067  }
1068
1069  // Re-apply any non-loop-dominating offset.
1070  if (PostLoopOffset) {
1071    if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1072      const SCEV *const OffsetArray[1] = { PostLoopOffset };
1073      Result = expandAddToGEP(OffsetArray, OffsetArray+1, PTy, IntTy, Result);
1074    } else {
1075      Result = InsertNoopCastOfTo(Result, IntTy);
1076      Result = Builder.CreateAdd(Result,
1077                                 expandCodeFor(PostLoopOffset, IntTy));
1078      rememberInstruction(Result);
1079    }
1080  }
1081
1082  return Result;
1083}
1084
1085Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1086  if (!CanonicalMode) return expandAddRecExprLiterally(S);
1087
1088  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1089  const Loop *L = S->getLoop();
1090
1091  // First check for an existing canonical IV in a suitable type.
1092  PHINode *CanonicalIV = 0;
1093  if (PHINode *PN = L->getCanonicalInductionVariable())
1094    if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1095      CanonicalIV = PN;
1096
1097  // Rewrite an AddRec in terms of the canonical induction variable, if
1098  // its type is more narrow.
1099  if (CanonicalIV &&
1100      SE.getTypeSizeInBits(CanonicalIV->getType()) >
1101      SE.getTypeSizeInBits(Ty)) {
1102    SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1103    for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1104      NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
1105    Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1106                                       // FIXME: S->getNoWrapFlags(FlagNW)
1107                                       SCEV::FlagAnyWrap));
1108    BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1109    BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1110    BasicBlock::iterator NewInsertPt =
1111      llvm::next(BasicBlock::iterator(cast<Instruction>(V)));
1112    while (isa<PHINode>(NewInsertPt) || isa<DbgInfoIntrinsic>(NewInsertPt))
1113      ++NewInsertPt;
1114    V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), 0,
1115                      NewInsertPt);
1116    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1117    return V;
1118  }
1119
1120  // {X,+,F} --> X + {0,+,F}
1121  if (!S->getStart()->isZero()) {
1122    SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
1123    NewOps[0] = SE.getConstant(Ty, 0);
1124    // FIXME: can use S->getNoWrapFlags()
1125    const SCEV *Rest = SE.getAddRecExpr(NewOps, L, SCEV::FlagAnyWrap);
1126
1127    // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
1128    // comments on expandAddToGEP for details.
1129    const SCEV *Base = S->getStart();
1130    const SCEV *RestArray[1] = { Rest };
1131    // Dig into the expression to find the pointer base for a GEP.
1132    ExposePointerBase(Base, RestArray[0], SE);
1133    // If we found a pointer, expand the AddRec with a GEP.
1134    if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
1135      // Make sure the Base isn't something exotic, such as a multiplied
1136      // or divided pointer value. In those cases, the result type isn't
1137      // actually a pointer type.
1138      if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
1139        Value *StartV = expand(Base);
1140        assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1141        return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
1142      }
1143    }
1144
1145    // Just do a normal add. Pre-expand the operands to suppress folding.
1146    return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())),
1147                                SE.getUnknown(expand(Rest))));
1148  }
1149
1150  // If we don't yet have a canonical IV, create one.
1151  if (!CanonicalIV) {
1152    // Create and insert the PHI node for the induction variable in the
1153    // specified loop.
1154    BasicBlock *Header = L->getHeader();
1155    pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1156    CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
1157                                  Header->begin());
1158    rememberInstruction(CanonicalIV);
1159
1160    Constant *One = ConstantInt::get(Ty, 1);
1161    for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1162      BasicBlock *HP = *HPI;
1163      if (L->contains(HP)) {
1164        // Insert a unit add instruction right before the terminator
1165        // corresponding to the back-edge.
1166        Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1167                                                     "indvar.next",
1168                                                     HP->getTerminator());
1169        Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1170        rememberInstruction(Add);
1171        CanonicalIV->addIncoming(Add, HP);
1172      } else {
1173        CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1174      }
1175    }
1176  }
1177
1178  // {0,+,1} --> Insert a canonical induction variable into the loop!
1179  if (S->isAffine() && S->getOperand(1)->isOne()) {
1180    assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1181           "IVs with types different from the canonical IV should "
1182           "already have been handled!");
1183    return CanonicalIV;
1184  }
1185
1186  // {0,+,F} --> {0,+,1} * F
1187
1188  // If this is a simple linear addrec, emit it now as a special case.
1189  if (S->isAffine())    // {0,+,F} --> i*F
1190    return
1191      expand(SE.getTruncateOrNoop(
1192        SE.getMulExpr(SE.getUnknown(CanonicalIV),
1193                      SE.getNoopOrAnyExtend(S->getOperand(1),
1194                                            CanonicalIV->getType())),
1195        Ty));
1196
1197  // If this is a chain of recurrences, turn it into a closed form, using the
1198  // folders, then expandCodeFor the closed form.  This allows the folders to
1199  // simplify the expression without having to build a bunch of special code
1200  // into this folder.
1201  const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
1202
1203  // Promote S up to the canonical IV type, if the cast is foldable.
1204  const SCEV *NewS = S;
1205  const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1206  if (isa<SCEVAddRecExpr>(Ext))
1207    NewS = Ext;
1208
1209  const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1210  //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
1211
1212  // Truncate the result down to the original type, if needed.
1213  const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1214  return expand(T);
1215}
1216
1217Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1218  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1219  Value *V = expandCodeFor(S->getOperand(),
1220                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1221  Value *I = Builder.CreateTrunc(V, Ty, "tmp");
1222  rememberInstruction(I);
1223  return I;
1224}
1225
1226Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1227  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1228  Value *V = expandCodeFor(S->getOperand(),
1229                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1230  Value *I = Builder.CreateZExt(V, Ty, "tmp");
1231  rememberInstruction(I);
1232  return I;
1233}
1234
1235Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1236  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1237  Value *V = expandCodeFor(S->getOperand(),
1238                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1239  Value *I = Builder.CreateSExt(V, Ty, "tmp");
1240  rememberInstruction(I);
1241  return I;
1242}
1243
1244Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1245  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1246  Type *Ty = LHS->getType();
1247  for (int i = S->getNumOperands()-2; i >= 0; --i) {
1248    // In the case of mixed integer and pointer types, do the
1249    // rest of the comparisons as integer.
1250    if (S->getOperand(i)->getType() != Ty) {
1251      Ty = SE.getEffectiveSCEVType(Ty);
1252      LHS = InsertNoopCastOfTo(LHS, Ty);
1253    }
1254    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1255    Value *ICmp = Builder.CreateICmpSGT(LHS, RHS, "tmp");
1256    rememberInstruction(ICmp);
1257    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1258    rememberInstruction(Sel);
1259    LHS = Sel;
1260  }
1261  // In the case of mixed integer and pointer types, cast the
1262  // final result back to the pointer type.
1263  if (LHS->getType() != S->getType())
1264    LHS = InsertNoopCastOfTo(LHS, S->getType());
1265  return LHS;
1266}
1267
1268Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1269  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1270  Type *Ty = LHS->getType();
1271  for (int i = S->getNumOperands()-2; i >= 0; --i) {
1272    // In the case of mixed integer and pointer types, do the
1273    // rest of the comparisons as integer.
1274    if (S->getOperand(i)->getType() != Ty) {
1275      Ty = SE.getEffectiveSCEVType(Ty);
1276      LHS = InsertNoopCastOfTo(LHS, Ty);
1277    }
1278    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1279    Value *ICmp = Builder.CreateICmpUGT(LHS, RHS, "tmp");
1280    rememberInstruction(ICmp);
1281    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1282    rememberInstruction(Sel);
1283    LHS = Sel;
1284  }
1285  // In the case of mixed integer and pointer types, cast the
1286  // final result back to the pointer type.
1287  if (LHS->getType() != S->getType())
1288    LHS = InsertNoopCastOfTo(LHS, S->getType());
1289  return LHS;
1290}
1291
1292Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
1293                                   Instruction *I) {
1294  BasicBlock::iterator IP = I;
1295  while (isInsertedInstruction(IP) || isa<DbgInfoIntrinsic>(IP))
1296    ++IP;
1297  Builder.SetInsertPoint(IP->getParent(), IP);
1298  return expandCodeFor(SH, Ty);
1299}
1300
1301Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
1302  // Expand the code for this SCEV.
1303  Value *V = expand(SH);
1304  if (Ty) {
1305    assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1306           "non-trivial casts should be done with the SCEVs directly!");
1307    V = InsertNoopCastOfTo(V, Ty);
1308  }
1309  return V;
1310}
1311
1312Value *SCEVExpander::expand(const SCEV *S) {
1313  // Compute an insertion point for this SCEV object. Hoist the instructions
1314  // as far out in the loop nest as possible.
1315  Instruction *InsertPt = Builder.GetInsertPoint();
1316  for (Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock()); ;
1317       L = L->getParentLoop())
1318    if (SE.isLoopInvariant(S, L)) {
1319      if (!L) break;
1320      if (BasicBlock *Preheader = L->getLoopPreheader())
1321        InsertPt = Preheader->getTerminator();
1322    } else {
1323      // If the SCEV is computable at this level, insert it into the header
1324      // after the PHIs (and after any other instructions that we've inserted
1325      // there) so that it is guaranteed to dominate any user inside the loop.
1326      if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1327        InsertPt = L->getHeader()->getFirstNonPHI();
1328      while (isInsertedInstruction(InsertPt) || isa<DbgInfoIntrinsic>(InsertPt))
1329        InsertPt = llvm::next(BasicBlock::iterator(InsertPt));
1330      break;
1331    }
1332
1333  // Check to see if we already expanded this here.
1334  std::map<std::pair<const SCEV *, Instruction *>,
1335           AssertingVH<Value> >::iterator I =
1336    InsertedExpressions.find(std::make_pair(S, InsertPt));
1337  if (I != InsertedExpressions.end())
1338    return I->second;
1339
1340  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1341  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1342  Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
1343
1344  // Expand the expression into instructions.
1345  Value *V = visit(S);
1346
1347  // Remember the expanded value for this SCEV at this location.
1348  if (PostIncLoops.empty())
1349    InsertedExpressions[std::make_pair(S, InsertPt)] = V;
1350
1351  restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1352  return V;
1353}
1354
1355void SCEVExpander::rememberInstruction(Value *I) {
1356  if (!PostIncLoops.empty())
1357    InsertedPostIncValues.insert(I);
1358  else
1359    InsertedValues.insert(I);
1360
1361  // If we just claimed an existing instruction and that instruction had
1362  // been the insert point, adjust the insert point forward so that
1363  // subsequently inserted code will be dominated.
1364  if (Builder.GetInsertPoint() == I) {
1365    BasicBlock::iterator It = cast<Instruction>(I);
1366    do { ++It; } while (isInsertedInstruction(It) ||
1367                        isa<DbgInfoIntrinsic>(It));
1368    Builder.SetInsertPoint(Builder.GetInsertBlock(), It);
1369  }
1370}
1371
1372void SCEVExpander::restoreInsertPoint(BasicBlock *BB, BasicBlock::iterator I) {
1373  // If we acquired more instructions since the old insert point was saved,
1374  // advance past them.
1375  while (isInsertedInstruction(I) || isa<DbgInfoIntrinsic>(I)) ++I;
1376
1377  Builder.SetInsertPoint(BB, I);
1378}
1379
1380/// getOrInsertCanonicalInductionVariable - This method returns the
1381/// canonical induction variable of the specified type for the specified
1382/// loop (inserting one if there is none).  A canonical induction variable
1383/// starts at zero and steps by one on each iteration.
1384PHINode *
1385SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
1386                                                    Type *Ty) {
1387  assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
1388
1389  // Build a SCEV for {0,+,1}<L>.
1390  // Conservatively use FlagAnyWrap for now.
1391  const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
1392                                   SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap);
1393
1394  // Emit code for it.
1395  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1396  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1397  PHINode *V = cast<PHINode>(expandCodeFor(H, 0, L->getHeader()->begin()));
1398  if (SaveInsertBB)
1399    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1400
1401  return V;
1402}
1403