ScalarEvolutionExpander.cpp revision 667d787c0a21cf3f5dfcde03ca471162ba35b614
1//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution expander,
11// which is used to generate the code corresponding to a given scalar evolution
12// expression.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/ScalarEvolutionExpander.h"
17#include "llvm/Analysis/LoopInfo.h"
18#include "llvm/Target/TargetData.h"
19#include "llvm/ADT/STLExtras.h"
20using namespace llvm;
21
22/// InsertCastOfTo - Insert a cast of V to the specified type, doing what
23/// we can to share the casts.
24Value *SCEVExpander::InsertCastOfTo(Instruction::CastOps opcode, Value *V,
25                                    const Type *Ty) {
26  // Short-circuit unnecessary bitcasts.
27  if (opcode == Instruction::BitCast && V->getType() == Ty)
28    return V;
29
30  // Short-circuit unnecessary inttoptr<->ptrtoint casts.
31  if ((opcode == Instruction::PtrToInt || opcode == Instruction::IntToPtr) &&
32      SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
33    if (CastInst *CI = dyn_cast<CastInst>(V))
34      if ((CI->getOpcode() == Instruction::PtrToInt ||
35           CI->getOpcode() == Instruction::IntToPtr) &&
36          SE.getTypeSizeInBits(CI->getType()) ==
37          SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
38        return CI->getOperand(0);
39    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
40      if ((CE->getOpcode() == Instruction::PtrToInt ||
41           CE->getOpcode() == Instruction::IntToPtr) &&
42          SE.getTypeSizeInBits(CE->getType()) ==
43          SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
44        return CE->getOperand(0);
45  }
46
47  // FIXME: keep track of the cast instruction.
48  if (Constant *C = dyn_cast<Constant>(V))
49    return ConstantExpr::getCast(opcode, C, Ty);
50
51  if (Argument *A = dyn_cast<Argument>(V)) {
52    // Check to see if there is already a cast!
53    for (Value::use_iterator UI = A->use_begin(), E = A->use_end();
54         UI != E; ++UI)
55      if ((*UI)->getType() == Ty)
56        if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI)))
57          if (CI->getOpcode() == opcode) {
58            // If the cast isn't the first instruction of the function, move it.
59            if (BasicBlock::iterator(CI) !=
60                A->getParent()->getEntryBlock().begin()) {
61              // Recreate the cast at the beginning of the entry block.
62              // The old cast is left in place in case it is being used
63              // as an insert point.
64              Instruction *NewCI =
65                CastInst::Create(opcode, V, Ty, "",
66                                 A->getParent()->getEntryBlock().begin());
67              NewCI->takeName(CI);
68              CI->replaceAllUsesWith(NewCI);
69              return NewCI;
70            }
71            return CI;
72          }
73
74    Instruction *I = CastInst::Create(opcode, V, Ty, V->getName(),
75                                      A->getParent()->getEntryBlock().begin());
76    InsertedValues.insert(I);
77    return I;
78  }
79
80  Instruction *I = cast<Instruction>(V);
81
82  // Check to see if there is already a cast.  If there is, use it.
83  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
84       UI != E; ++UI) {
85    if ((*UI)->getType() == Ty)
86      if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI)))
87        if (CI->getOpcode() == opcode) {
88          BasicBlock::iterator It = I; ++It;
89          if (isa<InvokeInst>(I))
90            It = cast<InvokeInst>(I)->getNormalDest()->begin();
91          while (isa<PHINode>(It)) ++It;
92          if (It != BasicBlock::iterator(CI)) {
93            // Recreate the cast at the beginning of the entry block.
94            // The old cast is left in place in case it is being used
95            // as an insert point.
96            Instruction *NewCI = CastInst::Create(opcode, V, Ty, "", It);
97            NewCI->takeName(CI);
98            CI->replaceAllUsesWith(NewCI);
99            return NewCI;
100          }
101          return CI;
102        }
103  }
104  BasicBlock::iterator IP = I; ++IP;
105  if (InvokeInst *II = dyn_cast<InvokeInst>(I))
106    IP = II->getNormalDest()->begin();
107  while (isa<PHINode>(IP)) ++IP;
108  Instruction *CI = CastInst::Create(opcode, V, Ty, V->getName(), IP);
109  InsertedValues.insert(CI);
110  return CI;
111}
112
113/// InsertNoopCastOfTo - Insert a cast of V to the specified type,
114/// which must be possible with a noop cast.
115Value *SCEVExpander::InsertNoopCastOfTo(Value *V, const Type *Ty) {
116  Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
117  assert((Op == Instruction::BitCast ||
118          Op == Instruction::PtrToInt ||
119          Op == Instruction::IntToPtr) &&
120         "InsertNoopCastOfTo cannot perform non-noop casts!");
121  assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
122         "InsertNoopCastOfTo cannot change sizes!");
123  return InsertCastOfTo(Op, V, Ty);
124}
125
126/// InsertBinop - Insert the specified binary operator, doing a small amount
127/// of work to avoid inserting an obviously redundant operation.
128Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, Value *LHS,
129                                 Value *RHS, BasicBlock::iterator InsertPt) {
130  // Fold a binop with constant operands.
131  if (Constant *CLHS = dyn_cast<Constant>(LHS))
132    if (Constant *CRHS = dyn_cast<Constant>(RHS))
133      return ConstantExpr::get(Opcode, CLHS, CRHS);
134
135  // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
136  unsigned ScanLimit = 6;
137  BasicBlock::iterator BlockBegin = InsertPt->getParent()->begin();
138  if (InsertPt != BlockBegin) {
139    // Scanning starts from the last instruction before InsertPt.
140    BasicBlock::iterator IP = InsertPt;
141    --IP;
142    for (; ScanLimit; --IP, --ScanLimit) {
143      if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
144          IP->getOperand(1) == RHS)
145        return IP;
146      if (IP == BlockBegin) break;
147    }
148  }
149
150  // If we haven't found this binop, insert it.
151  Instruction *BO = BinaryOperator::Create(Opcode, LHS, RHS, "tmp", InsertPt);
152  InsertedValues.insert(BO);
153  return BO;
154}
155
156/// FactorOutConstant - Test if S is divisible by Factor, using signed
157/// division. If so, update S with Factor divided out and return true.
158/// S need not be evenly divisble if a reasonable remainder can be
159/// computed.
160/// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
161/// unnecessary; in its place, just signed-divide Ops[i] by the scale and
162/// check to see if the divide was folded.
163static bool FactorOutConstant(const SCEV* &S,
164                              const SCEV* &Remainder,
165                              const APInt &Factor,
166                              ScalarEvolution &SE) {
167  // Everything is divisible by one.
168  if (Factor == 1)
169    return true;
170
171  // For a Constant, check for a multiple of the given factor.
172  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
173    ConstantInt *CI =
174      ConstantInt::get(C->getValue()->getValue().sdiv(Factor));
175    // If the quotient is zero and the remainder is non-zero, reject
176    // the value at this scale. It will be considered for subsequent
177    // smaller scales.
178    if (C->isZero() || !CI->isZero()) {
179      const SCEV* Div = SE.getConstant(CI);
180      S = Div;
181      Remainder =
182        SE.getAddExpr(Remainder,
183                      SE.getConstant(C->getValue()->getValue().srem(Factor)));
184      return true;
185    }
186  }
187
188  // In a Mul, check if there is a constant operand which is a multiple
189  // of the given factor.
190  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S))
191    if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
192      if (!C->getValue()->getValue().srem(Factor)) {
193        const SmallVectorImpl<const SCEV*> &MOperands = M->getOperands();
194        SmallVector<const SCEV*, 4> NewMulOps(MOperands.begin(), MOperands.end());
195        NewMulOps[0] =
196          SE.getConstant(C->getValue()->getValue().sdiv(Factor));
197        S = SE.getMulExpr(NewMulOps);
198        return true;
199      }
200
201  // In an AddRec, check if both start and step are divisible.
202  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
203    const SCEV* Step = A->getStepRecurrence(SE);
204    const SCEV* StepRem = SE.getIntegerSCEV(0, Step->getType());
205    if (!FactorOutConstant(Step, StepRem, Factor, SE))
206      return false;
207    if (!StepRem->isZero())
208      return false;
209    const SCEV* Start = A->getStart();
210    if (!FactorOutConstant(Start, Remainder, Factor, SE))
211      return false;
212    S = SE.getAddRecExpr(Start, Step, A->getLoop());
213    return true;
214  }
215
216  return false;
217}
218
219/// expandAddToGEP - Expand a SCEVAddExpr with a pointer type into a GEP
220/// instead of using ptrtoint+arithmetic+inttoptr. This helps
221/// BasicAliasAnalysis analyze the result. However, it suffers from the
222/// underlying bug described in PR2831. Addition in LLVM currently always
223/// has two's complement wrapping guaranteed. However, the semantics for
224/// getelementptr overflow are ambiguous. In the common case though, this
225/// expansion gets used when a GEP in the original code has been converted
226/// into integer arithmetic, in which case the resulting code will be no
227/// more undefined than it was originally.
228///
229/// Design note: It might seem desirable for this function to be more
230/// loop-aware. If some of the indices are loop-invariant while others
231/// aren't, it might seem desirable to emit multiple GEPs, keeping the
232/// loop-invariant portions of the overall computation outside the loop.
233/// However, there are a few reasons this is not done here. Hoisting simple
234/// arithmetic is a low-level optimization that often isn't very
235/// important until late in the optimization process. In fact, passes
236/// like InstructionCombining will combine GEPs, even if it means
237/// pushing loop-invariant computation down into loops, so even if the
238/// GEPs were split here, the work would quickly be undone. The
239/// LoopStrengthReduction pass, which is usually run quite late (and
240/// after the last InstructionCombining pass), takes care of hoisting
241/// loop-invariant portions of expressions, after considering what
242/// can be folded using target addressing modes.
243///
244Value *SCEVExpander::expandAddToGEP(const SCEV* const *op_begin,
245                                    const SCEV* const *op_end,
246                                    const PointerType *PTy,
247                                    const Type *Ty,
248                                    Value *V) {
249  const Type *ElTy = PTy->getElementType();
250  SmallVector<Value *, 4> GepIndices;
251  SmallVector<const SCEV*, 8> Ops(op_begin, op_end);
252  bool AnyNonZeroIndices = false;
253
254  // Decend down the pointer's type and attempt to convert the other
255  // operands into GEP indices, at each level. The first index in a GEP
256  // indexes into the array implied by the pointer operand; the rest of
257  // the indices index into the element or field type selected by the
258  // preceding index.
259  for (;;) {
260    APInt ElSize = APInt(SE.getTypeSizeInBits(Ty),
261                         ElTy->isSized() ?  SE.TD->getTypeAllocSize(ElTy) : 0);
262    SmallVector<const SCEV*, 8> NewOps;
263    SmallVector<const SCEV*, 8> ScaledOps;
264    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
265      // Split AddRecs up into parts as either of the parts may be usable
266      // without the other.
267      if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i]))
268        if (!A->getStart()->isZero()) {
269          const SCEV* Start = A->getStart();
270          Ops.push_back(SE.getAddRecExpr(SE.getIntegerSCEV(0, A->getType()),
271                                         A->getStepRecurrence(SE),
272                                         A->getLoop()));
273          Ops[i] = Start;
274          ++e;
275        }
276      // If the scale size is not 0, attempt to factor out a scale.
277      if (ElSize != 0) {
278        const SCEV* Op = Ops[i];
279        const SCEV* Remainder = SE.getIntegerSCEV(0, Op->getType());
280        if (FactorOutConstant(Op, Remainder, ElSize, SE)) {
281          ScaledOps.push_back(Op); // Op now has ElSize factored out.
282          NewOps.push_back(Remainder);
283          continue;
284        }
285      }
286      // If the operand was not divisible, add it to the list of operands
287      // we'll scan next iteration.
288      NewOps.push_back(Ops[i]);
289    }
290    Ops = NewOps;
291    AnyNonZeroIndices |= !ScaledOps.empty();
292    Value *Scaled = ScaledOps.empty() ?
293                    Constant::getNullValue(Ty) :
294                    expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
295    GepIndices.push_back(Scaled);
296
297    // Collect struct field index operands.
298    if (!Ops.empty())
299      while (const StructType *STy = dyn_cast<StructType>(ElTy)) {
300        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
301          if (SE.getTypeSizeInBits(C->getType()) <= 64) {
302            const StructLayout &SL = *SE.TD->getStructLayout(STy);
303            uint64_t FullOffset = C->getValue()->getZExtValue();
304            if (FullOffset < SL.getSizeInBytes()) {
305              unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
306              GepIndices.push_back(ConstantInt::get(Type::Int32Ty, ElIdx));
307              ElTy = STy->getTypeAtIndex(ElIdx);
308              Ops[0] =
309                SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
310              AnyNonZeroIndices = true;
311              continue;
312            }
313          }
314        break;
315      }
316
317    if (const ArrayType *ATy = dyn_cast<ArrayType>(ElTy)) {
318      ElTy = ATy->getElementType();
319      continue;
320    }
321    break;
322  }
323
324  // If none of the operands were convertable to proper GEP indices, cast
325  // the base to i8* and do an ugly getelementptr with that. It's still
326  // better than ptrtoint+arithmetic+inttoptr at least.
327  if (!AnyNonZeroIndices) {
328    V = InsertNoopCastOfTo(V,
329                           Type::Int8Ty->getPointerTo(PTy->getAddressSpace()));
330    Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
331
332    // Fold a GEP with constant operands.
333    if (Constant *CLHS = dyn_cast<Constant>(V))
334      if (Constant *CRHS = dyn_cast<Constant>(Idx))
335        return ConstantExpr::getGetElementPtr(CLHS, &CRHS, 1);
336
337    // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
338    unsigned ScanLimit = 6;
339    BasicBlock::iterator BlockBegin = InsertPt->getParent()->begin();
340    if (InsertPt != BlockBegin) {
341      // Scanning starts from the last instruction before InsertPt.
342      BasicBlock::iterator IP = InsertPt;
343      --IP;
344      for (; ScanLimit; --IP, --ScanLimit) {
345        if (IP->getOpcode() == Instruction::GetElementPtr &&
346            IP->getOperand(0) == V && IP->getOperand(1) == Idx)
347          return IP;
348        if (IP == BlockBegin) break;
349      }
350    }
351
352    Value *GEP = GetElementPtrInst::Create(V, Idx, "scevgep", InsertPt);
353    InsertedValues.insert(GEP);
354    return GEP;
355  }
356
357  // Insert a pretty getelementptr.
358  Value *GEP = GetElementPtrInst::Create(V,
359                                         GepIndices.begin(),
360                                         GepIndices.end(),
361                                         "scevgep", InsertPt);
362  Ops.push_back(SE.getUnknown(GEP));
363  InsertedValues.insert(GEP);
364  return expand(SE.getAddExpr(Ops));
365}
366
367Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
368  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
369  Value *V = expand(S->getOperand(S->getNumOperands()-1));
370
371  // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
372  // comments on expandAddToGEP for details.
373  if (SE.TD)
374    if (const PointerType *PTy = dyn_cast<PointerType>(V->getType())) {
375      const SmallVectorImpl<const SCEV*> &Ops = S->getOperands();
376      return expandAddToGEP(&Ops[0], &Ops[Ops.size() - 1],
377                            PTy, Ty, V);
378    }
379
380  V = InsertNoopCastOfTo(V, Ty);
381
382  // Emit a bunch of add instructions
383  for (int i = S->getNumOperands()-2; i >= 0; --i) {
384    Value *W = expandCodeFor(S->getOperand(i), Ty);
385    V = InsertBinop(Instruction::Add, V, W, InsertPt);
386  }
387  return V;
388}
389
390Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
391  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
392  int FirstOp = 0;  // Set if we should emit a subtract.
393  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(0)))
394    if (SC->getValue()->isAllOnesValue())
395      FirstOp = 1;
396
397  int i = S->getNumOperands()-2;
398  Value *V = expandCodeFor(S->getOperand(i+1), Ty);
399
400  // Emit a bunch of multiply instructions
401  for (; i >= FirstOp; --i) {
402    Value *W = expandCodeFor(S->getOperand(i), Ty);
403    V = InsertBinop(Instruction::Mul, V, W, InsertPt);
404  }
405
406  // -1 * ...  --->  0 - ...
407  if (FirstOp == 1)
408    V = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), V, InsertPt);
409  return V;
410}
411
412Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
413  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
414
415  Value *LHS = expandCodeFor(S->getLHS(), Ty);
416  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
417    const APInt &RHS = SC->getValue()->getValue();
418    if (RHS.isPowerOf2())
419      return InsertBinop(Instruction::LShr, LHS,
420                         ConstantInt::get(Ty, RHS.logBase2()),
421                         InsertPt);
422  }
423
424  Value *RHS = expandCodeFor(S->getRHS(), Ty);
425  return InsertBinop(Instruction::UDiv, LHS, RHS, InsertPt);
426}
427
428/// Move parts of Base into Rest to leave Base with the minimal
429/// expression that provides a pointer operand suitable for a
430/// GEP expansion.
431static void ExposePointerBase(const SCEV* &Base, const SCEV* &Rest,
432                              ScalarEvolution &SE) {
433  while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
434    Base = A->getStart();
435    Rest = SE.getAddExpr(Rest,
436                         SE.getAddRecExpr(SE.getIntegerSCEV(0, A->getType()),
437                                          A->getStepRecurrence(SE),
438                                          A->getLoop()));
439  }
440  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
441    Base = A->getOperand(A->getNumOperands()-1);
442    SmallVector<const SCEV*, 8> NewAddOps(A->op_begin(), A->op_end());
443    NewAddOps.back() = Rest;
444    Rest = SE.getAddExpr(NewAddOps);
445    ExposePointerBase(Base, Rest, SE);
446  }
447}
448
449Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
450  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
451  const Loop *L = S->getLoop();
452
453  // First check for an existing canonical IV in a suitable type.
454  PHINode *CanonicalIV = 0;
455  if (PHINode *PN = L->getCanonicalInductionVariable())
456    if (SE.isSCEVable(PN->getType()) &&
457        isa<IntegerType>(SE.getEffectiveSCEVType(PN->getType())) &&
458        SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
459      CanonicalIV = PN;
460
461  // Rewrite an AddRec in terms of the canonical induction variable, if
462  // its type is more narrow.
463  if (CanonicalIV &&
464      SE.getTypeSizeInBits(CanonicalIV->getType()) >
465      SE.getTypeSizeInBits(Ty)) {
466    const SCEV* Start = SE.getAnyExtendExpr(S->getStart(),
467                                           CanonicalIV->getType());
468    const SCEV* Step = SE.getAnyExtendExpr(S->getStepRecurrence(SE),
469                                          CanonicalIV->getType());
470    Value *V = expand(SE.getAddRecExpr(Start, Step, S->getLoop()));
471    BasicBlock::iterator SaveInsertPt = InsertPt;
472    BasicBlock::iterator NewInsertPt =
473      next(BasicBlock::iterator(cast<Instruction>(V)));
474    while (isa<PHINode>(NewInsertPt)) ++NewInsertPt;
475    V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), 0,
476                      NewInsertPt);
477    InsertPt = SaveInsertPt;
478    return V;
479  }
480
481  // {X,+,F} --> X + {0,+,F}
482  if (!S->getStart()->isZero()) {
483    const SmallVectorImpl<const SCEV*> &SOperands = S->getOperands();
484    SmallVector<const SCEV*, 4> NewOps(SOperands.begin(), SOperands.end());
485    NewOps[0] = SE.getIntegerSCEV(0, Ty);
486    const SCEV* Rest = SE.getAddRecExpr(NewOps, L);
487
488    // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
489    // comments on expandAddToGEP for details.
490    if (SE.TD) {
491      const SCEV* Base = S->getStart();
492      const SCEV* RestArray[1] = { Rest };
493      // Dig into the expression to find the pointer base for a GEP.
494      ExposePointerBase(Base, RestArray[0], SE);
495      // If we found a pointer, expand the AddRec with a GEP.
496      if (const PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
497        // Make sure the Base isn't something exotic, such as a multiplied
498        // or divided pointer value. In those cases, the result type isn't
499        // actually a pointer type.
500        if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
501          Value *StartV = expand(Base);
502          assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
503          return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
504        }
505      }
506    }
507
508    // Just do a normal add. Pre-expand the operands to suppress folding.
509    return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())),
510                                SE.getUnknown(expand(Rest))));
511  }
512
513  // {0,+,1} --> Insert a canonical induction variable into the loop!
514  if (S->isAffine() &&
515      S->getOperand(1) == SE.getIntegerSCEV(1, Ty)) {
516    // If there's a canonical IV, just use it.
517    if (CanonicalIV) {
518      assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
519             "IVs with types different from the canonical IV should "
520             "already have been handled!");
521      return CanonicalIV;
522    }
523
524    // Create and insert the PHI node for the induction variable in the
525    // specified loop.
526    BasicBlock *Header = L->getHeader();
527    PHINode *PN = PHINode::Create(Ty, "indvar", Header->begin());
528    InsertedValues.insert(PN);
529    PN->addIncoming(Constant::getNullValue(Ty), L->getLoopPreheader());
530
531    pred_iterator HPI = pred_begin(Header);
532    assert(HPI != pred_end(Header) && "Loop with zero preds???");
533    if (!L->contains(*HPI)) ++HPI;
534    assert(HPI != pred_end(Header) && L->contains(*HPI) &&
535           "No backedge in loop?");
536
537    // Insert a unit add instruction right before the terminator corresponding
538    // to the back-edge.
539    Constant *One = ConstantInt::get(Ty, 1);
540    Instruction *Add = BinaryOperator::CreateAdd(PN, One, "indvar.next",
541                                                 (*HPI)->getTerminator());
542    InsertedValues.insert(Add);
543
544    pred_iterator PI = pred_begin(Header);
545    if (*PI == L->getLoopPreheader())
546      ++PI;
547    PN->addIncoming(Add, *PI);
548    return PN;
549  }
550
551  // {0,+,F} --> {0,+,1} * F
552  // Get the canonical induction variable I for this loop.
553  Value *I = CanonicalIV ?
554             CanonicalIV :
555             getOrInsertCanonicalInductionVariable(L, Ty);
556
557  // If this is a simple linear addrec, emit it now as a special case.
558  if (S->isAffine())    // {0,+,F} --> i*F
559    return
560      expand(SE.getTruncateOrNoop(
561        SE.getMulExpr(SE.getUnknown(I),
562                      SE.getNoopOrAnyExtend(S->getOperand(1),
563                                            I->getType())),
564        Ty));
565
566  // If this is a chain of recurrences, turn it into a closed form, using the
567  // folders, then expandCodeFor the closed form.  This allows the folders to
568  // simplify the expression without having to build a bunch of special code
569  // into this folder.
570  const SCEV* IH = SE.getUnknown(I);   // Get I as a "symbolic" SCEV.
571
572  // Promote S up to the canonical IV type, if the cast is foldable.
573  const SCEV* NewS = S;
574  const SCEV* Ext = SE.getNoopOrAnyExtend(S, I->getType());
575  if (isa<SCEVAddRecExpr>(Ext))
576    NewS = Ext;
577
578  const SCEV* V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
579  //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
580
581  // Truncate the result down to the original type, if needed.
582  const SCEV* T = SE.getTruncateOrNoop(V, Ty);
583  return expand(T);
584}
585
586Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
587  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
588  Value *V = expandCodeFor(S->getOperand(),
589                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
590  Instruction *I = new TruncInst(V, Ty, "tmp.", InsertPt);
591  InsertedValues.insert(I);
592  return I;
593}
594
595Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
596  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
597  Value *V = expandCodeFor(S->getOperand(),
598                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
599  Instruction *I = new ZExtInst(V, Ty, "tmp.", InsertPt);
600  InsertedValues.insert(I);
601  return I;
602}
603
604Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
605  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
606  Value *V = expandCodeFor(S->getOperand(),
607                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
608  Instruction *I = new SExtInst(V, Ty, "tmp.", InsertPt);
609  InsertedValues.insert(I);
610  return I;
611}
612
613Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
614  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
615  Value *LHS = expandCodeFor(S->getOperand(0), Ty);
616  for (unsigned i = 1; i < S->getNumOperands(); ++i) {
617    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
618    Instruction *ICmp =
619      new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS, "tmp", InsertPt);
620    InsertedValues.insert(ICmp);
621    Instruction *Sel = SelectInst::Create(ICmp, LHS, RHS, "smax", InsertPt);
622    InsertedValues.insert(Sel);
623    LHS = Sel;
624  }
625  return LHS;
626}
627
628Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
629  const Type *Ty = SE.getEffectiveSCEVType(S->getType());
630  Value *LHS = expandCodeFor(S->getOperand(0), Ty);
631  for (unsigned i = 1; i < S->getNumOperands(); ++i) {
632    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
633    Instruction *ICmp =
634      new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS, "tmp", InsertPt);
635    InsertedValues.insert(ICmp);
636    Instruction *Sel = SelectInst::Create(ICmp, LHS, RHS, "umax", InsertPt);
637    InsertedValues.insert(Sel);
638    LHS = Sel;
639  }
640  return LHS;
641}
642
643Value *SCEVExpander::expandCodeFor(const SCEV* SH, const Type *Ty) {
644  // Expand the code for this SCEV.
645  Value *V = expand(SH);
646  if (Ty) {
647    assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
648           "non-trivial casts should be done with the SCEVs directly!");
649    V = InsertNoopCastOfTo(V, Ty);
650  }
651  return V;
652}
653
654Value *SCEVExpander::expand(const SCEV *S) {
655  BasicBlock::iterator SaveInsertPt = InsertPt;
656
657  // Compute an insertion point for this SCEV object. Hoist the instructions
658  // as far out in the loop nest as possible.
659  for (Loop *L = SE.LI->getLoopFor(InsertPt->getParent()); ;
660       L = L->getParentLoop())
661    if (S->isLoopInvariant(L)) {
662      if (!L) break;
663      if (BasicBlock *Preheader = L->getLoopPreheader())
664        InsertPt = Preheader->getTerminator();
665    } else {
666      // If the SCEV is computable at this level, insert it into the header
667      // after the PHIs (and after any other instructions that we've inserted
668      // there) so that it is guaranteed to dominate any user inside the loop.
669      if (L && S->hasComputableLoopEvolution(L))
670        InsertPt = L->getHeader()->getFirstNonPHI();
671      while (isInsertedInstruction(InsertPt)) ++InsertPt;
672      break;
673    }
674
675  // Check to see if we already expanded this here.
676  std::map<std::pair<const SCEV *, Instruction *>,
677           AssertingVH<Value> >::iterator I =
678    InsertedExpressions.find(std::make_pair(S, InsertPt));
679  if (I != InsertedExpressions.end()) {
680    InsertPt = SaveInsertPt;
681    return I->second;
682  }
683
684  // Expand the expression into instructions.
685  Value *V = visit(S);
686
687  // Remember the expanded value for this SCEV at this location.
688  InsertedExpressions[std::make_pair(S, InsertPt)] = V;
689
690  InsertPt = SaveInsertPt;
691  return V;
692}
693
694/// getOrInsertCanonicalInductionVariable - This method returns the
695/// canonical induction variable of the specified type for the specified
696/// loop (inserting one if there is none).  A canonical induction variable
697/// starts at zero and steps by one on each iteration.
698Value *
699SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
700                                                    const Type *Ty) {
701  assert(Ty->isInteger() && "Can only insert integer induction variables!");
702  const SCEV* H = SE.getAddRecExpr(SE.getIntegerSCEV(0, Ty),
703                                   SE.getIntegerSCEV(1, Ty), L);
704  BasicBlock::iterator SaveInsertPt = InsertPt;
705  Value *V = expandCodeFor(H, 0, L->getHeader()->begin());
706  InsertPt = SaveInsertPt;
707  return V;
708}
709