ScalarEvolutionExpander.cpp revision 705b48d960dff1a96ac40d0cf932eb465b9a550a
1//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution expander,
11// which is used to generate the code corresponding to a given scalar evolution
12// expression.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/ScalarEvolutionExpander.h"
17#include "llvm/Analysis/LoopInfo.h"
18#include "llvm/IntrinsicInst.h"
19#include "llvm/LLVMContext.h"
20#include "llvm/Support/Debug.h"
21#include "llvm/Target/TargetData.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/ADT/STLExtras.h"
24
25using namespace llvm;
26
27/// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
28/// reusing an existing cast if a suitable one exists, moving an existing
29/// cast if a suitable one exists but isn't in the right place, or
30/// creating a new one.
31Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
32                                       Instruction::CastOps Op,
33                                       BasicBlock::iterator IP) {
34  // All new or reused instructions must strictly dominate their uses.
35  // It would be nice to assert this here, but we don't always know where
36  // the next instructions will be added as the the caller can move the
37  // Builder's InsertPt before creating them and we might be called with
38  // an invalid InsertPt.
39
40  // Check to see if there is already a cast!
41  for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
42       UI != E; ++UI) {
43    User *U = *UI;
44    if (U->getType() == Ty)
45      if (CastInst *CI = dyn_cast<CastInst>(U))
46        if (CI->getOpcode() == Op) {
47          // If the cast isn't where we want it, fix it.
48          if (BasicBlock::iterator(CI) != IP) {
49            // Create a new cast, and leave the old cast in place in case
50            // it is being used as an insert point. Clear its operand
51            // so that it doesn't hold anything live.
52            Instruction *NewCI = CastInst::Create(Op, V, Ty, "", IP);
53            NewCI->takeName(CI);
54            CI->replaceAllUsesWith(NewCI);
55            CI->setOperand(0, UndefValue::get(V->getType()));
56            rememberInstruction(NewCI);
57            return NewCI;
58          }
59          rememberInstruction(CI);
60          return CI;
61        }
62  }
63
64  // Create a new cast.
65  Instruction *I = CastInst::Create(Op, V, Ty, V->getName(), IP);
66  rememberInstruction(I);
67  return I;
68}
69
70/// InsertNoopCastOfTo - Insert a cast of V to the specified type,
71/// which must be possible with a noop cast, doing what we can to share
72/// the casts.
73Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
74  Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
75  assert((Op == Instruction::BitCast ||
76          Op == Instruction::PtrToInt ||
77          Op == Instruction::IntToPtr) &&
78         "InsertNoopCastOfTo cannot perform non-noop casts!");
79  assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
80         "InsertNoopCastOfTo cannot change sizes!");
81
82  // Short-circuit unnecessary bitcasts.
83  if (Op == Instruction::BitCast) {
84    if (V->getType() == Ty)
85      return V;
86    if (CastInst *CI = dyn_cast<CastInst>(V)) {
87      if (CI->getOperand(0)->getType() == Ty)
88        return CI->getOperand(0);
89    }
90  }
91  // Short-circuit unnecessary inttoptr<->ptrtoint casts.
92  if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
93      SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
94    if (CastInst *CI = dyn_cast<CastInst>(V))
95      if ((CI->getOpcode() == Instruction::PtrToInt ||
96           CI->getOpcode() == Instruction::IntToPtr) &&
97          SE.getTypeSizeInBits(CI->getType()) ==
98          SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
99        return CI->getOperand(0);
100    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
101      if ((CE->getOpcode() == Instruction::PtrToInt ||
102           CE->getOpcode() == Instruction::IntToPtr) &&
103          SE.getTypeSizeInBits(CE->getType()) ==
104          SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
105        return CE->getOperand(0);
106  }
107
108  // Fold a cast of a constant.
109  if (Constant *C = dyn_cast<Constant>(V))
110    return ConstantExpr::getCast(Op, C, Ty);
111
112  // Cast the argument at the beginning of the entry block, after
113  // any bitcasts of other arguments.
114  if (Argument *A = dyn_cast<Argument>(V)) {
115    BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
116    while ((isa<BitCastInst>(IP) &&
117            isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
118            cast<BitCastInst>(IP)->getOperand(0) != A) ||
119           isa<DbgInfoIntrinsic>(IP) ||
120           isa<LandingPadInst>(IP))
121      ++IP;
122    return ReuseOrCreateCast(A, Ty, Op, IP);
123  }
124
125  // Cast the instruction immediately after the instruction.
126  Instruction *I = cast<Instruction>(V);
127  BasicBlock::iterator IP = I; ++IP;
128  if (InvokeInst *II = dyn_cast<InvokeInst>(I))
129    IP = II->getNormalDest()->begin();
130  while (isa<PHINode>(IP) || isa<LandingPadInst>(IP))
131    ++IP;
132  return ReuseOrCreateCast(I, Ty, Op, IP);
133}
134
135/// InsertBinop - Insert the specified binary operator, doing a small amount
136/// of work to avoid inserting an obviously redundant operation.
137Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
138                                 Value *LHS, Value *RHS) {
139  // Fold a binop with constant operands.
140  if (Constant *CLHS = dyn_cast<Constant>(LHS))
141    if (Constant *CRHS = dyn_cast<Constant>(RHS))
142      return ConstantExpr::get(Opcode, CLHS, CRHS);
143
144  // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
145  unsigned ScanLimit = 6;
146  BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
147  // Scanning starts from the last instruction before the insertion point.
148  BasicBlock::iterator IP = Builder.GetInsertPoint();
149  if (IP != BlockBegin) {
150    --IP;
151    for (; ScanLimit; --IP, --ScanLimit) {
152      // Don't count dbg.value against the ScanLimit, to avoid perturbing the
153      // generated code.
154      if (isa<DbgInfoIntrinsic>(IP))
155        ScanLimit++;
156      if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
157          IP->getOperand(1) == RHS)
158        return IP;
159      if (IP == BlockBegin) break;
160    }
161  }
162
163  // Save the original insertion point so we can restore it when we're done.
164  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
165  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
166
167  // Move the insertion point out of as many loops as we can.
168  while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
169    if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
170    BasicBlock *Preheader = L->getLoopPreheader();
171    if (!Preheader) break;
172
173    // Ok, move up a level.
174    Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
175  }
176
177  // If we haven't found this binop, insert it.
178  Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
179  BO->setDebugLoc(SaveInsertPt->getDebugLoc());
180  rememberInstruction(BO);
181
182  // Restore the original insert point.
183  if (SaveInsertBB)
184    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
185
186  return BO;
187}
188
189/// FactorOutConstant - Test if S is divisible by Factor, using signed
190/// division. If so, update S with Factor divided out and return true.
191/// S need not be evenly divisible if a reasonable remainder can be
192/// computed.
193/// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
194/// unnecessary; in its place, just signed-divide Ops[i] by the scale and
195/// check to see if the divide was folded.
196static bool FactorOutConstant(const SCEV *&S,
197                              const SCEV *&Remainder,
198                              const SCEV *Factor,
199                              ScalarEvolution &SE,
200                              const TargetData *TD) {
201  // Everything is divisible by one.
202  if (Factor->isOne())
203    return true;
204
205  // x/x == 1.
206  if (S == Factor) {
207    S = SE.getConstant(S->getType(), 1);
208    return true;
209  }
210
211  // For a Constant, check for a multiple of the given factor.
212  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
213    // 0/x == 0.
214    if (C->isZero())
215      return true;
216    // Check for divisibility.
217    if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
218      ConstantInt *CI =
219        ConstantInt::get(SE.getContext(),
220                         C->getValue()->getValue().sdiv(
221                                                   FC->getValue()->getValue()));
222      // If the quotient is zero and the remainder is non-zero, reject
223      // the value at this scale. It will be considered for subsequent
224      // smaller scales.
225      if (!CI->isZero()) {
226        const SCEV *Div = SE.getConstant(CI);
227        S = Div;
228        Remainder =
229          SE.getAddExpr(Remainder,
230                        SE.getConstant(C->getValue()->getValue().srem(
231                                                  FC->getValue()->getValue())));
232        return true;
233      }
234    }
235  }
236
237  // In a Mul, check if there is a constant operand which is a multiple
238  // of the given factor.
239  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
240    if (TD) {
241      // With TargetData, the size is known. Check if there is a constant
242      // operand which is a multiple of the given factor. If so, we can
243      // factor it.
244      const SCEVConstant *FC = cast<SCEVConstant>(Factor);
245      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
246        if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) {
247          SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
248          NewMulOps[0] =
249            SE.getConstant(C->getValue()->getValue().sdiv(
250                                                   FC->getValue()->getValue()));
251          S = SE.getMulExpr(NewMulOps);
252          return true;
253        }
254    } else {
255      // Without TargetData, check if Factor can be factored out of any of the
256      // Mul's operands. If so, we can just remove it.
257      for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
258        const SCEV *SOp = M->getOperand(i);
259        const SCEV *Remainder = SE.getConstant(SOp->getType(), 0);
260        if (FactorOutConstant(SOp, Remainder, Factor, SE, TD) &&
261            Remainder->isZero()) {
262          SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
263          NewMulOps[i] = SOp;
264          S = SE.getMulExpr(NewMulOps);
265          return true;
266        }
267      }
268    }
269  }
270
271  // In an AddRec, check if both start and step are divisible.
272  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
273    const SCEV *Step = A->getStepRecurrence(SE);
274    const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
275    if (!FactorOutConstant(Step, StepRem, Factor, SE, TD))
276      return false;
277    if (!StepRem->isZero())
278      return false;
279    const SCEV *Start = A->getStart();
280    if (!FactorOutConstant(Start, Remainder, Factor, SE, TD))
281      return false;
282    // FIXME: can use A->getNoWrapFlags(FlagNW)
283    S = SE.getAddRecExpr(Start, Step, A->getLoop(), SCEV::FlagAnyWrap);
284    return true;
285  }
286
287  return false;
288}
289
290/// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
291/// is the number of SCEVAddRecExprs present, which are kept at the end of
292/// the list.
293///
294static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
295                                Type *Ty,
296                                ScalarEvolution &SE) {
297  unsigned NumAddRecs = 0;
298  for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
299    ++NumAddRecs;
300  // Group Ops into non-addrecs and addrecs.
301  SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
302  SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
303  // Let ScalarEvolution sort and simplify the non-addrecs list.
304  const SCEV *Sum = NoAddRecs.empty() ?
305                    SE.getConstant(Ty, 0) :
306                    SE.getAddExpr(NoAddRecs);
307  // If it returned an add, use the operands. Otherwise it simplified
308  // the sum into a single value, so just use that.
309  Ops.clear();
310  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
311    Ops.append(Add->op_begin(), Add->op_end());
312  else if (!Sum->isZero())
313    Ops.push_back(Sum);
314  // Then append the addrecs.
315  Ops.append(AddRecs.begin(), AddRecs.end());
316}
317
318/// SplitAddRecs - Flatten a list of add operands, moving addrec start values
319/// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
320/// This helps expose more opportunities for folding parts of the expressions
321/// into GEP indices.
322///
323static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
324                         Type *Ty,
325                         ScalarEvolution &SE) {
326  // Find the addrecs.
327  SmallVector<const SCEV *, 8> AddRecs;
328  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
329    while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
330      const SCEV *Start = A->getStart();
331      if (Start->isZero()) break;
332      const SCEV *Zero = SE.getConstant(Ty, 0);
333      AddRecs.push_back(SE.getAddRecExpr(Zero,
334                                         A->getStepRecurrence(SE),
335                                         A->getLoop(),
336                                         // FIXME: A->getNoWrapFlags(FlagNW)
337                                         SCEV::FlagAnyWrap));
338      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
339        Ops[i] = Zero;
340        Ops.append(Add->op_begin(), Add->op_end());
341        e += Add->getNumOperands();
342      } else {
343        Ops[i] = Start;
344      }
345    }
346  if (!AddRecs.empty()) {
347    // Add the addrecs onto the end of the list.
348    Ops.append(AddRecs.begin(), AddRecs.end());
349    // Resort the operand list, moving any constants to the front.
350    SimplifyAddOperands(Ops, Ty, SE);
351  }
352}
353
354/// expandAddToGEP - Expand an addition expression with a pointer type into
355/// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
356/// BasicAliasAnalysis and other passes analyze the result. See the rules
357/// for getelementptr vs. inttoptr in
358/// http://llvm.org/docs/LangRef.html#pointeraliasing
359/// for details.
360///
361/// Design note: The correctness of using getelementptr here depends on
362/// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
363/// they may introduce pointer arithmetic which may not be safely converted
364/// into getelementptr.
365///
366/// Design note: It might seem desirable for this function to be more
367/// loop-aware. If some of the indices are loop-invariant while others
368/// aren't, it might seem desirable to emit multiple GEPs, keeping the
369/// loop-invariant portions of the overall computation outside the loop.
370/// However, there are a few reasons this is not done here. Hoisting simple
371/// arithmetic is a low-level optimization that often isn't very
372/// important until late in the optimization process. In fact, passes
373/// like InstructionCombining will combine GEPs, even if it means
374/// pushing loop-invariant computation down into loops, so even if the
375/// GEPs were split here, the work would quickly be undone. The
376/// LoopStrengthReduction pass, which is usually run quite late (and
377/// after the last InstructionCombining pass), takes care of hoisting
378/// loop-invariant portions of expressions, after considering what
379/// can be folded using target addressing modes.
380///
381Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
382                                    const SCEV *const *op_end,
383                                    PointerType *PTy,
384                                    Type *Ty,
385                                    Value *V) {
386  Type *ElTy = PTy->getElementType();
387  SmallVector<Value *, 4> GepIndices;
388  SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
389  bool AnyNonZeroIndices = false;
390
391  // Split AddRecs up into parts as either of the parts may be usable
392  // without the other.
393  SplitAddRecs(Ops, Ty, SE);
394
395  // Descend down the pointer's type and attempt to convert the other
396  // operands into GEP indices, at each level. The first index in a GEP
397  // indexes into the array implied by the pointer operand; the rest of
398  // the indices index into the element or field type selected by the
399  // preceding index.
400  for (;;) {
401    // If the scale size is not 0, attempt to factor out a scale for
402    // array indexing.
403    SmallVector<const SCEV *, 8> ScaledOps;
404    if (ElTy->isSized()) {
405      const SCEV *ElSize = SE.getSizeOfExpr(ElTy);
406      if (!ElSize->isZero()) {
407        SmallVector<const SCEV *, 8> NewOps;
408        for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
409          const SCEV *Op = Ops[i];
410          const SCEV *Remainder = SE.getConstant(Ty, 0);
411          if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.TD)) {
412            // Op now has ElSize factored out.
413            ScaledOps.push_back(Op);
414            if (!Remainder->isZero())
415              NewOps.push_back(Remainder);
416            AnyNonZeroIndices = true;
417          } else {
418            // The operand was not divisible, so add it to the list of operands
419            // we'll scan next iteration.
420            NewOps.push_back(Ops[i]);
421          }
422        }
423        // If we made any changes, update Ops.
424        if (!ScaledOps.empty()) {
425          Ops = NewOps;
426          SimplifyAddOperands(Ops, Ty, SE);
427        }
428      }
429    }
430
431    // Record the scaled array index for this level of the type. If
432    // we didn't find any operands that could be factored, tentatively
433    // assume that element zero was selected (since the zero offset
434    // would obviously be folded away).
435    Value *Scaled = ScaledOps.empty() ?
436                    Constant::getNullValue(Ty) :
437                    expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
438    GepIndices.push_back(Scaled);
439
440    // Collect struct field index operands.
441    while (StructType *STy = dyn_cast<StructType>(ElTy)) {
442      bool FoundFieldNo = false;
443      // An empty struct has no fields.
444      if (STy->getNumElements() == 0) break;
445      if (SE.TD) {
446        // With TargetData, field offsets are known. See if a constant offset
447        // falls within any of the struct fields.
448        if (Ops.empty()) break;
449        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
450          if (SE.getTypeSizeInBits(C->getType()) <= 64) {
451            const StructLayout &SL = *SE.TD->getStructLayout(STy);
452            uint64_t FullOffset = C->getValue()->getZExtValue();
453            if (FullOffset < SL.getSizeInBytes()) {
454              unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
455              GepIndices.push_back(
456                  ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
457              ElTy = STy->getTypeAtIndex(ElIdx);
458              Ops[0] =
459                SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
460              AnyNonZeroIndices = true;
461              FoundFieldNo = true;
462            }
463          }
464      } else {
465        // Without TargetData, just check for an offsetof expression of the
466        // appropriate struct type.
467        for (unsigned i = 0, e = Ops.size(); i != e; ++i)
468          if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Ops[i])) {
469            Type *CTy;
470            Constant *FieldNo;
471            if (U->isOffsetOf(CTy, FieldNo) && CTy == STy) {
472              GepIndices.push_back(FieldNo);
473              ElTy =
474                STy->getTypeAtIndex(cast<ConstantInt>(FieldNo)->getZExtValue());
475              Ops[i] = SE.getConstant(Ty, 0);
476              AnyNonZeroIndices = true;
477              FoundFieldNo = true;
478              break;
479            }
480          }
481      }
482      // If no struct field offsets were found, tentatively assume that
483      // field zero was selected (since the zero offset would obviously
484      // be folded away).
485      if (!FoundFieldNo) {
486        ElTy = STy->getTypeAtIndex(0u);
487        GepIndices.push_back(
488          Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
489      }
490    }
491
492    if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
493      ElTy = ATy->getElementType();
494    else
495      break;
496  }
497
498  // If none of the operands were convertible to proper GEP indices, cast
499  // the base to i8* and do an ugly getelementptr with that. It's still
500  // better than ptrtoint+arithmetic+inttoptr at least.
501  if (!AnyNonZeroIndices) {
502    // Cast the base to i8*.
503    V = InsertNoopCastOfTo(V,
504       Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
505
506    assert(!isa<Instruction>(V) ||
507           SE.DT->properlyDominates(cast<Instruction>(V),
508                                    Builder.GetInsertPoint()));
509
510    // Expand the operands for a plain byte offset.
511    Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
512
513    // Fold a GEP with constant operands.
514    if (Constant *CLHS = dyn_cast<Constant>(V))
515      if (Constant *CRHS = dyn_cast<Constant>(Idx))
516        return ConstantExpr::getGetElementPtr(CLHS, CRHS);
517
518    // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
519    unsigned ScanLimit = 6;
520    BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
521    // Scanning starts from the last instruction before the insertion point.
522    BasicBlock::iterator IP = Builder.GetInsertPoint();
523    if (IP != BlockBegin) {
524      --IP;
525      for (; ScanLimit; --IP, --ScanLimit) {
526        // Don't count dbg.value against the ScanLimit, to avoid perturbing the
527        // generated code.
528        if (isa<DbgInfoIntrinsic>(IP))
529          ScanLimit++;
530        if (IP->getOpcode() == Instruction::GetElementPtr &&
531            IP->getOperand(0) == V && IP->getOperand(1) == Idx)
532          return IP;
533        if (IP == BlockBegin) break;
534      }
535    }
536
537    // Save the original insertion point so we can restore it when we're done.
538    BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
539    BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
540
541    // Move the insertion point out of as many loops as we can.
542    while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
543      if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
544      BasicBlock *Preheader = L->getLoopPreheader();
545      if (!Preheader) break;
546
547      // Ok, move up a level.
548      Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
549    }
550
551    // Emit a GEP.
552    Value *GEP = Builder.CreateGEP(V, Idx, "uglygep");
553    rememberInstruction(GEP);
554
555    // Restore the original insert point.
556    if (SaveInsertBB)
557      restoreInsertPoint(SaveInsertBB, SaveInsertPt);
558
559    return GEP;
560  }
561
562  // Save the original insertion point so we can restore it when we're done.
563  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
564  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
565
566  // Move the insertion point out of as many loops as we can.
567  while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
568    if (!L->isLoopInvariant(V)) break;
569
570    bool AnyIndexNotLoopInvariant = false;
571    for (SmallVectorImpl<Value *>::const_iterator I = GepIndices.begin(),
572         E = GepIndices.end(); I != E; ++I)
573      if (!L->isLoopInvariant(*I)) {
574        AnyIndexNotLoopInvariant = true;
575        break;
576      }
577    if (AnyIndexNotLoopInvariant)
578      break;
579
580    BasicBlock *Preheader = L->getLoopPreheader();
581    if (!Preheader) break;
582
583    // Ok, move up a level.
584    Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
585  }
586
587  // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
588  // because ScalarEvolution may have changed the address arithmetic to
589  // compute a value which is beyond the end of the allocated object.
590  Value *Casted = V;
591  if (V->getType() != PTy)
592    Casted = InsertNoopCastOfTo(Casted, PTy);
593  Value *GEP = Builder.CreateGEP(Casted,
594                                 GepIndices,
595                                 "scevgep");
596  Ops.push_back(SE.getUnknown(GEP));
597  rememberInstruction(GEP);
598
599  // Restore the original insert point.
600  if (SaveInsertBB)
601    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
602
603  return expand(SE.getAddExpr(Ops));
604}
605
606/// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
607/// SCEV expansion. If they are nested, this is the most nested. If they are
608/// neighboring, pick the later.
609static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
610                                        DominatorTree &DT) {
611  if (!A) return B;
612  if (!B) return A;
613  if (A->contains(B)) return B;
614  if (B->contains(A)) return A;
615  if (DT.dominates(A->getHeader(), B->getHeader())) return B;
616  if (DT.dominates(B->getHeader(), A->getHeader())) return A;
617  return A; // Arbitrarily break the tie.
618}
619
620/// getRelevantLoop - Get the most relevant loop associated with the given
621/// expression, according to PickMostRelevantLoop.
622const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
623  // Test whether we've already computed the most relevant loop for this SCEV.
624  std::pair<DenseMap<const SCEV *, const Loop *>::iterator, bool> Pair =
625    RelevantLoops.insert(std::make_pair(S, static_cast<const Loop *>(0)));
626  if (!Pair.second)
627    return Pair.first->second;
628
629  if (isa<SCEVConstant>(S))
630    // A constant has no relevant loops.
631    return 0;
632  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
633    if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
634      return Pair.first->second = SE.LI->getLoopFor(I->getParent());
635    // A non-instruction has no relevant loops.
636    return 0;
637  }
638  if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
639    const Loop *L = 0;
640    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
641      L = AR->getLoop();
642    for (SCEVNAryExpr::op_iterator I = N->op_begin(), E = N->op_end();
643         I != E; ++I)
644      L = PickMostRelevantLoop(L, getRelevantLoop(*I), *SE.DT);
645    return RelevantLoops[N] = L;
646  }
647  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
648    const Loop *Result = getRelevantLoop(C->getOperand());
649    return RelevantLoops[C] = Result;
650  }
651  if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
652    const Loop *Result =
653      PickMostRelevantLoop(getRelevantLoop(D->getLHS()),
654                           getRelevantLoop(D->getRHS()),
655                           *SE.DT);
656    return RelevantLoops[D] = Result;
657  }
658  llvm_unreachable("Unexpected SCEV type!");
659}
660
661namespace {
662
663/// LoopCompare - Compare loops by PickMostRelevantLoop.
664class LoopCompare {
665  DominatorTree &DT;
666public:
667  explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
668
669  bool operator()(std::pair<const Loop *, const SCEV *> LHS,
670                  std::pair<const Loop *, const SCEV *> RHS) const {
671    // Keep pointer operands sorted at the end.
672    if (LHS.second->getType()->isPointerTy() !=
673        RHS.second->getType()->isPointerTy())
674      return LHS.second->getType()->isPointerTy();
675
676    // Compare loops with PickMostRelevantLoop.
677    if (LHS.first != RHS.first)
678      return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
679
680    // If one operand is a non-constant negative and the other is not,
681    // put the non-constant negative on the right so that a sub can
682    // be used instead of a negate and add.
683    if (LHS.second->isNonConstantNegative()) {
684      if (!RHS.second->isNonConstantNegative())
685        return false;
686    } else if (RHS.second->isNonConstantNegative())
687      return true;
688
689    // Otherwise they are equivalent according to this comparison.
690    return false;
691  }
692};
693
694}
695
696Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
697  Type *Ty = SE.getEffectiveSCEVType(S->getType());
698
699  // Collect all the add operands in a loop, along with their associated loops.
700  // Iterate in reverse so that constants are emitted last, all else equal, and
701  // so that pointer operands are inserted first, which the code below relies on
702  // to form more involved GEPs.
703  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
704  for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
705       E(S->op_begin()); I != E; ++I)
706    OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
707
708  // Sort by loop. Use a stable sort so that constants follow non-constants and
709  // pointer operands precede non-pointer operands.
710  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
711
712  // Emit instructions to add all the operands. Hoist as much as possible
713  // out of loops, and form meaningful getelementptrs where possible.
714  Value *Sum = 0;
715  for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
716       I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
717    const Loop *CurLoop = I->first;
718    const SCEV *Op = I->second;
719    if (!Sum) {
720      // This is the first operand. Just expand it.
721      Sum = expand(Op);
722      ++I;
723    } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
724      // The running sum expression is a pointer. Try to form a getelementptr
725      // at this level with that as the base.
726      SmallVector<const SCEV *, 4> NewOps;
727      for (; I != E && I->first == CurLoop; ++I) {
728        // If the operand is SCEVUnknown and not instructions, peek through
729        // it, to enable more of it to be folded into the GEP.
730        const SCEV *X = I->second;
731        if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
732          if (!isa<Instruction>(U->getValue()))
733            X = SE.getSCEV(U->getValue());
734        NewOps.push_back(X);
735      }
736      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
737    } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
738      // The running sum is an integer, and there's a pointer at this level.
739      // Try to form a getelementptr. If the running sum is instructions,
740      // use a SCEVUnknown to avoid re-analyzing them.
741      SmallVector<const SCEV *, 4> NewOps;
742      NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
743                                               SE.getSCEV(Sum));
744      for (++I; I != E && I->first == CurLoop; ++I)
745        NewOps.push_back(I->second);
746      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
747    } else if (Op->isNonConstantNegative()) {
748      // Instead of doing a negate and add, just do a subtract.
749      Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
750      Sum = InsertNoopCastOfTo(Sum, Ty);
751      Sum = InsertBinop(Instruction::Sub, Sum, W);
752      ++I;
753    } else {
754      // A simple add.
755      Value *W = expandCodeFor(Op, Ty);
756      Sum = InsertNoopCastOfTo(Sum, Ty);
757      // Canonicalize a constant to the RHS.
758      if (isa<Constant>(Sum)) std::swap(Sum, W);
759      Sum = InsertBinop(Instruction::Add, Sum, W);
760      ++I;
761    }
762  }
763
764  return Sum;
765}
766
767Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
768  Type *Ty = SE.getEffectiveSCEVType(S->getType());
769
770  // Collect all the mul operands in a loop, along with their associated loops.
771  // Iterate in reverse so that constants are emitted last, all else equal.
772  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
773  for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
774       E(S->op_begin()); I != E; ++I)
775    OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
776
777  // Sort by loop. Use a stable sort so that constants follow non-constants.
778  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
779
780  // Emit instructions to mul all the operands. Hoist as much as possible
781  // out of loops.
782  Value *Prod = 0;
783  for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
784       I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
785    const SCEV *Op = I->second;
786    if (!Prod) {
787      // This is the first operand. Just expand it.
788      Prod = expand(Op);
789      ++I;
790    } else if (Op->isAllOnesValue()) {
791      // Instead of doing a multiply by negative one, just do a negate.
792      Prod = InsertNoopCastOfTo(Prod, Ty);
793      Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod);
794      ++I;
795    } else {
796      // A simple mul.
797      Value *W = expandCodeFor(Op, Ty);
798      Prod = InsertNoopCastOfTo(Prod, Ty);
799      // Canonicalize a constant to the RHS.
800      if (isa<Constant>(Prod)) std::swap(Prod, W);
801      Prod = InsertBinop(Instruction::Mul, Prod, W);
802      ++I;
803    }
804  }
805
806  return Prod;
807}
808
809Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
810  Type *Ty = SE.getEffectiveSCEVType(S->getType());
811
812  Value *LHS = expandCodeFor(S->getLHS(), Ty);
813  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
814    const APInt &RHS = SC->getValue()->getValue();
815    if (RHS.isPowerOf2())
816      return InsertBinop(Instruction::LShr, LHS,
817                         ConstantInt::get(Ty, RHS.logBase2()));
818  }
819
820  Value *RHS = expandCodeFor(S->getRHS(), Ty);
821  return InsertBinop(Instruction::UDiv, LHS, RHS);
822}
823
824/// Move parts of Base into Rest to leave Base with the minimal
825/// expression that provides a pointer operand suitable for a
826/// GEP expansion.
827static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
828                              ScalarEvolution &SE) {
829  while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
830    Base = A->getStart();
831    Rest = SE.getAddExpr(Rest,
832                         SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
833                                          A->getStepRecurrence(SE),
834                                          A->getLoop(),
835                                          // FIXME: A->getNoWrapFlags(FlagNW)
836                                          SCEV::FlagAnyWrap));
837  }
838  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
839    Base = A->getOperand(A->getNumOperands()-1);
840    SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
841    NewAddOps.back() = Rest;
842    Rest = SE.getAddExpr(NewAddOps);
843    ExposePointerBase(Base, Rest, SE);
844  }
845}
846
847/// Determine if this is a well-behaved chain of instructions leading back to
848/// the PHI. If so, it may be reused by expanded expressions.
849bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
850                                         const Loop *L) {
851  if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
852      (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
853    return false;
854  // If any of the operands don't dominate the insert position, bail.
855  // Addrec operands are always loop-invariant, so this can only happen
856  // if there are instructions which haven't been hoisted.
857  if (L == IVIncInsertLoop) {
858    for (User::op_iterator OI = IncV->op_begin()+1,
859           OE = IncV->op_end(); OI != OE; ++OI)
860      if (Instruction *OInst = dyn_cast<Instruction>(OI))
861        if (!SE.DT->dominates(OInst, IVIncInsertPos))
862          return false;
863  }
864  // Advance to the next instruction.
865  IncV = dyn_cast<Instruction>(IncV->getOperand(0));
866  if (!IncV)
867    return false;
868
869  if (IncV->mayHaveSideEffects())
870    return false;
871
872  if (IncV != PN)
873    return true;
874
875  return isNormalAddRecExprPHI(PN, IncV, L);
876}
877
878/// getIVIncOperand returns an induction variable increment's induction
879/// variable operand.
880///
881/// If allowScale is set, any type of GEP is allowed as long as the nonIV
882/// operands dominate InsertPos.
883///
884/// If allowScale is not set, ensure that a GEP increment conforms to one of the
885/// simple patterns generated by getAddRecExprPHILiterally and
886/// expandAddtoGEP. If the pattern isn't recognized, return NULL.
887Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
888                                           Instruction *InsertPos,
889                                           bool allowScale) {
890  if (IncV == InsertPos)
891    return NULL;
892
893  switch (IncV->getOpcode()) {
894  default:
895    return NULL;
896  // Check for a simple Add/Sub or GEP of a loop invariant step.
897  case Instruction::Add:
898  case Instruction::Sub: {
899    Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
900    if (!OInst || SE.DT->properlyDominates(OInst, InsertPos))
901      return dyn_cast<Instruction>(IncV->getOperand(0));
902    return NULL;
903  }
904  case Instruction::BitCast:
905    return dyn_cast<Instruction>(IncV->getOperand(0));
906  case Instruction::GetElementPtr:
907    for (Instruction::op_iterator I = IncV->op_begin()+1, E = IncV->op_end();
908         I != E; ++I) {
909      if (isa<Constant>(*I))
910        continue;
911      if (Instruction *OInst = dyn_cast<Instruction>(*I)) {
912        if (!SE.DT->properlyDominates(OInst, InsertPos))
913          return NULL;
914      }
915      if (allowScale) {
916        // allow any kind of GEP as long as it can be hoisted.
917        continue;
918      }
919      // This must be a pointer addition of constants (pretty), which is already
920      // handled, or some number of address-size elements (ugly). Ugly geps
921      // have 2 operands. i1* is used by the expander to represent an
922      // address-size element.
923      if (IncV->getNumOperands() != 2)
924        return NULL;
925      unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
926      if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
927          && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
928        return NULL;
929      break;
930    }
931    return dyn_cast<Instruction>(IncV->getOperand(0));
932  }
933}
934
935/// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
936/// it available to other uses in this loop. Recursively hoist any operands,
937/// until we reach a value that dominates InsertPos.
938bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) {
939  if (SE.DT->properlyDominates(IncV, InsertPos))
940      return true;
941
942  // InsertPos must itself dominate IncV so that IncV's new position satisfies
943  // its existing users.
944  if (!SE.DT->dominates(InsertPos->getParent(), IncV->getParent()))
945    return false;
946
947  // Check that the chain of IV operands leading back to Phi can be hoisted.
948  SmallVector<Instruction*, 4> IVIncs;
949  for(;;) {
950    Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
951    if (!Oper)
952      return false;
953    // IncV is safe to hoist.
954    IVIncs.push_back(IncV);
955    IncV = Oper;
956    if (SE.DT->properlyDominates(IncV, InsertPos))
957      break;
958  }
959  for (SmallVectorImpl<Instruction*>::reverse_iterator I = IVIncs.rbegin(),
960         E = IVIncs.rend(); I != E; ++I) {
961    (*I)->moveBefore(InsertPos);
962  }
963  return true;
964}
965
966/// Determine if this cyclic phi is in a form that would have been generated by
967/// LSR. We don't care if the phi was actually expanded in this pass, as long
968/// as it is in a low-cost form, for example, no implied multiplication. This
969/// should match any patterns generated by getAddRecExprPHILiterally and
970/// expandAddtoGEP.
971bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
972                                           const Loop *L) {
973  for(Instruction *IVOper = IncV;
974      (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
975                                /*allowScale=*/false));) {
976    if (IVOper == PN)
977      return true;
978  }
979  return false;
980}
981
982/// expandIVInc - Expand an IV increment at Builder's current InsertPos.
983/// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
984/// need to materialize IV increments elsewhere to handle difficult situations.
985Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
986                                 Type *ExpandTy, Type *IntTy,
987                                 bool useSubtract) {
988  Value *IncV;
989  // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
990  if (ExpandTy->isPointerTy()) {
991    PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
992    // If the step isn't constant, don't use an implicitly scaled GEP, because
993    // that would require a multiply inside the loop.
994    if (!isa<ConstantInt>(StepV))
995      GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
996                                  GEPPtrTy->getAddressSpace());
997    const SCEV *const StepArray[1] = { SE.getSCEV(StepV) };
998    IncV = expandAddToGEP(StepArray, StepArray+1, GEPPtrTy, IntTy, PN);
999    if (IncV->getType() != PN->getType()) {
1000      IncV = Builder.CreateBitCast(IncV, PN->getType());
1001      rememberInstruction(IncV);
1002    }
1003  } else {
1004    IncV = useSubtract ?
1005      Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
1006      Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
1007    rememberInstruction(IncV);
1008  }
1009  return IncV;
1010}
1011
1012/// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
1013/// the base addrec, which is the addrec without any non-loop-dominating
1014/// values, and return the PHI.
1015PHINode *
1016SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
1017                                        const Loop *L,
1018                                        Type *ExpandTy,
1019                                        Type *IntTy) {
1020  assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
1021
1022  // Reuse a previously-inserted PHI, if present.
1023  BasicBlock *LatchBlock = L->getLoopLatch();
1024  if (LatchBlock) {
1025    for (BasicBlock::iterator I = L->getHeader()->begin();
1026         PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1027      if (!SE.isSCEVable(PN->getType()) ||
1028          (SE.getEffectiveSCEVType(PN->getType()) !=
1029           SE.getEffectiveSCEVType(Normalized->getType())) ||
1030          SE.getSCEV(PN) != Normalized)
1031        continue;
1032
1033      Instruction *IncV =
1034        cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
1035
1036      if (LSRMode) {
1037        if (!isExpandedAddRecExprPHI(PN, IncV, L))
1038          continue;
1039        if (L == IVIncInsertLoop && !hoistIVInc(IncV, IVIncInsertPos))
1040          continue;
1041      }
1042      else {
1043        if (!isNormalAddRecExprPHI(PN, IncV, L))
1044          continue;
1045        if (L == IVIncInsertLoop)
1046          do {
1047            if (SE.DT->dominates(IncV, IVIncInsertPos))
1048              break;
1049            // Make sure the increment is where we want it. But don't move it
1050            // down past a potential existing post-inc user.
1051            IncV->moveBefore(IVIncInsertPos);
1052            IVIncInsertPos = IncV;
1053            IncV = cast<Instruction>(IncV->getOperand(0));
1054          } while (IncV != PN);
1055      }
1056      // Ok, the add recurrence looks usable.
1057      // Remember this PHI, even in post-inc mode.
1058      InsertedValues.insert(PN);
1059      // Remember the increment.
1060      rememberInstruction(IncV);
1061      return PN;
1062    }
1063  }
1064
1065  // Save the original insertion point so we can restore it when we're done.
1066  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1067  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1068
1069  // Another AddRec may need to be recursively expanded below. For example, if
1070  // this AddRec is quadratic, the StepV may itself be an AddRec in this
1071  // loop. Remove this loop from the PostIncLoops set before expanding such
1072  // AddRecs. Otherwise, we cannot find a valid position for the step
1073  // (i.e. StepV can never dominate its loop header).  Ideally, we could do
1074  // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
1075  // so it's not worth implementing SmallPtrSet::swap.
1076  PostIncLoopSet SavedPostIncLoops = PostIncLoops;
1077  PostIncLoops.clear();
1078
1079  // Expand code for the start value.
1080  Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
1081                                L->getHeader()->begin());
1082
1083  // StartV must be hoisted into L's preheader to dominate the new phi.
1084  assert(!isa<Instruction>(StartV) ||
1085         SE.DT->properlyDominates(cast<Instruction>(StartV)->getParent(),
1086                                  L->getHeader()));
1087
1088  // Expand code for the step value. Do this before creating the PHI so that PHI
1089  // reuse code doesn't see an incomplete PHI.
1090  const SCEV *Step = Normalized->getStepRecurrence(SE);
1091  // If the stride is negative, insert a sub instead of an add for the increment
1092  // (unless it's a constant, because subtracts of constants are canonicalized
1093  // to adds).
1094  bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1095  if (useSubtract)
1096    Step = SE.getNegativeSCEV(Step);
1097  // Expand the step somewhere that dominates the loop header.
1098  Value *StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
1099
1100  // Create the PHI.
1101  BasicBlock *Header = L->getHeader();
1102  Builder.SetInsertPoint(Header, Header->begin());
1103  pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1104  PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
1105                                  Twine(IVName) + ".iv");
1106  rememberInstruction(PN);
1107
1108  // Create the step instructions and populate the PHI.
1109  for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1110    BasicBlock *Pred = *HPI;
1111
1112    // Add a start value.
1113    if (!L->contains(Pred)) {
1114      PN->addIncoming(StartV, Pred);
1115      continue;
1116    }
1117
1118    // Create a step value and add it to the PHI.
1119    // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1120    // instructions at IVIncInsertPos.
1121    Instruction *InsertPos = L == IVIncInsertLoop ?
1122      IVIncInsertPos : Pred->getTerminator();
1123    Builder.SetInsertPoint(InsertPos);
1124    Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1125
1126    PN->addIncoming(IncV, Pred);
1127  }
1128
1129  // Restore the original insert point.
1130  if (SaveInsertBB)
1131    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1132
1133  // After expanding subexpressions, restore the PostIncLoops set so the caller
1134  // can ensure that IVIncrement dominates the current uses.
1135  PostIncLoops = SavedPostIncLoops;
1136
1137  // Remember this PHI, even in post-inc mode.
1138  InsertedValues.insert(PN);
1139
1140  return PN;
1141}
1142
1143Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1144  Type *STy = S->getType();
1145  Type *IntTy = SE.getEffectiveSCEVType(STy);
1146  const Loop *L = S->getLoop();
1147
1148  // Determine a normalized form of this expression, which is the expression
1149  // before any post-inc adjustment is made.
1150  const SCEVAddRecExpr *Normalized = S;
1151  if (PostIncLoops.count(L)) {
1152    PostIncLoopSet Loops;
1153    Loops.insert(L);
1154    Normalized =
1155      cast<SCEVAddRecExpr>(TransformForPostIncUse(Normalize, S, 0, 0,
1156                                                  Loops, SE, *SE.DT));
1157  }
1158
1159  // Strip off any non-loop-dominating component from the addrec start.
1160  const SCEV *Start = Normalized->getStart();
1161  const SCEV *PostLoopOffset = 0;
1162  if (!SE.properlyDominates(Start, L->getHeader())) {
1163    PostLoopOffset = Start;
1164    Start = SE.getConstant(Normalized->getType(), 0);
1165    Normalized = cast<SCEVAddRecExpr>(
1166      SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
1167                       Normalized->getLoop(),
1168                       // FIXME: Normalized->getNoWrapFlags(FlagNW)
1169                       SCEV::FlagAnyWrap));
1170  }
1171
1172  // Strip off any non-loop-dominating component from the addrec step.
1173  const SCEV *Step = Normalized->getStepRecurrence(SE);
1174  const SCEV *PostLoopScale = 0;
1175  if (!SE.dominates(Step, L->getHeader())) {
1176    PostLoopScale = Step;
1177    Step = SE.getConstant(Normalized->getType(), 1);
1178    Normalized =
1179      cast<SCEVAddRecExpr>(SE.getAddRecExpr(Start, Step,
1180                                            Normalized->getLoop(),
1181                                            // FIXME: Normalized
1182                                            // ->getNoWrapFlags(FlagNW)
1183                                            SCEV::FlagAnyWrap));
1184  }
1185
1186  // Expand the core addrec. If we need post-loop scaling, force it to
1187  // expand to an integer type to avoid the need for additional casting.
1188  Type *ExpandTy = PostLoopScale ? IntTy : STy;
1189  PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy);
1190
1191  // Accommodate post-inc mode, if necessary.
1192  Value *Result;
1193  if (!PostIncLoops.count(L))
1194    Result = PN;
1195  else {
1196    // In PostInc mode, use the post-incremented value.
1197    BasicBlock *LatchBlock = L->getLoopLatch();
1198    assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1199    Result = PN->getIncomingValueForBlock(LatchBlock);
1200
1201    // For an expansion to use the postinc form, the client must call
1202    // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1203    // or dominated by IVIncInsertPos.
1204    if (isa<Instruction>(Result)
1205        && !SE.DT->dominates(cast<Instruction>(Result),
1206                             Builder.GetInsertPoint())) {
1207      // The induction variable's postinc expansion does not dominate this use.
1208      // IVUsers tries to prevent this case, so it is rare. However, it can
1209      // happen when an IVUser outside the loop is not dominated by the latch
1210      // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1211      // all cases. Consider a phi outide whose operand is replaced during
1212      // expansion with the value of the postinc user. Without fundamentally
1213      // changing the way postinc users are tracked, the only remedy is
1214      // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1215      // but hopefully expandCodeFor handles that.
1216      bool useSubtract =
1217        !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1218      if (useSubtract)
1219        Step = SE.getNegativeSCEV(Step);
1220      // Expand the step somewhere that dominates the loop header.
1221      BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1222      BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1223      Value *StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
1224      // Restore the insertion point to the place where the caller has
1225      // determined dominates all uses.
1226      restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1227      Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1228    }
1229  }
1230
1231  // Re-apply any non-loop-dominating scale.
1232  if (PostLoopScale) {
1233    Result = InsertNoopCastOfTo(Result, IntTy);
1234    Result = Builder.CreateMul(Result,
1235                               expandCodeFor(PostLoopScale, IntTy));
1236    rememberInstruction(Result);
1237  }
1238
1239  // Re-apply any non-loop-dominating offset.
1240  if (PostLoopOffset) {
1241    if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1242      const SCEV *const OffsetArray[1] = { PostLoopOffset };
1243      Result = expandAddToGEP(OffsetArray, OffsetArray+1, PTy, IntTy, Result);
1244    } else {
1245      Result = InsertNoopCastOfTo(Result, IntTy);
1246      Result = Builder.CreateAdd(Result,
1247                                 expandCodeFor(PostLoopOffset, IntTy));
1248      rememberInstruction(Result);
1249    }
1250  }
1251
1252  return Result;
1253}
1254
1255Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1256  if (!CanonicalMode) return expandAddRecExprLiterally(S);
1257
1258  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1259  const Loop *L = S->getLoop();
1260
1261  // First check for an existing canonical IV in a suitable type.
1262  PHINode *CanonicalIV = 0;
1263  if (PHINode *PN = L->getCanonicalInductionVariable())
1264    if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1265      CanonicalIV = PN;
1266
1267  // Rewrite an AddRec in terms of the canonical induction variable, if
1268  // its type is more narrow.
1269  if (CanonicalIV &&
1270      SE.getTypeSizeInBits(CanonicalIV->getType()) >
1271      SE.getTypeSizeInBits(Ty)) {
1272    SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1273    for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1274      NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
1275    Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1276                                       // FIXME: S->getNoWrapFlags(FlagNW)
1277                                       SCEV::FlagAnyWrap));
1278    BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1279    BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1280    BasicBlock::iterator NewInsertPt =
1281      llvm::next(BasicBlock::iterator(cast<Instruction>(V)));
1282    while (isa<PHINode>(NewInsertPt) || isa<DbgInfoIntrinsic>(NewInsertPt) ||
1283           isa<LandingPadInst>(NewInsertPt))
1284      ++NewInsertPt;
1285    V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), 0,
1286                      NewInsertPt);
1287    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1288    return V;
1289  }
1290
1291  // {X,+,F} --> X + {0,+,F}
1292  if (!S->getStart()->isZero()) {
1293    SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
1294    NewOps[0] = SE.getConstant(Ty, 0);
1295    // FIXME: can use S->getNoWrapFlags()
1296    const SCEV *Rest = SE.getAddRecExpr(NewOps, L, SCEV::FlagAnyWrap);
1297
1298    // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
1299    // comments on expandAddToGEP for details.
1300    const SCEV *Base = S->getStart();
1301    const SCEV *RestArray[1] = { Rest };
1302    // Dig into the expression to find the pointer base for a GEP.
1303    ExposePointerBase(Base, RestArray[0], SE);
1304    // If we found a pointer, expand the AddRec with a GEP.
1305    if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
1306      // Make sure the Base isn't something exotic, such as a multiplied
1307      // or divided pointer value. In those cases, the result type isn't
1308      // actually a pointer type.
1309      if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
1310        Value *StartV = expand(Base);
1311        assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1312        return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
1313      }
1314    }
1315
1316    // Just do a normal add. Pre-expand the operands to suppress folding.
1317    return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())),
1318                                SE.getUnknown(expand(Rest))));
1319  }
1320
1321  // If we don't yet have a canonical IV, create one.
1322  if (!CanonicalIV) {
1323    // Create and insert the PHI node for the induction variable in the
1324    // specified loop.
1325    BasicBlock *Header = L->getHeader();
1326    pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1327    CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
1328                                  Header->begin());
1329    rememberInstruction(CanonicalIV);
1330
1331    Constant *One = ConstantInt::get(Ty, 1);
1332    for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1333      BasicBlock *HP = *HPI;
1334      if (L->contains(HP)) {
1335        // Insert a unit add instruction right before the terminator
1336        // corresponding to the back-edge.
1337        Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1338                                                     "indvar.next",
1339                                                     HP->getTerminator());
1340        Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1341        rememberInstruction(Add);
1342        CanonicalIV->addIncoming(Add, HP);
1343      } else {
1344        CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1345      }
1346    }
1347  }
1348
1349  // {0,+,1} --> Insert a canonical induction variable into the loop!
1350  if (S->isAffine() && S->getOperand(1)->isOne()) {
1351    assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1352           "IVs with types different from the canonical IV should "
1353           "already have been handled!");
1354    return CanonicalIV;
1355  }
1356
1357  // {0,+,F} --> {0,+,1} * F
1358
1359  // If this is a simple linear addrec, emit it now as a special case.
1360  if (S->isAffine())    // {0,+,F} --> i*F
1361    return
1362      expand(SE.getTruncateOrNoop(
1363        SE.getMulExpr(SE.getUnknown(CanonicalIV),
1364                      SE.getNoopOrAnyExtend(S->getOperand(1),
1365                                            CanonicalIV->getType())),
1366        Ty));
1367
1368  // If this is a chain of recurrences, turn it into a closed form, using the
1369  // folders, then expandCodeFor the closed form.  This allows the folders to
1370  // simplify the expression without having to build a bunch of special code
1371  // into this folder.
1372  const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
1373
1374  // Promote S up to the canonical IV type, if the cast is foldable.
1375  const SCEV *NewS = S;
1376  const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1377  if (isa<SCEVAddRecExpr>(Ext))
1378    NewS = Ext;
1379
1380  const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1381  //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
1382
1383  // Truncate the result down to the original type, if needed.
1384  const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1385  return expand(T);
1386}
1387
1388Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1389  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1390  Value *V = expandCodeFor(S->getOperand(),
1391                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1392  Value *I = Builder.CreateTrunc(V, Ty);
1393  rememberInstruction(I);
1394  return I;
1395}
1396
1397Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1398  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1399  Value *V = expandCodeFor(S->getOperand(),
1400                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1401  Value *I = Builder.CreateZExt(V, Ty);
1402  rememberInstruction(I);
1403  return I;
1404}
1405
1406Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1407  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1408  Value *V = expandCodeFor(S->getOperand(),
1409                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1410  Value *I = Builder.CreateSExt(V, Ty);
1411  rememberInstruction(I);
1412  return I;
1413}
1414
1415Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1416  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1417  Type *Ty = LHS->getType();
1418  for (int i = S->getNumOperands()-2; i >= 0; --i) {
1419    // In the case of mixed integer and pointer types, do the
1420    // rest of the comparisons as integer.
1421    if (S->getOperand(i)->getType() != Ty) {
1422      Ty = SE.getEffectiveSCEVType(Ty);
1423      LHS = InsertNoopCastOfTo(LHS, Ty);
1424    }
1425    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1426    Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
1427    rememberInstruction(ICmp);
1428    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1429    rememberInstruction(Sel);
1430    LHS = Sel;
1431  }
1432  // In the case of mixed integer and pointer types, cast the
1433  // final result back to the pointer type.
1434  if (LHS->getType() != S->getType())
1435    LHS = InsertNoopCastOfTo(LHS, S->getType());
1436  return LHS;
1437}
1438
1439Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1440  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1441  Type *Ty = LHS->getType();
1442  for (int i = S->getNumOperands()-2; i >= 0; --i) {
1443    // In the case of mixed integer and pointer types, do the
1444    // rest of the comparisons as integer.
1445    if (S->getOperand(i)->getType() != Ty) {
1446      Ty = SE.getEffectiveSCEVType(Ty);
1447      LHS = InsertNoopCastOfTo(LHS, Ty);
1448    }
1449    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1450    Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
1451    rememberInstruction(ICmp);
1452    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1453    rememberInstruction(Sel);
1454    LHS = Sel;
1455  }
1456  // In the case of mixed integer and pointer types, cast the
1457  // final result back to the pointer type.
1458  if (LHS->getType() != S->getType())
1459    LHS = InsertNoopCastOfTo(LHS, S->getType());
1460  return LHS;
1461}
1462
1463Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
1464                                   Instruction *IP) {
1465  Builder.SetInsertPoint(IP->getParent(), IP);
1466  return expandCodeFor(SH, Ty);
1467}
1468
1469Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
1470  // Expand the code for this SCEV.
1471  Value *V = expand(SH);
1472  if (Ty) {
1473    assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1474           "non-trivial casts should be done with the SCEVs directly!");
1475    V = InsertNoopCastOfTo(V, Ty);
1476  }
1477  return V;
1478}
1479
1480Value *SCEVExpander::expand(const SCEV *S) {
1481  // Compute an insertion point for this SCEV object. Hoist the instructions
1482  // as far out in the loop nest as possible.
1483  Instruction *InsertPt = Builder.GetInsertPoint();
1484  for (Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock()); ;
1485       L = L->getParentLoop())
1486    if (SE.isLoopInvariant(S, L)) {
1487      if (!L) break;
1488      if (BasicBlock *Preheader = L->getLoopPreheader())
1489        InsertPt = Preheader->getTerminator();
1490      else {
1491        // LSR sets the insertion point for AddRec start/step values to the
1492        // block start to simplify value reuse, even though it's an invalid
1493        // position. SCEVExpander must correct for this in all cases.
1494        InsertPt = L->getHeader()->getFirstInsertionPt();
1495      }
1496    } else {
1497      // If the SCEV is computable at this level, insert it into the header
1498      // after the PHIs (and after any other instructions that we've inserted
1499      // there) so that it is guaranteed to dominate any user inside the loop.
1500      if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1501        InsertPt = L->getHeader()->getFirstInsertionPt();
1502      while (InsertPt != Builder.GetInsertPoint()
1503             && (isInsertedInstruction(InsertPt)
1504                 || isa<DbgInfoIntrinsic>(InsertPt))) {
1505        InsertPt = llvm::next(BasicBlock::iterator(InsertPt));
1506      }
1507      break;
1508    }
1509
1510  // Check to see if we already expanded this here.
1511  std::map<std::pair<const SCEV *, Instruction *>,
1512           AssertingVH<Value> >::iterator I =
1513    InsertedExpressions.find(std::make_pair(S, InsertPt));
1514  if (I != InsertedExpressions.end())
1515    return I->second;
1516
1517  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1518  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1519  Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
1520
1521  // Expand the expression into instructions.
1522  Value *V = visit(S);
1523
1524  // Remember the expanded value for this SCEV at this location.
1525  //
1526  // This is independent of PostIncLoops. The mapped value simply materializes
1527  // the expression at this insertion point. If the mapped value happened to be
1528  // a postinc expansion, it could be reused by a non postinc user, but only if
1529  // its insertion point was already at the head of the loop.
1530  InsertedExpressions[std::make_pair(S, InsertPt)] = V;
1531
1532  restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1533  return V;
1534}
1535
1536void SCEVExpander::rememberInstruction(Value *I) {
1537  if (!PostIncLoops.empty())
1538    InsertedPostIncValues.insert(I);
1539  else
1540    InsertedValues.insert(I);
1541}
1542
1543void SCEVExpander::restoreInsertPoint(BasicBlock *BB, BasicBlock::iterator I) {
1544  Builder.SetInsertPoint(BB, I);
1545}
1546
1547/// getOrInsertCanonicalInductionVariable - This method returns the
1548/// canonical induction variable of the specified type for the specified
1549/// loop (inserting one if there is none).  A canonical induction variable
1550/// starts at zero and steps by one on each iteration.
1551PHINode *
1552SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
1553                                                    Type *Ty) {
1554  assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
1555
1556  // Build a SCEV for {0,+,1}<L>.
1557  // Conservatively use FlagAnyWrap for now.
1558  const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
1559                                   SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap);
1560
1561  // Emit code for it.
1562  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1563  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1564  PHINode *V = cast<PHINode>(expandCodeFor(H, 0, L->getHeader()->begin()));
1565  if (SaveInsertBB)
1566    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1567
1568  return V;
1569}
1570
1571/// Sort values by integer width for replaceCongruentIVs.
1572static bool width_descending(Value *lhs, Value *rhs) {
1573  // Put pointers at the back and make sure pointer < pointer = false.
1574  if (!lhs->getType()->isIntegerTy() || !rhs->getType()->isIntegerTy())
1575    return rhs->getType()->isIntegerTy() && !lhs->getType()->isIntegerTy();
1576  return rhs->getType()->getPrimitiveSizeInBits()
1577    < lhs->getType()->getPrimitiveSizeInBits();
1578}
1579
1580/// replaceCongruentIVs - Check for congruent phis in this loop header and
1581/// replace them with their most canonical representative. Return the number of
1582/// phis eliminated.
1583///
1584/// This does not depend on any SCEVExpander state but should be used in
1585/// the same context that SCEVExpander is used.
1586unsigned SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
1587                                           SmallVectorImpl<WeakVH> &DeadInsts,
1588                                           const TargetLowering *TLI) {
1589  // Find integer phis in order of increasing width.
1590  SmallVector<PHINode*, 8> Phis;
1591  for (BasicBlock::iterator I = L->getHeader()->begin();
1592       PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
1593    Phis.push_back(Phi);
1594  }
1595  if (TLI)
1596    std::sort(Phis.begin(), Phis.end(), width_descending);
1597
1598  unsigned NumElim = 0;
1599  DenseMap<const SCEV *, PHINode *> ExprToIVMap;
1600  // Process phis from wide to narrow. Mapping wide phis to the their truncation
1601  // so narrow phis can reuse them.
1602  for (SmallVectorImpl<PHINode*>::const_iterator PIter = Phis.begin(),
1603         PEnd = Phis.end(); PIter != PEnd; ++PIter) {
1604    PHINode *Phi = *PIter;
1605
1606    if (!SE.isSCEVable(Phi->getType()))
1607      continue;
1608
1609    PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
1610    if (!OrigPhiRef) {
1611      OrigPhiRef = Phi;
1612      if (Phi->getType()->isIntegerTy() && TLI
1613          && TLI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
1614        // This phi can be freely truncated to the narrowest phi type. Map the
1615        // truncated expression to it so it will be reused for narrow types.
1616        const SCEV *TruncExpr =
1617          SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
1618        ExprToIVMap[TruncExpr] = Phi;
1619      }
1620      continue;
1621    }
1622
1623    // Replacing a pointer phi with an integer phi or vice-versa doesn't make
1624    // sense.
1625    if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
1626      continue;
1627
1628    if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1629      Instruction *OrigInc =
1630        cast<Instruction>(OrigPhiRef->getIncomingValueForBlock(LatchBlock));
1631      Instruction *IsomorphicInc =
1632        cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
1633
1634      // If this phi has the same width but is more canonical, replace the
1635      // original with it. As part of the "more canonical" determination,
1636      // respect a prior decision to use an IV chain.
1637      if (OrigPhiRef->getType() == Phi->getType()
1638          && !(ChainedPhis.count(Phi)
1639               || isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L))
1640          && (ChainedPhis.count(Phi)
1641              || isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
1642        std::swap(OrigPhiRef, Phi);
1643        std::swap(OrigInc, IsomorphicInc);
1644      }
1645      // Replacing the congruent phi is sufficient because acyclic redundancy
1646      // elimination, CSE/GVN, should handle the rest. However, once SCEV proves
1647      // that a phi is congruent, it's often the head of an IV user cycle that
1648      // is isomorphic with the original phi. It's worth eagerly cleaning up the
1649      // common case of a single IV increment so that DeleteDeadPHIs can remove
1650      // cycles that had postinc uses.
1651      const SCEV *TruncExpr = SE.getTruncateOrNoop(SE.getSCEV(OrigInc),
1652                                                   IsomorphicInc->getType());
1653      if (OrigInc != IsomorphicInc
1654          && TruncExpr == SE.getSCEV(IsomorphicInc)
1655          && ((isa<PHINode>(OrigInc) && isa<PHINode>(IsomorphicInc))
1656              || hoistIVInc(OrigInc, IsomorphicInc))) {
1657        DEBUG_WITH_TYPE(DebugType, dbgs()
1658                        << "INDVARS: Eliminated congruent iv.inc: "
1659                        << *IsomorphicInc << '\n');
1660        Value *NewInc = OrigInc;
1661        if (OrigInc->getType() != IsomorphicInc->getType()) {
1662          Instruction *IP = isa<PHINode>(OrigInc)
1663            ? (Instruction*)L->getHeader()->getFirstInsertionPt()
1664            : OrigInc->getNextNode();
1665          IRBuilder<> Builder(IP);
1666          Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
1667          NewInc = Builder.
1668            CreateTruncOrBitCast(OrigInc, IsomorphicInc->getType(), IVName);
1669        }
1670        IsomorphicInc->replaceAllUsesWith(NewInc);
1671        DeadInsts.push_back(IsomorphicInc);
1672      }
1673    }
1674    DEBUG_WITH_TYPE(DebugType, dbgs()
1675                    << "INDVARS: Eliminated congruent iv: " << *Phi << '\n');
1676    ++NumElim;
1677    Value *NewIV = OrigPhiRef;
1678    if (OrigPhiRef->getType() != Phi->getType()) {
1679      IRBuilder<> Builder(L->getHeader()->getFirstInsertionPt());
1680      Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
1681      NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
1682    }
1683    Phi->replaceAllUsesWith(NewIV);
1684    DeadInsts.push_back(Phi);
1685  }
1686  return NumElim;
1687}
1688