ScalarEvolutionExpander.cpp revision dab3d29605a5c83db41b28176273ef55961120c1
1//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution expander,
11// which is used to generate the code corresponding to a given scalar evolution
12// expression.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/ScalarEvolutionExpander.h"
17#include "llvm/Analysis/LoopInfo.h"
18#include "llvm/IntrinsicInst.h"
19#include "llvm/LLVMContext.h"
20#include "llvm/Target/TargetData.h"
21#include "llvm/ADT/STLExtras.h"
22
23using namespace llvm;
24
25/// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
26/// reusing an existing cast if a suitable one exists, moving an existing
27/// cast if a suitable one exists but isn't in the right place, or
28/// creating a new one.
29Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
30                                       Instruction::CastOps Op,
31                                       BasicBlock::iterator IP) {
32  // Check to see if there is already a cast!
33  for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
34       UI != E; ++UI) {
35    User *U = *UI;
36    if (U->getType() == Ty)
37      if (CastInst *CI = dyn_cast<CastInst>(U))
38        if (CI->getOpcode() == Op) {
39          // If the cast isn't where we want it, fix it.
40          if (BasicBlock::iterator(CI) != IP) {
41            // Create a new cast, and leave the old cast in place in case
42            // it is being used as an insert point. Clear its operand
43            // so that it doesn't hold anything live.
44            Instruction *NewCI = CastInst::Create(Op, V, Ty, "", IP);
45            NewCI->takeName(CI);
46            CI->replaceAllUsesWith(NewCI);
47            CI->setOperand(0, UndefValue::get(V->getType()));
48            rememberInstruction(NewCI);
49            return NewCI;
50          }
51          rememberInstruction(CI);
52          return CI;
53        }
54  }
55
56  // Create a new cast.
57  Instruction *I = CastInst::Create(Op, V, Ty, V->getName(), IP);
58  rememberInstruction(I);
59  return I;
60}
61
62/// InsertNoopCastOfTo - Insert a cast of V to the specified type,
63/// which must be possible with a noop cast, doing what we can to share
64/// the casts.
65Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
66  Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
67  assert((Op == Instruction::BitCast ||
68          Op == Instruction::PtrToInt ||
69          Op == Instruction::IntToPtr) &&
70         "InsertNoopCastOfTo cannot perform non-noop casts!");
71  assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
72         "InsertNoopCastOfTo cannot change sizes!");
73
74  // Short-circuit unnecessary bitcasts.
75  if (Op == Instruction::BitCast && V->getType() == Ty)
76    return V;
77
78  // Short-circuit unnecessary inttoptr<->ptrtoint casts.
79  if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
80      SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
81    if (CastInst *CI = dyn_cast<CastInst>(V))
82      if ((CI->getOpcode() == Instruction::PtrToInt ||
83           CI->getOpcode() == Instruction::IntToPtr) &&
84          SE.getTypeSizeInBits(CI->getType()) ==
85          SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
86        return CI->getOperand(0);
87    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
88      if ((CE->getOpcode() == Instruction::PtrToInt ||
89           CE->getOpcode() == Instruction::IntToPtr) &&
90          SE.getTypeSizeInBits(CE->getType()) ==
91          SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
92        return CE->getOperand(0);
93  }
94
95  // Fold a cast of a constant.
96  if (Constant *C = dyn_cast<Constant>(V))
97    return ConstantExpr::getCast(Op, C, Ty);
98
99  // Cast the argument at the beginning of the entry block, after
100  // any bitcasts of other arguments.
101  if (Argument *A = dyn_cast<Argument>(V)) {
102    BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
103    while ((isa<BitCastInst>(IP) &&
104            isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
105            cast<BitCastInst>(IP)->getOperand(0) != A) ||
106           isa<DbgInfoIntrinsic>(IP))
107      ++IP;
108    return ReuseOrCreateCast(A, Ty, Op, IP);
109  }
110
111  // Cast the instruction immediately after the instruction.
112  Instruction *I = cast<Instruction>(V);
113  BasicBlock::iterator IP = I; ++IP;
114  if (InvokeInst *II = dyn_cast<InvokeInst>(I))
115    IP = II->getNormalDest()->begin();
116  while (isa<PHINode>(IP) || isa<DbgInfoIntrinsic>(IP)) ++IP;
117  return ReuseOrCreateCast(I, Ty, Op, IP);
118}
119
120/// InsertBinop - Insert the specified binary operator, doing a small amount
121/// of work to avoid inserting an obviously redundant operation.
122Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
123                                 Value *LHS, Value *RHS) {
124  // Fold a binop with constant operands.
125  if (Constant *CLHS = dyn_cast<Constant>(LHS))
126    if (Constant *CRHS = dyn_cast<Constant>(RHS))
127      return ConstantExpr::get(Opcode, CLHS, CRHS);
128
129  // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
130  unsigned ScanLimit = 6;
131  BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
132  // Scanning starts from the last instruction before the insertion point.
133  BasicBlock::iterator IP = Builder.GetInsertPoint();
134  if (IP != BlockBegin) {
135    --IP;
136    for (; ScanLimit; --IP, --ScanLimit) {
137      // Don't count dbg.value against the ScanLimit, to avoid perturbing the
138      // generated code.
139      if (isa<DbgInfoIntrinsic>(IP))
140        ScanLimit++;
141      if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
142          IP->getOperand(1) == RHS)
143        return IP;
144      if (IP == BlockBegin) break;
145    }
146  }
147
148  // Save the original insertion point so we can restore it when we're done.
149  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
150  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
151
152  // Move the insertion point out of as many loops as we can.
153  while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
154    if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
155    BasicBlock *Preheader = L->getLoopPreheader();
156    if (!Preheader) break;
157
158    // Ok, move up a level.
159    Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
160  }
161
162  // If we haven't found this binop, insert it.
163  Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS, "tmp"));
164  BO->setDebugLoc(SaveInsertPt->getDebugLoc());
165  rememberInstruction(BO);
166
167  // Restore the original insert point.
168  if (SaveInsertBB)
169    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
170
171  return BO;
172}
173
174/// FactorOutConstant - Test if S is divisible by Factor, using signed
175/// division. If so, update S with Factor divided out and return true.
176/// S need not be evenly divisible if a reasonable remainder can be
177/// computed.
178/// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
179/// unnecessary; in its place, just signed-divide Ops[i] by the scale and
180/// check to see if the divide was folded.
181static bool FactorOutConstant(const SCEV *&S,
182                              const SCEV *&Remainder,
183                              const SCEV *Factor,
184                              ScalarEvolution &SE,
185                              const TargetData *TD) {
186  // Everything is divisible by one.
187  if (Factor->isOne())
188    return true;
189
190  // x/x == 1.
191  if (S == Factor) {
192    S = SE.getConstant(S->getType(), 1);
193    return true;
194  }
195
196  // For a Constant, check for a multiple of the given factor.
197  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
198    // 0/x == 0.
199    if (C->isZero())
200      return true;
201    // Check for divisibility.
202    if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
203      ConstantInt *CI =
204        ConstantInt::get(SE.getContext(),
205                         C->getValue()->getValue().sdiv(
206                                                   FC->getValue()->getValue()));
207      // If the quotient is zero and the remainder is non-zero, reject
208      // the value at this scale. It will be considered for subsequent
209      // smaller scales.
210      if (!CI->isZero()) {
211        const SCEV *Div = SE.getConstant(CI);
212        S = Div;
213        Remainder =
214          SE.getAddExpr(Remainder,
215                        SE.getConstant(C->getValue()->getValue().srem(
216                                                  FC->getValue()->getValue())));
217        return true;
218      }
219    }
220  }
221
222  // In a Mul, check if there is a constant operand which is a multiple
223  // of the given factor.
224  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
225    if (TD) {
226      // With TargetData, the size is known. Check if there is a constant
227      // operand which is a multiple of the given factor. If so, we can
228      // factor it.
229      const SCEVConstant *FC = cast<SCEVConstant>(Factor);
230      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
231        if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) {
232          SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
233          NewMulOps[0] =
234            SE.getConstant(C->getValue()->getValue().sdiv(
235                                                   FC->getValue()->getValue()));
236          S = SE.getMulExpr(NewMulOps);
237          return true;
238        }
239    } else {
240      // Without TargetData, check if Factor can be factored out of any of the
241      // Mul's operands. If so, we can just remove it.
242      for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
243        const SCEV *SOp = M->getOperand(i);
244        const SCEV *Remainder = SE.getConstant(SOp->getType(), 0);
245        if (FactorOutConstant(SOp, Remainder, Factor, SE, TD) &&
246            Remainder->isZero()) {
247          SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
248          NewMulOps[i] = SOp;
249          S = SE.getMulExpr(NewMulOps);
250          return true;
251        }
252      }
253    }
254  }
255
256  // In an AddRec, check if both start and step are divisible.
257  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
258    const SCEV *Step = A->getStepRecurrence(SE);
259    const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
260    if (!FactorOutConstant(Step, StepRem, Factor, SE, TD))
261      return false;
262    if (!StepRem->isZero())
263      return false;
264    const SCEV *Start = A->getStart();
265    if (!FactorOutConstant(Start, Remainder, Factor, SE, TD))
266      return false;
267    // FIXME: can use A->getNoWrapFlags(FlagNW)
268    S = SE.getAddRecExpr(Start, Step, A->getLoop(), SCEV::FlagAnyWrap);
269    return true;
270  }
271
272  return false;
273}
274
275/// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
276/// is the number of SCEVAddRecExprs present, which are kept at the end of
277/// the list.
278///
279static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
280                                Type *Ty,
281                                ScalarEvolution &SE) {
282  unsigned NumAddRecs = 0;
283  for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
284    ++NumAddRecs;
285  // Group Ops into non-addrecs and addrecs.
286  SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
287  SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
288  // Let ScalarEvolution sort and simplify the non-addrecs list.
289  const SCEV *Sum = NoAddRecs.empty() ?
290                    SE.getConstant(Ty, 0) :
291                    SE.getAddExpr(NoAddRecs);
292  // If it returned an add, use the operands. Otherwise it simplified
293  // the sum into a single value, so just use that.
294  Ops.clear();
295  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
296    Ops.append(Add->op_begin(), Add->op_end());
297  else if (!Sum->isZero())
298    Ops.push_back(Sum);
299  // Then append the addrecs.
300  Ops.append(AddRecs.begin(), AddRecs.end());
301}
302
303/// SplitAddRecs - Flatten a list of add operands, moving addrec start values
304/// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
305/// This helps expose more opportunities for folding parts of the expressions
306/// into GEP indices.
307///
308static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
309                         Type *Ty,
310                         ScalarEvolution &SE) {
311  // Find the addrecs.
312  SmallVector<const SCEV *, 8> AddRecs;
313  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
314    while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
315      const SCEV *Start = A->getStart();
316      if (Start->isZero()) break;
317      const SCEV *Zero = SE.getConstant(Ty, 0);
318      AddRecs.push_back(SE.getAddRecExpr(Zero,
319                                         A->getStepRecurrence(SE),
320                                         A->getLoop(),
321                                         // FIXME: A->getNoWrapFlags(FlagNW)
322                                         SCEV::FlagAnyWrap));
323      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
324        Ops[i] = Zero;
325        Ops.append(Add->op_begin(), Add->op_end());
326        e += Add->getNumOperands();
327      } else {
328        Ops[i] = Start;
329      }
330    }
331  if (!AddRecs.empty()) {
332    // Add the addrecs onto the end of the list.
333    Ops.append(AddRecs.begin(), AddRecs.end());
334    // Resort the operand list, moving any constants to the front.
335    SimplifyAddOperands(Ops, Ty, SE);
336  }
337}
338
339/// expandAddToGEP - Expand an addition expression with a pointer type into
340/// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
341/// BasicAliasAnalysis and other passes analyze the result. See the rules
342/// for getelementptr vs. inttoptr in
343/// http://llvm.org/docs/LangRef.html#pointeraliasing
344/// for details.
345///
346/// Design note: The correctness of using getelementptr here depends on
347/// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
348/// they may introduce pointer arithmetic which may not be safely converted
349/// into getelementptr.
350///
351/// Design note: It might seem desirable for this function to be more
352/// loop-aware. If some of the indices are loop-invariant while others
353/// aren't, it might seem desirable to emit multiple GEPs, keeping the
354/// loop-invariant portions of the overall computation outside the loop.
355/// However, there are a few reasons this is not done here. Hoisting simple
356/// arithmetic is a low-level optimization that often isn't very
357/// important until late in the optimization process. In fact, passes
358/// like InstructionCombining will combine GEPs, even if it means
359/// pushing loop-invariant computation down into loops, so even if the
360/// GEPs were split here, the work would quickly be undone. The
361/// LoopStrengthReduction pass, which is usually run quite late (and
362/// after the last InstructionCombining pass), takes care of hoisting
363/// loop-invariant portions of expressions, after considering what
364/// can be folded using target addressing modes.
365///
366Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
367                                    const SCEV *const *op_end,
368                                    PointerType *PTy,
369                                    Type *Ty,
370                                    Value *V) {
371  Type *ElTy = PTy->getElementType();
372  SmallVector<Value *, 4> GepIndices;
373  SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
374  bool AnyNonZeroIndices = false;
375
376  // Split AddRecs up into parts as either of the parts may be usable
377  // without the other.
378  SplitAddRecs(Ops, Ty, SE);
379
380  // Descend down the pointer's type and attempt to convert the other
381  // operands into GEP indices, at each level. The first index in a GEP
382  // indexes into the array implied by the pointer operand; the rest of
383  // the indices index into the element or field type selected by the
384  // preceding index.
385  for (;;) {
386    // If the scale size is not 0, attempt to factor out a scale for
387    // array indexing.
388    SmallVector<const SCEV *, 8> ScaledOps;
389    if (ElTy->isSized()) {
390      const SCEV *ElSize = SE.getSizeOfExpr(ElTy);
391      if (!ElSize->isZero()) {
392        SmallVector<const SCEV *, 8> NewOps;
393        for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
394          const SCEV *Op = Ops[i];
395          const SCEV *Remainder = SE.getConstant(Ty, 0);
396          if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.TD)) {
397            // Op now has ElSize factored out.
398            ScaledOps.push_back(Op);
399            if (!Remainder->isZero())
400              NewOps.push_back(Remainder);
401            AnyNonZeroIndices = true;
402          } else {
403            // The operand was not divisible, so add it to the list of operands
404            // we'll scan next iteration.
405            NewOps.push_back(Ops[i]);
406          }
407        }
408        // If we made any changes, update Ops.
409        if (!ScaledOps.empty()) {
410          Ops = NewOps;
411          SimplifyAddOperands(Ops, Ty, SE);
412        }
413      }
414    }
415
416    // Record the scaled array index for this level of the type. If
417    // we didn't find any operands that could be factored, tentatively
418    // assume that element zero was selected (since the zero offset
419    // would obviously be folded away).
420    Value *Scaled = ScaledOps.empty() ?
421                    Constant::getNullValue(Ty) :
422                    expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
423    GepIndices.push_back(Scaled);
424
425    // Collect struct field index operands.
426    while (StructType *STy = dyn_cast<StructType>(ElTy)) {
427      bool FoundFieldNo = false;
428      // An empty struct has no fields.
429      if (STy->getNumElements() == 0) break;
430      if (SE.TD) {
431        // With TargetData, field offsets are known. See if a constant offset
432        // falls within any of the struct fields.
433        if (Ops.empty()) break;
434        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
435          if (SE.getTypeSizeInBits(C->getType()) <= 64) {
436            const StructLayout &SL = *SE.TD->getStructLayout(STy);
437            uint64_t FullOffset = C->getValue()->getZExtValue();
438            if (FullOffset < SL.getSizeInBytes()) {
439              unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
440              GepIndices.push_back(
441                  ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
442              ElTy = STy->getTypeAtIndex(ElIdx);
443              Ops[0] =
444                SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
445              AnyNonZeroIndices = true;
446              FoundFieldNo = true;
447            }
448          }
449      } else {
450        // Without TargetData, just check for an offsetof expression of the
451        // appropriate struct type.
452        for (unsigned i = 0, e = Ops.size(); i != e; ++i)
453          if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Ops[i])) {
454            Type *CTy;
455            Constant *FieldNo;
456            if (U->isOffsetOf(CTy, FieldNo) && CTy == STy) {
457              GepIndices.push_back(FieldNo);
458              ElTy =
459                STy->getTypeAtIndex(cast<ConstantInt>(FieldNo)->getZExtValue());
460              Ops[i] = SE.getConstant(Ty, 0);
461              AnyNonZeroIndices = true;
462              FoundFieldNo = true;
463              break;
464            }
465          }
466      }
467      // If no struct field offsets were found, tentatively assume that
468      // field zero was selected (since the zero offset would obviously
469      // be folded away).
470      if (!FoundFieldNo) {
471        ElTy = STy->getTypeAtIndex(0u);
472        GepIndices.push_back(
473          Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
474      }
475    }
476
477    if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
478      ElTy = ATy->getElementType();
479    else
480      break;
481  }
482
483  // If none of the operands were convertible to proper GEP indices, cast
484  // the base to i8* and do an ugly getelementptr with that. It's still
485  // better than ptrtoint+arithmetic+inttoptr at least.
486  if (!AnyNonZeroIndices) {
487    // Cast the base to i8*.
488    V = InsertNoopCastOfTo(V,
489       Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
490
491    // Expand the operands for a plain byte offset.
492    Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
493
494    // Fold a GEP with constant operands.
495    if (Constant *CLHS = dyn_cast<Constant>(V))
496      if (Constant *CRHS = dyn_cast<Constant>(Idx))
497        return ConstantExpr::getGetElementPtr(CLHS, CRHS);
498
499    // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
500    unsigned ScanLimit = 6;
501    BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
502    // Scanning starts from the last instruction before the insertion point.
503    BasicBlock::iterator IP = Builder.GetInsertPoint();
504    if (IP != BlockBegin) {
505      --IP;
506      for (; ScanLimit; --IP, --ScanLimit) {
507        // Don't count dbg.value against the ScanLimit, to avoid perturbing the
508        // generated code.
509        if (isa<DbgInfoIntrinsic>(IP))
510          ScanLimit++;
511        if (IP->getOpcode() == Instruction::GetElementPtr &&
512            IP->getOperand(0) == V && IP->getOperand(1) == Idx)
513          return IP;
514        if (IP == BlockBegin) break;
515      }
516    }
517
518    // Save the original insertion point so we can restore it when we're done.
519    BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
520    BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
521
522    // Move the insertion point out of as many loops as we can.
523    while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
524      if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
525      BasicBlock *Preheader = L->getLoopPreheader();
526      if (!Preheader) break;
527
528      // Ok, move up a level.
529      Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
530    }
531
532    // Emit a GEP.
533    Value *GEP = Builder.CreateGEP(V, Idx, "uglygep");
534    rememberInstruction(GEP);
535
536    // Restore the original insert point.
537    if (SaveInsertBB)
538      restoreInsertPoint(SaveInsertBB, SaveInsertPt);
539
540    return GEP;
541  }
542
543  // Save the original insertion point so we can restore it when we're done.
544  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
545  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
546
547  // Move the insertion point out of as many loops as we can.
548  while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
549    if (!L->isLoopInvariant(V)) break;
550
551    bool AnyIndexNotLoopInvariant = false;
552    for (SmallVectorImpl<Value *>::const_iterator I = GepIndices.begin(),
553         E = GepIndices.end(); I != E; ++I)
554      if (!L->isLoopInvariant(*I)) {
555        AnyIndexNotLoopInvariant = true;
556        break;
557      }
558    if (AnyIndexNotLoopInvariant)
559      break;
560
561    BasicBlock *Preheader = L->getLoopPreheader();
562    if (!Preheader) break;
563
564    // Ok, move up a level.
565    Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
566  }
567
568  // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
569  // because ScalarEvolution may have changed the address arithmetic to
570  // compute a value which is beyond the end of the allocated object.
571  Value *Casted = V;
572  if (V->getType() != PTy)
573    Casted = InsertNoopCastOfTo(Casted, PTy);
574  Value *GEP = Builder.CreateGEP(Casted,
575                                 GepIndices.begin(),
576                                 GepIndices.end(),
577                                 "scevgep");
578  Ops.push_back(SE.getUnknown(GEP));
579  rememberInstruction(GEP);
580
581  // Restore the original insert point.
582  if (SaveInsertBB)
583    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
584
585  return expand(SE.getAddExpr(Ops));
586}
587
588/// isNonConstantNegative - Return true if the specified scev is negated, but
589/// not a constant.
590static bool isNonConstantNegative(const SCEV *F) {
591  const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(F);
592  if (!Mul) return false;
593
594  // If there is a constant factor, it will be first.
595  const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
596  if (!SC) return false;
597
598  // Return true if the value is negative, this matches things like (-42 * V).
599  return SC->getValue()->getValue().isNegative();
600}
601
602/// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
603/// SCEV expansion. If they are nested, this is the most nested. If they are
604/// neighboring, pick the later.
605static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
606                                        DominatorTree &DT) {
607  if (!A) return B;
608  if (!B) return A;
609  if (A->contains(B)) return B;
610  if (B->contains(A)) return A;
611  if (DT.dominates(A->getHeader(), B->getHeader())) return B;
612  if (DT.dominates(B->getHeader(), A->getHeader())) return A;
613  return A; // Arbitrarily break the tie.
614}
615
616/// getRelevantLoop - Get the most relevant loop associated with the given
617/// expression, according to PickMostRelevantLoop.
618const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
619  // Test whether we've already computed the most relevant loop for this SCEV.
620  std::pair<DenseMap<const SCEV *, const Loop *>::iterator, bool> Pair =
621    RelevantLoops.insert(std::make_pair(S, static_cast<const Loop *>(0)));
622  if (!Pair.second)
623    return Pair.first->second;
624
625  if (isa<SCEVConstant>(S))
626    // A constant has no relevant loops.
627    return 0;
628  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
629    if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
630      return Pair.first->second = SE.LI->getLoopFor(I->getParent());
631    // A non-instruction has no relevant loops.
632    return 0;
633  }
634  if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
635    const Loop *L = 0;
636    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
637      L = AR->getLoop();
638    for (SCEVNAryExpr::op_iterator I = N->op_begin(), E = N->op_end();
639         I != E; ++I)
640      L = PickMostRelevantLoop(L, getRelevantLoop(*I), *SE.DT);
641    return RelevantLoops[N] = L;
642  }
643  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
644    const Loop *Result = getRelevantLoop(C->getOperand());
645    return RelevantLoops[C] = Result;
646  }
647  if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
648    const Loop *Result =
649      PickMostRelevantLoop(getRelevantLoop(D->getLHS()),
650                           getRelevantLoop(D->getRHS()),
651                           *SE.DT);
652    return RelevantLoops[D] = Result;
653  }
654  llvm_unreachable("Unexpected SCEV type!");
655  return 0;
656}
657
658namespace {
659
660/// LoopCompare - Compare loops by PickMostRelevantLoop.
661class LoopCompare {
662  DominatorTree &DT;
663public:
664  explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
665
666  bool operator()(std::pair<const Loop *, const SCEV *> LHS,
667                  std::pair<const Loop *, const SCEV *> RHS) const {
668    // Keep pointer operands sorted at the end.
669    if (LHS.second->getType()->isPointerTy() !=
670        RHS.second->getType()->isPointerTy())
671      return LHS.second->getType()->isPointerTy();
672
673    // Compare loops with PickMostRelevantLoop.
674    if (LHS.first != RHS.first)
675      return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
676
677    // If one operand is a non-constant negative and the other is not,
678    // put the non-constant negative on the right so that a sub can
679    // be used instead of a negate and add.
680    if (isNonConstantNegative(LHS.second)) {
681      if (!isNonConstantNegative(RHS.second))
682        return false;
683    } else if (isNonConstantNegative(RHS.second))
684      return true;
685
686    // Otherwise they are equivalent according to this comparison.
687    return false;
688  }
689};
690
691}
692
693Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
694  Type *Ty = SE.getEffectiveSCEVType(S->getType());
695
696  // Collect all the add operands in a loop, along with their associated loops.
697  // Iterate in reverse so that constants are emitted last, all else equal, and
698  // so that pointer operands are inserted first, which the code below relies on
699  // to form more involved GEPs.
700  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
701  for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
702       E(S->op_begin()); I != E; ++I)
703    OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
704
705  // Sort by loop. Use a stable sort so that constants follow non-constants and
706  // pointer operands precede non-pointer operands.
707  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
708
709  // Emit instructions to add all the operands. Hoist as much as possible
710  // out of loops, and form meaningful getelementptrs where possible.
711  Value *Sum = 0;
712  for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
713       I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
714    const Loop *CurLoop = I->first;
715    const SCEV *Op = I->second;
716    if (!Sum) {
717      // This is the first operand. Just expand it.
718      Sum = expand(Op);
719      ++I;
720    } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
721      // The running sum expression is a pointer. Try to form a getelementptr
722      // at this level with that as the base.
723      SmallVector<const SCEV *, 4> NewOps;
724      for (; I != E && I->first == CurLoop; ++I) {
725        // If the operand is SCEVUnknown and not instructions, peek through
726        // it, to enable more of it to be folded into the GEP.
727        const SCEV *X = I->second;
728        if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
729          if (!isa<Instruction>(U->getValue()))
730            X = SE.getSCEV(U->getValue());
731        NewOps.push_back(X);
732      }
733      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
734    } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
735      // The running sum is an integer, and there's a pointer at this level.
736      // Try to form a getelementptr. If the running sum is instructions,
737      // use a SCEVUnknown to avoid re-analyzing them.
738      SmallVector<const SCEV *, 4> NewOps;
739      NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
740                                               SE.getSCEV(Sum));
741      for (++I; I != E && I->first == CurLoop; ++I)
742        NewOps.push_back(I->second);
743      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
744    } else if (isNonConstantNegative(Op)) {
745      // Instead of doing a negate and add, just do a subtract.
746      Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
747      Sum = InsertNoopCastOfTo(Sum, Ty);
748      Sum = InsertBinop(Instruction::Sub, Sum, W);
749      ++I;
750    } else {
751      // A simple add.
752      Value *W = expandCodeFor(Op, Ty);
753      Sum = InsertNoopCastOfTo(Sum, Ty);
754      // Canonicalize a constant to the RHS.
755      if (isa<Constant>(Sum)) std::swap(Sum, W);
756      Sum = InsertBinop(Instruction::Add, Sum, W);
757      ++I;
758    }
759  }
760
761  return Sum;
762}
763
764Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
765  Type *Ty = SE.getEffectiveSCEVType(S->getType());
766
767  // Collect all the mul operands in a loop, along with their associated loops.
768  // Iterate in reverse so that constants are emitted last, all else equal.
769  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
770  for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
771       E(S->op_begin()); I != E; ++I)
772    OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
773
774  // Sort by loop. Use a stable sort so that constants follow non-constants.
775  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
776
777  // Emit instructions to mul all the operands. Hoist as much as possible
778  // out of loops.
779  Value *Prod = 0;
780  for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
781       I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
782    const SCEV *Op = I->second;
783    if (!Prod) {
784      // This is the first operand. Just expand it.
785      Prod = expand(Op);
786      ++I;
787    } else if (Op->isAllOnesValue()) {
788      // Instead of doing a multiply by negative one, just do a negate.
789      Prod = InsertNoopCastOfTo(Prod, Ty);
790      Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod);
791      ++I;
792    } else {
793      // A simple mul.
794      Value *W = expandCodeFor(Op, Ty);
795      Prod = InsertNoopCastOfTo(Prod, Ty);
796      // Canonicalize a constant to the RHS.
797      if (isa<Constant>(Prod)) std::swap(Prod, W);
798      Prod = InsertBinop(Instruction::Mul, Prod, W);
799      ++I;
800    }
801  }
802
803  return Prod;
804}
805
806Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
807  Type *Ty = SE.getEffectiveSCEVType(S->getType());
808
809  Value *LHS = expandCodeFor(S->getLHS(), Ty);
810  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
811    const APInt &RHS = SC->getValue()->getValue();
812    if (RHS.isPowerOf2())
813      return InsertBinop(Instruction::LShr, LHS,
814                         ConstantInt::get(Ty, RHS.logBase2()));
815  }
816
817  Value *RHS = expandCodeFor(S->getRHS(), Ty);
818  return InsertBinop(Instruction::UDiv, LHS, RHS);
819}
820
821/// Move parts of Base into Rest to leave Base with the minimal
822/// expression that provides a pointer operand suitable for a
823/// GEP expansion.
824static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
825                              ScalarEvolution &SE) {
826  while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
827    Base = A->getStart();
828    Rest = SE.getAddExpr(Rest,
829                         SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
830                                          A->getStepRecurrence(SE),
831                                          A->getLoop(),
832                                          // FIXME: A->getNoWrapFlags(FlagNW)
833                                          SCEV::FlagAnyWrap));
834  }
835  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
836    Base = A->getOperand(A->getNumOperands()-1);
837    SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
838    NewAddOps.back() = Rest;
839    Rest = SE.getAddExpr(NewAddOps);
840    ExposePointerBase(Base, Rest, SE);
841  }
842}
843
844/// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
845/// the base addrec, which is the addrec without any non-loop-dominating
846/// values, and return the PHI.
847PHINode *
848SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
849                                        const Loop *L,
850                                        Type *ExpandTy,
851                                        Type *IntTy) {
852  assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
853
854  // Reuse a previously-inserted PHI, if present.
855  for (BasicBlock::iterator I = L->getHeader()->begin();
856       PHINode *PN = dyn_cast<PHINode>(I); ++I)
857    if (SE.isSCEVable(PN->getType()) &&
858        (SE.getEffectiveSCEVType(PN->getType()) ==
859         SE.getEffectiveSCEVType(Normalized->getType())) &&
860        SE.getSCEV(PN) == Normalized)
861      if (BasicBlock *LatchBlock = L->getLoopLatch()) {
862        Instruction *IncV =
863          cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
864
865        // Determine if this is a well-behaved chain of instructions leading
866        // back to the PHI. It probably will be, if we're scanning an inner
867        // loop already visited by LSR for example, but it wouldn't have
868        // to be.
869        do {
870          if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
871              (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV))) {
872            IncV = 0;
873            break;
874          }
875          // If any of the operands don't dominate the insert position, bail.
876          // Addrec operands are always loop-invariant, so this can only happen
877          // if there are instructions which haven't been hoisted.
878          if (L == IVIncInsertLoop) {
879            for (User::op_iterator OI = IncV->op_begin()+1,
880                   OE = IncV->op_end(); OI != OE; ++OI)
881              if (Instruction *OInst = dyn_cast<Instruction>(OI))
882                if (!SE.DT->dominates(OInst, IVIncInsertPos)) {
883                  IncV = 0;
884                  break;
885                }
886          }
887          if (!IncV)
888            break;
889          // Advance to the next instruction.
890          IncV = dyn_cast<Instruction>(IncV->getOperand(0));
891          if (!IncV)
892            break;
893          if (IncV->mayHaveSideEffects()) {
894            IncV = 0;
895            break;
896          }
897        } while (IncV != PN);
898
899        if (IncV) {
900          // Ok, the add recurrence looks usable.
901          // Remember this PHI, even in post-inc mode.
902          InsertedValues.insert(PN);
903          // Remember the increment.
904          IncV = cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
905          rememberInstruction(IncV);
906          if (L == IVIncInsertLoop)
907            do {
908              if (SE.DT->dominates(IncV, IVIncInsertPos))
909                break;
910              // Make sure the increment is where we want it. But don't move it
911              // down past a potential existing post-inc user.
912              IncV->moveBefore(IVIncInsertPos);
913              IVIncInsertPos = IncV;
914              IncV = cast<Instruction>(IncV->getOperand(0));
915            } while (IncV != PN);
916          return PN;
917        }
918      }
919
920  // Save the original insertion point so we can restore it when we're done.
921  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
922  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
923
924  // Expand code for the start value.
925  Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
926                                L->getHeader()->begin());
927
928  // StartV must be hoisted into L's preheader to dominate the new phi.
929  assert(!isa<Instruction>(StartV) ||
930         SE.DT->properlyDominates(cast<Instruction>(StartV)->getParent(),
931                                  L->getHeader()));
932
933  // Expand code for the step value. Insert instructions right before the
934  // terminator corresponding to the back-edge. Do this before creating the PHI
935  // so that PHI reuse code doesn't see an incomplete PHI. If the stride is
936  // negative, insert a sub instead of an add for the increment (unless it's a
937  // constant, because subtracts of constants are canonicalized to adds).
938  const SCEV *Step = Normalized->getStepRecurrence(SE);
939  bool isPointer = ExpandTy->isPointerTy();
940  bool isNegative = !isPointer && isNonConstantNegative(Step);
941  if (isNegative)
942    Step = SE.getNegativeSCEV(Step);
943  Value *StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
944
945  // Create the PHI.
946  BasicBlock *Header = L->getHeader();
947  Builder.SetInsertPoint(Header, Header->begin());
948  pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
949  PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
950                                  Twine(IVName) + ".iv");
951  rememberInstruction(PN);
952
953  // Create the step instructions and populate the PHI.
954  for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
955    BasicBlock *Pred = *HPI;
956
957    // Add a start value.
958    if (!L->contains(Pred)) {
959      PN->addIncoming(StartV, Pred);
960      continue;
961    }
962
963    // Create a step value and add it to the PHI. If IVIncInsertLoop is
964    // non-null and equal to the addrec's loop, insert the instructions
965    // at IVIncInsertPos.
966    Instruction *InsertPos = L == IVIncInsertLoop ?
967      IVIncInsertPos : Pred->getTerminator();
968    Builder.SetInsertPoint(InsertPos);
969    Value *IncV;
970    // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
971    if (isPointer) {
972      PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
973      // If the step isn't constant, don't use an implicitly scaled GEP, because
974      // that would require a multiply inside the loop.
975      if (!isa<ConstantInt>(StepV))
976        GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
977                                    GEPPtrTy->getAddressSpace());
978      const SCEV *const StepArray[1] = { SE.getSCEV(StepV) };
979      IncV = expandAddToGEP(StepArray, StepArray+1, GEPPtrTy, IntTy, PN);
980      if (IncV->getType() != PN->getType()) {
981        IncV = Builder.CreateBitCast(IncV, PN->getType(), "tmp");
982        rememberInstruction(IncV);
983      }
984    } else {
985      IncV = isNegative ?
986        Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
987        Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
988      rememberInstruction(IncV);
989    }
990    PN->addIncoming(IncV, Pred);
991  }
992
993  // Restore the original insert point.
994  if (SaveInsertBB)
995    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
996
997  // Remember this PHI, even in post-inc mode.
998  InsertedValues.insert(PN);
999
1000  return PN;
1001}
1002
1003Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1004  Type *STy = S->getType();
1005  Type *IntTy = SE.getEffectiveSCEVType(STy);
1006  const Loop *L = S->getLoop();
1007
1008  // Determine a normalized form of this expression, which is the expression
1009  // before any post-inc adjustment is made.
1010  const SCEVAddRecExpr *Normalized = S;
1011  if (PostIncLoops.count(L)) {
1012    PostIncLoopSet Loops;
1013    Loops.insert(L);
1014    Normalized =
1015      cast<SCEVAddRecExpr>(TransformForPostIncUse(Normalize, S, 0, 0,
1016                                                  Loops, SE, *SE.DT));
1017  }
1018
1019  // Strip off any non-loop-dominating component from the addrec start.
1020  const SCEV *Start = Normalized->getStart();
1021  const SCEV *PostLoopOffset = 0;
1022  if (!SE.properlyDominates(Start, L->getHeader())) {
1023    PostLoopOffset = Start;
1024    Start = SE.getConstant(Normalized->getType(), 0);
1025    Normalized = cast<SCEVAddRecExpr>(
1026      SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
1027                       Normalized->getLoop(),
1028                       // FIXME: Normalized->getNoWrapFlags(FlagNW)
1029                       SCEV::FlagAnyWrap));
1030  }
1031
1032  // Strip off any non-loop-dominating component from the addrec step.
1033  const SCEV *Step = Normalized->getStepRecurrence(SE);
1034  const SCEV *PostLoopScale = 0;
1035  if (!SE.dominates(Step, L->getHeader())) {
1036    PostLoopScale = Step;
1037    Step = SE.getConstant(Normalized->getType(), 1);
1038    Normalized =
1039      cast<SCEVAddRecExpr>(SE.getAddRecExpr(Start, Step,
1040                                            Normalized->getLoop(),
1041                                            // FIXME: Normalized
1042                                            // ->getNoWrapFlags(FlagNW)
1043                                            SCEV::FlagAnyWrap));
1044  }
1045
1046  // Expand the core addrec. If we need post-loop scaling, force it to
1047  // expand to an integer type to avoid the need for additional casting.
1048  Type *ExpandTy = PostLoopScale ? IntTy : STy;
1049  PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy);
1050
1051  // Accommodate post-inc mode, if necessary.
1052  Value *Result;
1053  if (!PostIncLoops.count(L))
1054    Result = PN;
1055  else {
1056    // In PostInc mode, use the post-incremented value.
1057    BasicBlock *LatchBlock = L->getLoopLatch();
1058    assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1059    Result = PN->getIncomingValueForBlock(LatchBlock);
1060  }
1061
1062  // Re-apply any non-loop-dominating scale.
1063  if (PostLoopScale) {
1064    Result = InsertNoopCastOfTo(Result, IntTy);
1065    Result = Builder.CreateMul(Result,
1066                               expandCodeFor(PostLoopScale, IntTy));
1067    rememberInstruction(Result);
1068  }
1069
1070  // Re-apply any non-loop-dominating offset.
1071  if (PostLoopOffset) {
1072    if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1073      const SCEV *const OffsetArray[1] = { PostLoopOffset };
1074      Result = expandAddToGEP(OffsetArray, OffsetArray+1, PTy, IntTy, Result);
1075    } else {
1076      Result = InsertNoopCastOfTo(Result, IntTy);
1077      Result = Builder.CreateAdd(Result,
1078                                 expandCodeFor(PostLoopOffset, IntTy));
1079      rememberInstruction(Result);
1080    }
1081  }
1082
1083  return Result;
1084}
1085
1086Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1087  if (!CanonicalMode) return expandAddRecExprLiterally(S);
1088
1089  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1090  const Loop *L = S->getLoop();
1091
1092  // First check for an existing canonical IV in a suitable type.
1093  PHINode *CanonicalIV = 0;
1094  if (PHINode *PN = L->getCanonicalInductionVariable())
1095    if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1096      CanonicalIV = PN;
1097
1098  // Rewrite an AddRec in terms of the canonical induction variable, if
1099  // its type is more narrow.
1100  if (CanonicalIV &&
1101      SE.getTypeSizeInBits(CanonicalIV->getType()) >
1102      SE.getTypeSizeInBits(Ty)) {
1103    SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1104    for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1105      NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
1106    Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1107                                       // FIXME: S->getNoWrapFlags(FlagNW)
1108                                       SCEV::FlagAnyWrap));
1109    BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1110    BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1111    BasicBlock::iterator NewInsertPt =
1112      llvm::next(BasicBlock::iterator(cast<Instruction>(V)));
1113    while (isa<PHINode>(NewInsertPt) || isa<DbgInfoIntrinsic>(NewInsertPt))
1114      ++NewInsertPt;
1115    V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), 0,
1116                      NewInsertPt);
1117    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1118    return V;
1119  }
1120
1121  // {X,+,F} --> X + {0,+,F}
1122  if (!S->getStart()->isZero()) {
1123    SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
1124    NewOps[0] = SE.getConstant(Ty, 0);
1125    // FIXME: can use S->getNoWrapFlags()
1126    const SCEV *Rest = SE.getAddRecExpr(NewOps, L, SCEV::FlagAnyWrap);
1127
1128    // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
1129    // comments on expandAddToGEP for details.
1130    const SCEV *Base = S->getStart();
1131    const SCEV *RestArray[1] = { Rest };
1132    // Dig into the expression to find the pointer base for a GEP.
1133    ExposePointerBase(Base, RestArray[0], SE);
1134    // If we found a pointer, expand the AddRec with a GEP.
1135    if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
1136      // Make sure the Base isn't something exotic, such as a multiplied
1137      // or divided pointer value. In those cases, the result type isn't
1138      // actually a pointer type.
1139      if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
1140        Value *StartV = expand(Base);
1141        assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1142        return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
1143      }
1144    }
1145
1146    // Just do a normal add. Pre-expand the operands to suppress folding.
1147    return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())),
1148                                SE.getUnknown(expand(Rest))));
1149  }
1150
1151  // If we don't yet have a canonical IV, create one.
1152  if (!CanonicalIV) {
1153    // Create and insert the PHI node for the induction variable in the
1154    // specified loop.
1155    BasicBlock *Header = L->getHeader();
1156    pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1157    CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
1158                                  Header->begin());
1159    rememberInstruction(CanonicalIV);
1160
1161    Constant *One = ConstantInt::get(Ty, 1);
1162    for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1163      BasicBlock *HP = *HPI;
1164      if (L->contains(HP)) {
1165        // Insert a unit add instruction right before the terminator
1166        // corresponding to the back-edge.
1167        Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1168                                                     "indvar.next",
1169                                                     HP->getTerminator());
1170        Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1171        rememberInstruction(Add);
1172        CanonicalIV->addIncoming(Add, HP);
1173      } else {
1174        CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1175      }
1176    }
1177  }
1178
1179  // {0,+,1} --> Insert a canonical induction variable into the loop!
1180  if (S->isAffine() && S->getOperand(1)->isOne()) {
1181    assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1182           "IVs with types different from the canonical IV should "
1183           "already have been handled!");
1184    return CanonicalIV;
1185  }
1186
1187  // {0,+,F} --> {0,+,1} * F
1188
1189  // If this is a simple linear addrec, emit it now as a special case.
1190  if (S->isAffine())    // {0,+,F} --> i*F
1191    return
1192      expand(SE.getTruncateOrNoop(
1193        SE.getMulExpr(SE.getUnknown(CanonicalIV),
1194                      SE.getNoopOrAnyExtend(S->getOperand(1),
1195                                            CanonicalIV->getType())),
1196        Ty));
1197
1198  // If this is a chain of recurrences, turn it into a closed form, using the
1199  // folders, then expandCodeFor the closed form.  This allows the folders to
1200  // simplify the expression without having to build a bunch of special code
1201  // into this folder.
1202  const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
1203
1204  // Promote S up to the canonical IV type, if the cast is foldable.
1205  const SCEV *NewS = S;
1206  const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1207  if (isa<SCEVAddRecExpr>(Ext))
1208    NewS = Ext;
1209
1210  const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1211  //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
1212
1213  // Truncate the result down to the original type, if needed.
1214  const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1215  return expand(T);
1216}
1217
1218Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1219  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1220  Value *V = expandCodeFor(S->getOperand(),
1221                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1222  Value *I = Builder.CreateTrunc(V, Ty, "tmp");
1223  rememberInstruction(I);
1224  return I;
1225}
1226
1227Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1228  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1229  Value *V = expandCodeFor(S->getOperand(),
1230                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1231  Value *I = Builder.CreateZExt(V, Ty, "tmp");
1232  rememberInstruction(I);
1233  return I;
1234}
1235
1236Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1237  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1238  Value *V = expandCodeFor(S->getOperand(),
1239                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1240  Value *I = Builder.CreateSExt(V, Ty, "tmp");
1241  rememberInstruction(I);
1242  return I;
1243}
1244
1245Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1246  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1247  Type *Ty = LHS->getType();
1248  for (int i = S->getNumOperands()-2; i >= 0; --i) {
1249    // In the case of mixed integer and pointer types, do the
1250    // rest of the comparisons as integer.
1251    if (S->getOperand(i)->getType() != Ty) {
1252      Ty = SE.getEffectiveSCEVType(Ty);
1253      LHS = InsertNoopCastOfTo(LHS, Ty);
1254    }
1255    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1256    Value *ICmp = Builder.CreateICmpSGT(LHS, RHS, "tmp");
1257    rememberInstruction(ICmp);
1258    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1259    rememberInstruction(Sel);
1260    LHS = Sel;
1261  }
1262  // In the case of mixed integer and pointer types, cast the
1263  // final result back to the pointer type.
1264  if (LHS->getType() != S->getType())
1265    LHS = InsertNoopCastOfTo(LHS, S->getType());
1266  return LHS;
1267}
1268
1269Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1270  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1271  Type *Ty = LHS->getType();
1272  for (int i = S->getNumOperands()-2; i >= 0; --i) {
1273    // In the case of mixed integer and pointer types, do the
1274    // rest of the comparisons as integer.
1275    if (S->getOperand(i)->getType() != Ty) {
1276      Ty = SE.getEffectiveSCEVType(Ty);
1277      LHS = InsertNoopCastOfTo(LHS, Ty);
1278    }
1279    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1280    Value *ICmp = Builder.CreateICmpUGT(LHS, RHS, "tmp");
1281    rememberInstruction(ICmp);
1282    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1283    rememberInstruction(Sel);
1284    LHS = Sel;
1285  }
1286  // In the case of mixed integer and pointer types, cast the
1287  // final result back to the pointer type.
1288  if (LHS->getType() != S->getType())
1289    LHS = InsertNoopCastOfTo(LHS, S->getType());
1290  return LHS;
1291}
1292
1293Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
1294                                   Instruction *I) {
1295  BasicBlock::iterator IP = I;
1296  while (isInsertedInstruction(IP) || isa<DbgInfoIntrinsic>(IP))
1297    ++IP;
1298  Builder.SetInsertPoint(IP->getParent(), IP);
1299  return expandCodeFor(SH, Ty);
1300}
1301
1302Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
1303  // Expand the code for this SCEV.
1304  Value *V = expand(SH);
1305  if (Ty) {
1306    assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1307           "non-trivial casts should be done with the SCEVs directly!");
1308    V = InsertNoopCastOfTo(V, Ty);
1309  }
1310  return V;
1311}
1312
1313Value *SCEVExpander::expand(const SCEV *S) {
1314  // Compute an insertion point for this SCEV object. Hoist the instructions
1315  // as far out in the loop nest as possible.
1316  Instruction *InsertPt = Builder.GetInsertPoint();
1317  for (Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock()); ;
1318       L = L->getParentLoop())
1319    if (SE.isLoopInvariant(S, L)) {
1320      if (!L) break;
1321      if (BasicBlock *Preheader = L->getLoopPreheader())
1322        InsertPt = Preheader->getTerminator();
1323    } else {
1324      // If the SCEV is computable at this level, insert it into the header
1325      // after the PHIs (and after any other instructions that we've inserted
1326      // there) so that it is guaranteed to dominate any user inside the loop.
1327      if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1328        InsertPt = L->getHeader()->getFirstNonPHI();
1329      while (isInsertedInstruction(InsertPt) || isa<DbgInfoIntrinsic>(InsertPt))
1330        InsertPt = llvm::next(BasicBlock::iterator(InsertPt));
1331      break;
1332    }
1333
1334  // Check to see if we already expanded this here.
1335  std::map<std::pair<const SCEV *, Instruction *>,
1336           AssertingVH<Value> >::iterator I =
1337    InsertedExpressions.find(std::make_pair(S, InsertPt));
1338  if (I != InsertedExpressions.end())
1339    return I->second;
1340
1341  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1342  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1343  Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
1344
1345  // Expand the expression into instructions.
1346  Value *V = visit(S);
1347
1348  // Remember the expanded value for this SCEV at this location.
1349  if (PostIncLoops.empty())
1350    InsertedExpressions[std::make_pair(S, InsertPt)] = V;
1351
1352  restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1353  return V;
1354}
1355
1356void SCEVExpander::rememberInstruction(Value *I) {
1357  if (!PostIncLoops.empty())
1358    InsertedPostIncValues.insert(I);
1359  else
1360    InsertedValues.insert(I);
1361
1362  // If we just claimed an existing instruction and that instruction had
1363  // been the insert point, adjust the insert point forward so that
1364  // subsequently inserted code will be dominated.
1365  if (Builder.GetInsertPoint() == I) {
1366    BasicBlock::iterator It = cast<Instruction>(I);
1367    do { ++It; } while (isInsertedInstruction(It) ||
1368                        isa<DbgInfoIntrinsic>(It));
1369    Builder.SetInsertPoint(Builder.GetInsertBlock(), It);
1370  }
1371}
1372
1373void SCEVExpander::restoreInsertPoint(BasicBlock *BB, BasicBlock::iterator I) {
1374  // If we acquired more instructions since the old insert point was saved,
1375  // advance past them.
1376  while (isInsertedInstruction(I) || isa<DbgInfoIntrinsic>(I)) ++I;
1377
1378  Builder.SetInsertPoint(BB, I);
1379}
1380
1381/// getOrInsertCanonicalInductionVariable - This method returns the
1382/// canonical induction variable of the specified type for the specified
1383/// loop (inserting one if there is none).  A canonical induction variable
1384/// starts at zero and steps by one on each iteration.
1385PHINode *
1386SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
1387                                                    Type *Ty) {
1388  assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
1389
1390  // Build a SCEV for {0,+,1}<L>.
1391  // Conservatively use FlagAnyWrap for now.
1392  const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
1393                                   SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap);
1394
1395  // Emit code for it.
1396  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1397  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1398  PHINode *V = cast<PHINode>(expandCodeFor(H, 0, L->getHeader()->begin()));
1399  if (SaveInsertBB)
1400    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1401
1402  return V;
1403}
1404