ScalarEvolutionExpander.cpp revision f8fd841a4bb7a59f81cf4642169e8251e039acfe
1//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution expander,
11// which is used to generate the code corresponding to a given scalar evolution
12// expression.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/ScalarEvolutionExpander.h"
17#include "llvm/Analysis/LoopInfo.h"
18#include "llvm/IntrinsicInst.h"
19#include "llvm/LLVMContext.h"
20#include "llvm/Support/Debug.h"
21#include "llvm/Target/TargetData.h"
22#include "llvm/ADT/STLExtras.h"
23
24using namespace llvm;
25
26/// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
27/// reusing an existing cast if a suitable one exists, moving an existing
28/// cast if a suitable one exists but isn't in the right place, or
29/// creating a new one.
30Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
31                                       Instruction::CastOps Op,
32                                       BasicBlock::iterator IP) {
33  // Check to see if there is already a cast!
34  for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
35       UI != E; ++UI) {
36    User *U = *UI;
37    if (U->getType() == Ty)
38      if (CastInst *CI = dyn_cast<CastInst>(U))
39        if (CI->getOpcode() == Op) {
40          // If the cast isn't where we want it, fix it.
41          if (BasicBlock::iterator(CI) != IP) {
42            // Create a new cast, and leave the old cast in place in case
43            // it is being used as an insert point. Clear its operand
44            // so that it doesn't hold anything live.
45            Instruction *NewCI = CastInst::Create(Op, V, Ty, "", IP);
46            NewCI->takeName(CI);
47            CI->replaceAllUsesWith(NewCI);
48            CI->setOperand(0, UndefValue::get(V->getType()));
49            rememberInstruction(NewCI);
50            return NewCI;
51          }
52          rememberInstruction(CI);
53          return CI;
54        }
55  }
56
57  // Create a new cast.
58  Instruction *I = CastInst::Create(Op, V, Ty, V->getName(), IP);
59  rememberInstruction(I);
60  return I;
61}
62
63/// InsertNoopCastOfTo - Insert a cast of V to the specified type,
64/// which must be possible with a noop cast, doing what we can to share
65/// the casts.
66Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
67  Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
68  assert((Op == Instruction::BitCast ||
69          Op == Instruction::PtrToInt ||
70          Op == Instruction::IntToPtr) &&
71         "InsertNoopCastOfTo cannot perform non-noop casts!");
72  assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
73         "InsertNoopCastOfTo cannot change sizes!");
74
75  // Short-circuit unnecessary bitcasts.
76  if (Op == Instruction::BitCast) {
77    if (V->getType() == Ty)
78      return V;
79    if (CastInst *CI = dyn_cast<CastInst>(V)) {
80      if (CI->getOperand(0)->getType() == Ty)
81        return CI->getOperand(0);
82    }
83  }
84  // Short-circuit unnecessary inttoptr<->ptrtoint casts.
85  if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
86      SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
87    if (CastInst *CI = dyn_cast<CastInst>(V))
88      if ((CI->getOpcode() == Instruction::PtrToInt ||
89           CI->getOpcode() == Instruction::IntToPtr) &&
90          SE.getTypeSizeInBits(CI->getType()) ==
91          SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
92        return CI->getOperand(0);
93    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
94      if ((CE->getOpcode() == Instruction::PtrToInt ||
95           CE->getOpcode() == Instruction::IntToPtr) &&
96          SE.getTypeSizeInBits(CE->getType()) ==
97          SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
98        return CE->getOperand(0);
99  }
100
101  // Fold a cast of a constant.
102  if (Constant *C = dyn_cast<Constant>(V))
103    return ConstantExpr::getCast(Op, C, Ty);
104
105  // Cast the argument at the beginning of the entry block, after
106  // any bitcasts of other arguments.
107  if (Argument *A = dyn_cast<Argument>(V)) {
108    BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
109    while ((isa<BitCastInst>(IP) &&
110            isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
111            cast<BitCastInst>(IP)->getOperand(0) != A) ||
112           isa<DbgInfoIntrinsic>(IP) ||
113           isa<LandingPadInst>(IP))
114      ++IP;
115    return ReuseOrCreateCast(A, Ty, Op, IP);
116  }
117
118  // Cast the instruction immediately after the instruction.
119  Instruction *I = cast<Instruction>(V);
120  BasicBlock::iterator IP = I; ++IP;
121  if (InvokeInst *II = dyn_cast<InvokeInst>(I))
122    IP = II->getNormalDest()->begin();
123  while (isa<PHINode>(IP) || isa<DbgInfoIntrinsic>(IP) ||
124         isa<LandingPadInst>(IP))
125    ++IP;
126  return ReuseOrCreateCast(I, Ty, Op, IP);
127}
128
129/// InsertBinop - Insert the specified binary operator, doing a small amount
130/// of work to avoid inserting an obviously redundant operation.
131Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
132                                 Value *LHS, Value *RHS) {
133  // Fold a binop with constant operands.
134  if (Constant *CLHS = dyn_cast<Constant>(LHS))
135    if (Constant *CRHS = dyn_cast<Constant>(RHS))
136      return ConstantExpr::get(Opcode, CLHS, CRHS);
137
138  // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
139  unsigned ScanLimit = 6;
140  BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
141  // Scanning starts from the last instruction before the insertion point.
142  BasicBlock::iterator IP = Builder.GetInsertPoint();
143  if (IP != BlockBegin) {
144    --IP;
145    for (; ScanLimit; --IP, --ScanLimit) {
146      // Don't count dbg.value against the ScanLimit, to avoid perturbing the
147      // generated code.
148      if (isa<DbgInfoIntrinsic>(IP))
149        ScanLimit++;
150      if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
151          IP->getOperand(1) == RHS)
152        return IP;
153      if (IP == BlockBegin) break;
154    }
155  }
156
157  // Save the original insertion point so we can restore it when we're done.
158  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
159  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
160
161  // Move the insertion point out of as many loops as we can.
162  while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
163    if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
164    BasicBlock *Preheader = L->getLoopPreheader();
165    if (!Preheader) break;
166
167    // Ok, move up a level.
168    Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
169  }
170
171  // If we haven't found this binop, insert it.
172  Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
173  BO->setDebugLoc(SaveInsertPt->getDebugLoc());
174  rememberInstruction(BO);
175
176  // Restore the original insert point.
177  if (SaveInsertBB)
178    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
179
180  return BO;
181}
182
183/// FactorOutConstant - Test if S is divisible by Factor, using signed
184/// division. If so, update S with Factor divided out and return true.
185/// S need not be evenly divisible if a reasonable remainder can be
186/// computed.
187/// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
188/// unnecessary; in its place, just signed-divide Ops[i] by the scale and
189/// check to see if the divide was folded.
190static bool FactorOutConstant(const SCEV *&S,
191                              const SCEV *&Remainder,
192                              const SCEV *Factor,
193                              ScalarEvolution &SE,
194                              const TargetData *TD) {
195  // Everything is divisible by one.
196  if (Factor->isOne())
197    return true;
198
199  // x/x == 1.
200  if (S == Factor) {
201    S = SE.getConstant(S->getType(), 1);
202    return true;
203  }
204
205  // For a Constant, check for a multiple of the given factor.
206  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
207    // 0/x == 0.
208    if (C->isZero())
209      return true;
210    // Check for divisibility.
211    if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
212      ConstantInt *CI =
213        ConstantInt::get(SE.getContext(),
214                         C->getValue()->getValue().sdiv(
215                                                   FC->getValue()->getValue()));
216      // If the quotient is zero and the remainder is non-zero, reject
217      // the value at this scale. It will be considered for subsequent
218      // smaller scales.
219      if (!CI->isZero()) {
220        const SCEV *Div = SE.getConstant(CI);
221        S = Div;
222        Remainder =
223          SE.getAddExpr(Remainder,
224                        SE.getConstant(C->getValue()->getValue().srem(
225                                                  FC->getValue()->getValue())));
226        return true;
227      }
228    }
229  }
230
231  // In a Mul, check if there is a constant operand which is a multiple
232  // of the given factor.
233  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
234    if (TD) {
235      // With TargetData, the size is known. Check if there is a constant
236      // operand which is a multiple of the given factor. If so, we can
237      // factor it.
238      const SCEVConstant *FC = cast<SCEVConstant>(Factor);
239      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
240        if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) {
241          SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
242          NewMulOps[0] =
243            SE.getConstant(C->getValue()->getValue().sdiv(
244                                                   FC->getValue()->getValue()));
245          S = SE.getMulExpr(NewMulOps);
246          return true;
247        }
248    } else {
249      // Without TargetData, check if Factor can be factored out of any of the
250      // Mul's operands. If so, we can just remove it.
251      for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
252        const SCEV *SOp = M->getOperand(i);
253        const SCEV *Remainder = SE.getConstant(SOp->getType(), 0);
254        if (FactorOutConstant(SOp, Remainder, Factor, SE, TD) &&
255            Remainder->isZero()) {
256          SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
257          NewMulOps[i] = SOp;
258          S = SE.getMulExpr(NewMulOps);
259          return true;
260        }
261      }
262    }
263  }
264
265  // In an AddRec, check if both start and step are divisible.
266  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
267    const SCEV *Step = A->getStepRecurrence(SE);
268    const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
269    if (!FactorOutConstant(Step, StepRem, Factor, SE, TD))
270      return false;
271    if (!StepRem->isZero())
272      return false;
273    const SCEV *Start = A->getStart();
274    if (!FactorOutConstant(Start, Remainder, Factor, SE, TD))
275      return false;
276    // FIXME: can use A->getNoWrapFlags(FlagNW)
277    S = SE.getAddRecExpr(Start, Step, A->getLoop(), SCEV::FlagAnyWrap);
278    return true;
279  }
280
281  return false;
282}
283
284/// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
285/// is the number of SCEVAddRecExprs present, which are kept at the end of
286/// the list.
287///
288static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
289                                Type *Ty,
290                                ScalarEvolution &SE) {
291  unsigned NumAddRecs = 0;
292  for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
293    ++NumAddRecs;
294  // Group Ops into non-addrecs and addrecs.
295  SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
296  SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
297  // Let ScalarEvolution sort and simplify the non-addrecs list.
298  const SCEV *Sum = NoAddRecs.empty() ?
299                    SE.getConstant(Ty, 0) :
300                    SE.getAddExpr(NoAddRecs);
301  // If it returned an add, use the operands. Otherwise it simplified
302  // the sum into a single value, so just use that.
303  Ops.clear();
304  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
305    Ops.append(Add->op_begin(), Add->op_end());
306  else if (!Sum->isZero())
307    Ops.push_back(Sum);
308  // Then append the addrecs.
309  Ops.append(AddRecs.begin(), AddRecs.end());
310}
311
312/// SplitAddRecs - Flatten a list of add operands, moving addrec start values
313/// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
314/// This helps expose more opportunities for folding parts of the expressions
315/// into GEP indices.
316///
317static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
318                         Type *Ty,
319                         ScalarEvolution &SE) {
320  // Find the addrecs.
321  SmallVector<const SCEV *, 8> AddRecs;
322  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
323    while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
324      const SCEV *Start = A->getStart();
325      if (Start->isZero()) break;
326      const SCEV *Zero = SE.getConstant(Ty, 0);
327      AddRecs.push_back(SE.getAddRecExpr(Zero,
328                                         A->getStepRecurrence(SE),
329                                         A->getLoop(),
330                                         // FIXME: A->getNoWrapFlags(FlagNW)
331                                         SCEV::FlagAnyWrap));
332      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
333        Ops[i] = Zero;
334        Ops.append(Add->op_begin(), Add->op_end());
335        e += Add->getNumOperands();
336      } else {
337        Ops[i] = Start;
338      }
339    }
340  if (!AddRecs.empty()) {
341    // Add the addrecs onto the end of the list.
342    Ops.append(AddRecs.begin(), AddRecs.end());
343    // Resort the operand list, moving any constants to the front.
344    SimplifyAddOperands(Ops, Ty, SE);
345  }
346}
347
348/// expandAddToGEP - Expand an addition expression with a pointer type into
349/// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
350/// BasicAliasAnalysis and other passes analyze the result. See the rules
351/// for getelementptr vs. inttoptr in
352/// http://llvm.org/docs/LangRef.html#pointeraliasing
353/// for details.
354///
355/// Design note: The correctness of using getelementptr here depends on
356/// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
357/// they may introduce pointer arithmetic which may not be safely converted
358/// into getelementptr.
359///
360/// Design note: It might seem desirable for this function to be more
361/// loop-aware. If some of the indices are loop-invariant while others
362/// aren't, it might seem desirable to emit multiple GEPs, keeping the
363/// loop-invariant portions of the overall computation outside the loop.
364/// However, there are a few reasons this is not done here. Hoisting simple
365/// arithmetic is a low-level optimization that often isn't very
366/// important until late in the optimization process. In fact, passes
367/// like InstructionCombining will combine GEPs, even if it means
368/// pushing loop-invariant computation down into loops, so even if the
369/// GEPs were split here, the work would quickly be undone. The
370/// LoopStrengthReduction pass, which is usually run quite late (and
371/// after the last InstructionCombining pass), takes care of hoisting
372/// loop-invariant portions of expressions, after considering what
373/// can be folded using target addressing modes.
374///
375Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
376                                    const SCEV *const *op_end,
377                                    PointerType *PTy,
378                                    Type *Ty,
379                                    Value *V) {
380  Type *ElTy = PTy->getElementType();
381  SmallVector<Value *, 4> GepIndices;
382  SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
383  bool AnyNonZeroIndices = false;
384
385  // Split AddRecs up into parts as either of the parts may be usable
386  // without the other.
387  SplitAddRecs(Ops, Ty, SE);
388
389  // Descend down the pointer's type and attempt to convert the other
390  // operands into GEP indices, at each level. The first index in a GEP
391  // indexes into the array implied by the pointer operand; the rest of
392  // the indices index into the element or field type selected by the
393  // preceding index.
394  for (;;) {
395    // If the scale size is not 0, attempt to factor out a scale for
396    // array indexing.
397    SmallVector<const SCEV *, 8> ScaledOps;
398    if (ElTy->isSized()) {
399      const SCEV *ElSize = SE.getSizeOfExpr(ElTy);
400      if (!ElSize->isZero()) {
401        SmallVector<const SCEV *, 8> NewOps;
402        for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
403          const SCEV *Op = Ops[i];
404          const SCEV *Remainder = SE.getConstant(Ty, 0);
405          if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.TD)) {
406            // Op now has ElSize factored out.
407            ScaledOps.push_back(Op);
408            if (!Remainder->isZero())
409              NewOps.push_back(Remainder);
410            AnyNonZeroIndices = true;
411          } else {
412            // The operand was not divisible, so add it to the list of operands
413            // we'll scan next iteration.
414            NewOps.push_back(Ops[i]);
415          }
416        }
417        // If we made any changes, update Ops.
418        if (!ScaledOps.empty()) {
419          Ops = NewOps;
420          SimplifyAddOperands(Ops, Ty, SE);
421        }
422      }
423    }
424
425    // Record the scaled array index for this level of the type. If
426    // we didn't find any operands that could be factored, tentatively
427    // assume that element zero was selected (since the zero offset
428    // would obviously be folded away).
429    Value *Scaled = ScaledOps.empty() ?
430                    Constant::getNullValue(Ty) :
431                    expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
432    GepIndices.push_back(Scaled);
433
434    // Collect struct field index operands.
435    while (StructType *STy = dyn_cast<StructType>(ElTy)) {
436      bool FoundFieldNo = false;
437      // An empty struct has no fields.
438      if (STy->getNumElements() == 0) break;
439      if (SE.TD) {
440        // With TargetData, field offsets are known. See if a constant offset
441        // falls within any of the struct fields.
442        if (Ops.empty()) break;
443        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
444          if (SE.getTypeSizeInBits(C->getType()) <= 64) {
445            const StructLayout &SL = *SE.TD->getStructLayout(STy);
446            uint64_t FullOffset = C->getValue()->getZExtValue();
447            if (FullOffset < SL.getSizeInBytes()) {
448              unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
449              GepIndices.push_back(
450                  ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
451              ElTy = STy->getTypeAtIndex(ElIdx);
452              Ops[0] =
453                SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
454              AnyNonZeroIndices = true;
455              FoundFieldNo = true;
456            }
457          }
458      } else {
459        // Without TargetData, just check for an offsetof expression of the
460        // appropriate struct type.
461        for (unsigned i = 0, e = Ops.size(); i != e; ++i)
462          if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Ops[i])) {
463            Type *CTy;
464            Constant *FieldNo;
465            if (U->isOffsetOf(CTy, FieldNo) && CTy == STy) {
466              GepIndices.push_back(FieldNo);
467              ElTy =
468                STy->getTypeAtIndex(cast<ConstantInt>(FieldNo)->getZExtValue());
469              Ops[i] = SE.getConstant(Ty, 0);
470              AnyNonZeroIndices = true;
471              FoundFieldNo = true;
472              break;
473            }
474          }
475      }
476      // If no struct field offsets were found, tentatively assume that
477      // field zero was selected (since the zero offset would obviously
478      // be folded away).
479      if (!FoundFieldNo) {
480        ElTy = STy->getTypeAtIndex(0u);
481        GepIndices.push_back(
482          Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
483      }
484    }
485
486    if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
487      ElTy = ATy->getElementType();
488    else
489      break;
490  }
491
492  // If none of the operands were convertible to proper GEP indices, cast
493  // the base to i8* and do an ugly getelementptr with that. It's still
494  // better than ptrtoint+arithmetic+inttoptr at least.
495  if (!AnyNonZeroIndices) {
496    // Cast the base to i8*.
497    V = InsertNoopCastOfTo(V,
498       Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
499
500    // Expand the operands for a plain byte offset.
501    Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
502
503    // Fold a GEP with constant operands.
504    if (Constant *CLHS = dyn_cast<Constant>(V))
505      if (Constant *CRHS = dyn_cast<Constant>(Idx))
506        return ConstantExpr::getGetElementPtr(CLHS, CRHS);
507
508    // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
509    unsigned ScanLimit = 6;
510    BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
511    // Scanning starts from the last instruction before the insertion point.
512    BasicBlock::iterator IP = Builder.GetInsertPoint();
513    if (IP != BlockBegin) {
514      --IP;
515      for (; ScanLimit; --IP, --ScanLimit) {
516        // Don't count dbg.value against the ScanLimit, to avoid perturbing the
517        // generated code.
518        if (isa<DbgInfoIntrinsic>(IP))
519          ScanLimit++;
520        if (IP->getOpcode() == Instruction::GetElementPtr &&
521            IP->getOperand(0) == V && IP->getOperand(1) == Idx)
522          return IP;
523        if (IP == BlockBegin) break;
524      }
525    }
526
527    // Save the original insertion point so we can restore it when we're done.
528    BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
529    BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
530
531    // Move the insertion point out of as many loops as we can.
532    while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
533      if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
534      BasicBlock *Preheader = L->getLoopPreheader();
535      if (!Preheader) break;
536
537      // Ok, move up a level.
538      Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
539    }
540
541    // Emit a GEP.
542    Value *GEP = Builder.CreateGEP(V, Idx, "uglygep");
543    rememberInstruction(GEP);
544
545    // Restore the original insert point.
546    if (SaveInsertBB)
547      restoreInsertPoint(SaveInsertBB, SaveInsertPt);
548
549    return GEP;
550  }
551
552  // Save the original insertion point so we can restore it when we're done.
553  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
554  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
555
556  // Move the insertion point out of as many loops as we can.
557  while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
558    if (!L->isLoopInvariant(V)) break;
559
560    bool AnyIndexNotLoopInvariant = false;
561    for (SmallVectorImpl<Value *>::const_iterator I = GepIndices.begin(),
562         E = GepIndices.end(); I != E; ++I)
563      if (!L->isLoopInvariant(*I)) {
564        AnyIndexNotLoopInvariant = true;
565        break;
566      }
567    if (AnyIndexNotLoopInvariant)
568      break;
569
570    BasicBlock *Preheader = L->getLoopPreheader();
571    if (!Preheader) break;
572
573    // Ok, move up a level.
574    Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
575  }
576
577  // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
578  // because ScalarEvolution may have changed the address arithmetic to
579  // compute a value which is beyond the end of the allocated object.
580  Value *Casted = V;
581  if (V->getType() != PTy)
582    Casted = InsertNoopCastOfTo(Casted, PTy);
583  Value *GEP = Builder.CreateGEP(Casted,
584                                 GepIndices,
585                                 "scevgep");
586  Ops.push_back(SE.getUnknown(GEP));
587  rememberInstruction(GEP);
588
589  // Restore the original insert point.
590  if (SaveInsertBB)
591    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
592
593  return expand(SE.getAddExpr(Ops));
594}
595
596/// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
597/// SCEV expansion. If they are nested, this is the most nested. If they are
598/// neighboring, pick the later.
599static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
600                                        DominatorTree &DT) {
601  if (!A) return B;
602  if (!B) return A;
603  if (A->contains(B)) return B;
604  if (B->contains(A)) return A;
605  if (DT.dominates(A->getHeader(), B->getHeader())) return B;
606  if (DT.dominates(B->getHeader(), A->getHeader())) return A;
607  return A; // Arbitrarily break the tie.
608}
609
610/// getRelevantLoop - Get the most relevant loop associated with the given
611/// expression, according to PickMostRelevantLoop.
612const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
613  // Test whether we've already computed the most relevant loop for this SCEV.
614  std::pair<DenseMap<const SCEV *, const Loop *>::iterator, bool> Pair =
615    RelevantLoops.insert(std::make_pair(S, static_cast<const Loop *>(0)));
616  if (!Pair.second)
617    return Pair.first->second;
618
619  if (isa<SCEVConstant>(S))
620    // A constant has no relevant loops.
621    return 0;
622  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
623    if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
624      return Pair.first->second = SE.LI->getLoopFor(I->getParent());
625    // A non-instruction has no relevant loops.
626    return 0;
627  }
628  if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
629    const Loop *L = 0;
630    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
631      L = AR->getLoop();
632    for (SCEVNAryExpr::op_iterator I = N->op_begin(), E = N->op_end();
633         I != E; ++I)
634      L = PickMostRelevantLoop(L, getRelevantLoop(*I), *SE.DT);
635    return RelevantLoops[N] = L;
636  }
637  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
638    const Loop *Result = getRelevantLoop(C->getOperand());
639    return RelevantLoops[C] = Result;
640  }
641  if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
642    const Loop *Result =
643      PickMostRelevantLoop(getRelevantLoop(D->getLHS()),
644                           getRelevantLoop(D->getRHS()),
645                           *SE.DT);
646    return RelevantLoops[D] = Result;
647  }
648  llvm_unreachable("Unexpected SCEV type!");
649  return 0;
650}
651
652namespace {
653
654/// LoopCompare - Compare loops by PickMostRelevantLoop.
655class LoopCompare {
656  DominatorTree &DT;
657public:
658  explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
659
660  bool operator()(std::pair<const Loop *, const SCEV *> LHS,
661                  std::pair<const Loop *, const SCEV *> RHS) const {
662    // Keep pointer operands sorted at the end.
663    if (LHS.second->getType()->isPointerTy() !=
664        RHS.second->getType()->isPointerTy())
665      return LHS.second->getType()->isPointerTy();
666
667    // Compare loops with PickMostRelevantLoop.
668    if (LHS.first != RHS.first)
669      return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
670
671    // If one operand is a non-constant negative and the other is not,
672    // put the non-constant negative on the right so that a sub can
673    // be used instead of a negate and add.
674    if (LHS.second->isNonConstantNegative()) {
675      if (!RHS.second->isNonConstantNegative())
676        return false;
677    } else if (RHS.second->isNonConstantNegative())
678      return true;
679
680    // Otherwise they are equivalent according to this comparison.
681    return false;
682  }
683};
684
685}
686
687Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
688  Type *Ty = SE.getEffectiveSCEVType(S->getType());
689
690  // Collect all the add operands in a loop, along with their associated loops.
691  // Iterate in reverse so that constants are emitted last, all else equal, and
692  // so that pointer operands are inserted first, which the code below relies on
693  // to form more involved GEPs.
694  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
695  for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
696       E(S->op_begin()); I != E; ++I)
697    OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
698
699  // Sort by loop. Use a stable sort so that constants follow non-constants and
700  // pointer operands precede non-pointer operands.
701  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
702
703  // Emit instructions to add all the operands. Hoist as much as possible
704  // out of loops, and form meaningful getelementptrs where possible.
705  Value *Sum = 0;
706  for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
707       I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
708    const Loop *CurLoop = I->first;
709    const SCEV *Op = I->second;
710    if (!Sum) {
711      // This is the first operand. Just expand it.
712      Sum = expand(Op);
713      ++I;
714    } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
715      // The running sum expression is a pointer. Try to form a getelementptr
716      // at this level with that as the base.
717      SmallVector<const SCEV *, 4> NewOps;
718      for (; I != E && I->first == CurLoop; ++I) {
719        // If the operand is SCEVUnknown and not instructions, peek through
720        // it, to enable more of it to be folded into the GEP.
721        const SCEV *X = I->second;
722        if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
723          if (!isa<Instruction>(U->getValue()))
724            X = SE.getSCEV(U->getValue());
725        NewOps.push_back(X);
726      }
727      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
728    } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
729      // The running sum is an integer, and there's a pointer at this level.
730      // Try to form a getelementptr. If the running sum is instructions,
731      // use a SCEVUnknown to avoid re-analyzing them.
732      SmallVector<const SCEV *, 4> NewOps;
733      NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
734                                               SE.getSCEV(Sum));
735      for (++I; I != E && I->first == CurLoop; ++I)
736        NewOps.push_back(I->second);
737      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
738    } else if (Op->isNonConstantNegative()) {
739      // Instead of doing a negate and add, just do a subtract.
740      Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
741      Sum = InsertNoopCastOfTo(Sum, Ty);
742      Sum = InsertBinop(Instruction::Sub, Sum, W);
743      ++I;
744    } else {
745      // A simple add.
746      Value *W = expandCodeFor(Op, Ty);
747      Sum = InsertNoopCastOfTo(Sum, Ty);
748      // Canonicalize a constant to the RHS.
749      if (isa<Constant>(Sum)) std::swap(Sum, W);
750      Sum = InsertBinop(Instruction::Add, Sum, W);
751      ++I;
752    }
753  }
754
755  return Sum;
756}
757
758Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
759  Type *Ty = SE.getEffectiveSCEVType(S->getType());
760
761  // Collect all the mul operands in a loop, along with their associated loops.
762  // Iterate in reverse so that constants are emitted last, all else equal.
763  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
764  for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
765       E(S->op_begin()); I != E; ++I)
766    OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
767
768  // Sort by loop. Use a stable sort so that constants follow non-constants.
769  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
770
771  // Emit instructions to mul all the operands. Hoist as much as possible
772  // out of loops.
773  Value *Prod = 0;
774  for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
775       I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
776    const SCEV *Op = I->second;
777    if (!Prod) {
778      // This is the first operand. Just expand it.
779      Prod = expand(Op);
780      ++I;
781    } else if (Op->isAllOnesValue()) {
782      // Instead of doing a multiply by negative one, just do a negate.
783      Prod = InsertNoopCastOfTo(Prod, Ty);
784      Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod);
785      ++I;
786    } else {
787      // A simple mul.
788      Value *W = expandCodeFor(Op, Ty);
789      Prod = InsertNoopCastOfTo(Prod, Ty);
790      // Canonicalize a constant to the RHS.
791      if (isa<Constant>(Prod)) std::swap(Prod, W);
792      Prod = InsertBinop(Instruction::Mul, Prod, W);
793      ++I;
794    }
795  }
796
797  return Prod;
798}
799
800Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
801  Type *Ty = SE.getEffectiveSCEVType(S->getType());
802
803  Value *LHS = expandCodeFor(S->getLHS(), Ty);
804  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
805    const APInt &RHS = SC->getValue()->getValue();
806    if (RHS.isPowerOf2())
807      return InsertBinop(Instruction::LShr, LHS,
808                         ConstantInt::get(Ty, RHS.logBase2()));
809  }
810
811  Value *RHS = expandCodeFor(S->getRHS(), Ty);
812  return InsertBinop(Instruction::UDiv, LHS, RHS);
813}
814
815/// Move parts of Base into Rest to leave Base with the minimal
816/// expression that provides a pointer operand suitable for a
817/// GEP expansion.
818static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
819                              ScalarEvolution &SE) {
820  while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
821    Base = A->getStart();
822    Rest = SE.getAddExpr(Rest,
823                         SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
824                                          A->getStepRecurrence(SE),
825                                          A->getLoop(),
826                                          // FIXME: A->getNoWrapFlags(FlagNW)
827                                          SCEV::FlagAnyWrap));
828  }
829  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
830    Base = A->getOperand(A->getNumOperands()-1);
831    SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
832    NewAddOps.back() = Rest;
833    Rest = SE.getAddExpr(NewAddOps);
834    ExposePointerBase(Base, Rest, SE);
835  }
836}
837
838/// Determine if this is a well-behaved chain of instructions leading back to
839/// the PHI. If so, it may be reused by expanded expressions.
840bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
841                                         const Loop *L) {
842  if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
843      (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
844    return false;
845  // If any of the operands don't dominate the insert position, bail.
846  // Addrec operands are always loop-invariant, so this can only happen
847  // if there are instructions which haven't been hoisted.
848  if (L == IVIncInsertLoop) {
849    for (User::op_iterator OI = IncV->op_begin()+1,
850           OE = IncV->op_end(); OI != OE; ++OI)
851      if (Instruction *OInst = dyn_cast<Instruction>(OI))
852        if (!SE.DT->dominates(OInst, IVIncInsertPos))
853          return false;
854  }
855  // Advance to the next instruction.
856  IncV = dyn_cast<Instruction>(IncV->getOperand(0));
857  if (!IncV)
858    return false;
859
860  if (IncV->mayHaveSideEffects())
861    return false;
862
863  if (IncV != PN)
864    return true;
865
866  return isNormalAddRecExprPHI(PN, IncV, L);
867}
868
869/// Determine if this cyclic phi is in a form that would have been generated by
870/// LSR. We don't care if the phi was actually expanded in this pass, as long
871/// as it is in a low-cost form, for example, no implied multiplication. This
872/// should match any patterns generated by getAddRecExprPHILiterally and
873/// expandAddtoGEP.
874bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
875                                           const Loop *L) {
876  switch (IncV->getOpcode()) {
877  // Check for a simple Add/Sub or GEP of a loop invariant step.
878  case Instruction::Add:
879  case Instruction::Sub:
880    return IncV->getOperand(0) == PN
881      && L->isLoopInvariant(IncV->getOperand(1));
882  case Instruction::BitCast:
883    IncV = dyn_cast<GetElementPtrInst>(IncV->getOperand(0));
884    if (!IncV)
885      return false;
886    // fall-thru to GEP handling
887  case Instruction::GetElementPtr: {
888    // This must be a pointer addition of constants (pretty) or some number of
889    // address-size elements (ugly).
890    for (Instruction::op_iterator I = IncV->op_begin()+1, E = IncV->op_end();
891         I != E; ++I) {
892      if (isa<Constant>(*I))
893        continue;
894      // ugly geps have 2 operands.
895      // i1* is used by the expander to represent an address-size element.
896      if (IncV->getNumOperands() != 2)
897        return false;
898      unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
899      if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
900          && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
901        return false;
902      // Ensure the operands dominate the insertion point. I don't know of a
903      // case when this would not be true, so this is somewhat untested.
904      if (L == IVIncInsertLoop) {
905        for (User::op_iterator OI = IncV->op_begin()+1,
906               OE = IncV->op_end(); OI != OE; ++OI)
907          if (Instruction *OInst = dyn_cast<Instruction>(OI))
908            if (!SE.DT->dominates(OInst, IVIncInsertPos))
909              return false;
910      }
911      break;
912    }
913    IncV = dyn_cast<Instruction>(IncV->getOperand(0));
914    if (IncV && IncV->getOpcode() == Instruction::BitCast)
915      IncV = dyn_cast<Instruction>(IncV->getOperand(0));
916    return IncV == PN;
917  }
918  default:
919    return false;
920  }
921}
922
923/// expandIVInc - Expand an IV increment at Builder's current InsertPos.
924/// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
925/// need to materialize IV increments elsewhere to handle difficult situations.
926Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
927                                 Type *ExpandTy, Type *IntTy,
928                                 bool useSubtract) {
929  Value *IncV;
930  // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
931  if (ExpandTy->isPointerTy()) {
932    PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
933    // If the step isn't constant, don't use an implicitly scaled GEP, because
934    // that would require a multiply inside the loop.
935    if (!isa<ConstantInt>(StepV))
936      GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
937                                  GEPPtrTy->getAddressSpace());
938    const SCEV *const StepArray[1] = { SE.getSCEV(StepV) };
939    IncV = expandAddToGEP(StepArray, StepArray+1, GEPPtrTy, IntTy, PN);
940    if (IncV->getType() != PN->getType()) {
941      IncV = Builder.CreateBitCast(IncV, PN->getType());
942      rememberInstruction(IncV);
943    }
944  } else {
945    IncV = useSubtract ?
946      Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
947      Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
948    rememberInstruction(IncV);
949  }
950  return IncV;
951}
952
953/// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
954/// the base addrec, which is the addrec without any non-loop-dominating
955/// values, and return the PHI.
956PHINode *
957SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
958                                        const Loop *L,
959                                        Type *ExpandTy,
960                                        Type *IntTy) {
961  assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
962
963  // Reuse a previously-inserted PHI, if present.
964  BasicBlock *LatchBlock = L->getLoopLatch();
965  if (LatchBlock) {
966    for (BasicBlock::iterator I = L->getHeader()->begin();
967         PHINode *PN = dyn_cast<PHINode>(I); ++I) {
968      if (!SE.isSCEVable(PN->getType()) ||
969          (SE.getEffectiveSCEVType(PN->getType()) !=
970           SE.getEffectiveSCEVType(Normalized->getType())) ||
971          SE.getSCEV(PN) != Normalized)
972        continue;
973
974      Instruction *IncV =
975        cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
976
977      if (LSRMode) {
978        if (!isExpandedAddRecExprPHI(PN, IncV, L))
979          continue;
980      }
981      else {
982        if (!isNormalAddRecExprPHI(PN, IncV, L))
983          continue;
984      }
985      // Ok, the add recurrence looks usable.
986      // Remember this PHI, even in post-inc mode.
987      InsertedValues.insert(PN);
988      // Remember the increment.
989      rememberInstruction(IncV);
990      if (L == IVIncInsertLoop)
991        do {
992          if (SE.DT->dominates(IncV, IVIncInsertPos))
993            break;
994          // Make sure the increment is where we want it. But don't move it
995          // down past a potential existing post-inc user.
996          IncV->moveBefore(IVIncInsertPos);
997          IVIncInsertPos = IncV;
998          IncV = cast<Instruction>(IncV->getOperand(0));
999        } while (IncV != PN);
1000      return PN;
1001    }
1002  }
1003
1004  // Save the original insertion point so we can restore it when we're done.
1005  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1006  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1007
1008  // Another AddRec may need to be recursively expanded below. For example, if
1009  // this AddRec is quadratic, the StepV may itself be an AddRec in this
1010  // loop. Remove this loop from the PostIncLoops set before expanding such
1011  // AddRecs. Otherwise, we cannot find a valid position for the step
1012  // (i.e. StepV can never dominate its loop header).  Ideally, we could do
1013  // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
1014  // so it's not worth implementing SmallPtrSet::swap.
1015  PostIncLoopSet SavedPostIncLoops = PostIncLoops;
1016  PostIncLoops.clear();
1017
1018  // Expand code for the start value.
1019  Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
1020                                L->getHeader()->begin());
1021
1022  // StartV must be hoisted into L's preheader to dominate the new phi.
1023  assert(!isa<Instruction>(StartV) ||
1024         SE.DT->properlyDominates(cast<Instruction>(StartV)->getParent(),
1025                                  L->getHeader()));
1026
1027  // Expand code for the step value. Do this before creating the PHI so that PHI
1028  // reuse code doesn't see an incomplete PHI.
1029  const SCEV *Step = Normalized->getStepRecurrence(SE);
1030  // If the stride is negative, insert a sub instead of an add for the increment
1031  // (unless it's a constant, because subtracts of constants are canonicalized
1032  // to adds).
1033  bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1034  if (useSubtract)
1035    Step = SE.getNegativeSCEV(Step);
1036  // Expand the step somewhere that dominates the loop header.
1037  Value *StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
1038
1039  // Create the PHI.
1040  BasicBlock *Header = L->getHeader();
1041  Builder.SetInsertPoint(Header, Header->begin());
1042  pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1043  PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
1044                                  Twine(IVName) + ".iv");
1045  rememberInstruction(PN);
1046
1047  // Create the step instructions and populate the PHI.
1048  for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1049    BasicBlock *Pred = *HPI;
1050
1051    // Add a start value.
1052    if (!L->contains(Pred)) {
1053      PN->addIncoming(StartV, Pred);
1054      continue;
1055    }
1056
1057    // Create a step value and add it to the PHI.
1058    // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1059    // instructions at IVIncInsertPos.
1060    Instruction *InsertPos = L == IVIncInsertLoop ?
1061      IVIncInsertPos : Pred->getTerminator();
1062    Builder.SetInsertPoint(InsertPos);
1063    Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1064
1065    PN->addIncoming(IncV, Pred);
1066  }
1067
1068  // Restore the original insert point.
1069  if (SaveInsertBB)
1070    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1071
1072  // After expanding subexpressions, restore the PostIncLoops set so the caller
1073  // can ensure that IVIncrement dominates the current uses.
1074  PostIncLoops = SavedPostIncLoops;
1075
1076  // Remember this PHI, even in post-inc mode.
1077  InsertedValues.insert(PN);
1078
1079  return PN;
1080}
1081
1082Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1083  Type *STy = S->getType();
1084  Type *IntTy = SE.getEffectiveSCEVType(STy);
1085  const Loop *L = S->getLoop();
1086
1087  // Determine a normalized form of this expression, which is the expression
1088  // before any post-inc adjustment is made.
1089  const SCEVAddRecExpr *Normalized = S;
1090  if (PostIncLoops.count(L)) {
1091    PostIncLoopSet Loops;
1092    Loops.insert(L);
1093    Normalized =
1094      cast<SCEVAddRecExpr>(TransformForPostIncUse(Normalize, S, 0, 0,
1095                                                  Loops, SE, *SE.DT));
1096  }
1097
1098  // Strip off any non-loop-dominating component from the addrec start.
1099  const SCEV *Start = Normalized->getStart();
1100  const SCEV *PostLoopOffset = 0;
1101  if (!SE.properlyDominates(Start, L->getHeader())) {
1102    PostLoopOffset = Start;
1103    Start = SE.getConstant(Normalized->getType(), 0);
1104    Normalized = cast<SCEVAddRecExpr>(
1105      SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
1106                       Normalized->getLoop(),
1107                       // FIXME: Normalized->getNoWrapFlags(FlagNW)
1108                       SCEV::FlagAnyWrap));
1109  }
1110
1111  // Strip off any non-loop-dominating component from the addrec step.
1112  const SCEV *Step = Normalized->getStepRecurrence(SE);
1113  const SCEV *PostLoopScale = 0;
1114  if (!SE.dominates(Step, L->getHeader())) {
1115    PostLoopScale = Step;
1116    Step = SE.getConstant(Normalized->getType(), 1);
1117    Normalized =
1118      cast<SCEVAddRecExpr>(SE.getAddRecExpr(Start, Step,
1119                                            Normalized->getLoop(),
1120                                            // FIXME: Normalized
1121                                            // ->getNoWrapFlags(FlagNW)
1122                                            SCEV::FlagAnyWrap));
1123  }
1124
1125  // Expand the core addrec. If we need post-loop scaling, force it to
1126  // expand to an integer type to avoid the need for additional casting.
1127  Type *ExpandTy = PostLoopScale ? IntTy : STy;
1128  PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy);
1129
1130  // Accommodate post-inc mode, if necessary.
1131  Value *Result;
1132  if (!PostIncLoops.count(L))
1133    Result = PN;
1134  else {
1135    // In PostInc mode, use the post-incremented value.
1136    BasicBlock *LatchBlock = L->getLoopLatch();
1137    assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1138    Result = PN->getIncomingValueForBlock(LatchBlock);
1139
1140    // For an expansion to use the postinc form, the client must call
1141    // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1142    // or dominated by IVIncInsertPos.
1143    if (isa<Instruction>(Result)
1144        && !SE.DT->dominates(cast<Instruction>(Result),
1145                             Builder.GetInsertPoint())) {
1146      // The induction variable's postinc expansion does not dominate this use.
1147      // IVUsers tries to prevent this case, so it is rare. However, it can
1148      // happen when an IVUser outside the loop is not dominated by the latch
1149      // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1150      // all cases. Consider a phi outide whose operand is replaced during
1151      // expansion with the value of the postinc user. Without fundamentally
1152      // changing the way postinc users are tracked, the only remedy is
1153      // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1154      // but hopefully expandCodeFor handles that.
1155      bool useSubtract =
1156        !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1157      if (useSubtract)
1158        Step = SE.getNegativeSCEV(Step);
1159      // Expand the step somewhere that dominates the loop header.
1160      BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1161      BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1162      Value *StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
1163      // Restore the insertion point to the place where the caller has
1164      // determined dominates all uses.
1165      restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1166      Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1167    }
1168  }
1169
1170  // Re-apply any non-loop-dominating scale.
1171  if (PostLoopScale) {
1172    Result = InsertNoopCastOfTo(Result, IntTy);
1173    Result = Builder.CreateMul(Result,
1174                               expandCodeFor(PostLoopScale, IntTy));
1175    rememberInstruction(Result);
1176  }
1177
1178  // Re-apply any non-loop-dominating offset.
1179  if (PostLoopOffset) {
1180    if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1181      const SCEV *const OffsetArray[1] = { PostLoopOffset };
1182      Result = expandAddToGEP(OffsetArray, OffsetArray+1, PTy, IntTy, Result);
1183    } else {
1184      Result = InsertNoopCastOfTo(Result, IntTy);
1185      Result = Builder.CreateAdd(Result,
1186                                 expandCodeFor(PostLoopOffset, IntTy));
1187      rememberInstruction(Result);
1188    }
1189  }
1190
1191  return Result;
1192}
1193
1194Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1195  if (!CanonicalMode) return expandAddRecExprLiterally(S);
1196
1197  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1198  const Loop *L = S->getLoop();
1199
1200  // First check for an existing canonical IV in a suitable type.
1201  PHINode *CanonicalIV = 0;
1202  if (PHINode *PN = L->getCanonicalInductionVariable())
1203    if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1204      CanonicalIV = PN;
1205
1206  // Rewrite an AddRec in terms of the canonical induction variable, if
1207  // its type is more narrow.
1208  if (CanonicalIV &&
1209      SE.getTypeSizeInBits(CanonicalIV->getType()) >
1210      SE.getTypeSizeInBits(Ty)) {
1211    SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1212    for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1213      NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
1214    Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1215                                       // FIXME: S->getNoWrapFlags(FlagNW)
1216                                       SCEV::FlagAnyWrap));
1217    BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1218    BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1219    BasicBlock::iterator NewInsertPt =
1220      llvm::next(BasicBlock::iterator(cast<Instruction>(V)));
1221    while (isa<PHINode>(NewInsertPt) || isa<DbgInfoIntrinsic>(NewInsertPt) ||
1222           isa<LandingPadInst>(NewInsertPt))
1223      ++NewInsertPt;
1224    V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), 0,
1225                      NewInsertPt);
1226    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1227    return V;
1228  }
1229
1230  // {X,+,F} --> X + {0,+,F}
1231  if (!S->getStart()->isZero()) {
1232    SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
1233    NewOps[0] = SE.getConstant(Ty, 0);
1234    // FIXME: can use S->getNoWrapFlags()
1235    const SCEV *Rest = SE.getAddRecExpr(NewOps, L, SCEV::FlagAnyWrap);
1236
1237    // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
1238    // comments on expandAddToGEP for details.
1239    const SCEV *Base = S->getStart();
1240    const SCEV *RestArray[1] = { Rest };
1241    // Dig into the expression to find the pointer base for a GEP.
1242    ExposePointerBase(Base, RestArray[0], SE);
1243    // If we found a pointer, expand the AddRec with a GEP.
1244    if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
1245      // Make sure the Base isn't something exotic, such as a multiplied
1246      // or divided pointer value. In those cases, the result type isn't
1247      // actually a pointer type.
1248      if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
1249        Value *StartV = expand(Base);
1250        assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1251        return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
1252      }
1253    }
1254
1255    // Just do a normal add. Pre-expand the operands to suppress folding.
1256    return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())),
1257                                SE.getUnknown(expand(Rest))));
1258  }
1259
1260  // If we don't yet have a canonical IV, create one.
1261  if (!CanonicalIV) {
1262    // Create and insert the PHI node for the induction variable in the
1263    // specified loop.
1264    BasicBlock *Header = L->getHeader();
1265    pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1266    CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
1267                                  Header->begin());
1268    rememberInstruction(CanonicalIV);
1269
1270    Constant *One = ConstantInt::get(Ty, 1);
1271    for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1272      BasicBlock *HP = *HPI;
1273      if (L->contains(HP)) {
1274        // Insert a unit add instruction right before the terminator
1275        // corresponding to the back-edge.
1276        Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1277                                                     "indvar.next",
1278                                                     HP->getTerminator());
1279        Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1280        rememberInstruction(Add);
1281        CanonicalIV->addIncoming(Add, HP);
1282      } else {
1283        CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1284      }
1285    }
1286  }
1287
1288  // {0,+,1} --> Insert a canonical induction variable into the loop!
1289  if (S->isAffine() && S->getOperand(1)->isOne()) {
1290    assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1291           "IVs with types different from the canonical IV should "
1292           "already have been handled!");
1293    return CanonicalIV;
1294  }
1295
1296  // {0,+,F} --> {0,+,1} * F
1297
1298  // If this is a simple linear addrec, emit it now as a special case.
1299  if (S->isAffine())    // {0,+,F} --> i*F
1300    return
1301      expand(SE.getTruncateOrNoop(
1302        SE.getMulExpr(SE.getUnknown(CanonicalIV),
1303                      SE.getNoopOrAnyExtend(S->getOperand(1),
1304                                            CanonicalIV->getType())),
1305        Ty));
1306
1307  // If this is a chain of recurrences, turn it into a closed form, using the
1308  // folders, then expandCodeFor the closed form.  This allows the folders to
1309  // simplify the expression without having to build a bunch of special code
1310  // into this folder.
1311  const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
1312
1313  // Promote S up to the canonical IV type, if the cast is foldable.
1314  const SCEV *NewS = S;
1315  const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1316  if (isa<SCEVAddRecExpr>(Ext))
1317    NewS = Ext;
1318
1319  const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1320  //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
1321
1322  // Truncate the result down to the original type, if needed.
1323  const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1324  return expand(T);
1325}
1326
1327Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1328  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1329  Value *V = expandCodeFor(S->getOperand(),
1330                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1331  Value *I = Builder.CreateTrunc(V, Ty);
1332  rememberInstruction(I);
1333  return I;
1334}
1335
1336Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1337  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1338  Value *V = expandCodeFor(S->getOperand(),
1339                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1340  Value *I = Builder.CreateZExt(V, Ty);
1341  rememberInstruction(I);
1342  return I;
1343}
1344
1345Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1346  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1347  Value *V = expandCodeFor(S->getOperand(),
1348                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1349  Value *I = Builder.CreateSExt(V, Ty);
1350  rememberInstruction(I);
1351  return I;
1352}
1353
1354Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1355  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1356  Type *Ty = LHS->getType();
1357  for (int i = S->getNumOperands()-2; i >= 0; --i) {
1358    // In the case of mixed integer and pointer types, do the
1359    // rest of the comparisons as integer.
1360    if (S->getOperand(i)->getType() != Ty) {
1361      Ty = SE.getEffectiveSCEVType(Ty);
1362      LHS = InsertNoopCastOfTo(LHS, Ty);
1363    }
1364    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1365    Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
1366    rememberInstruction(ICmp);
1367    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1368    rememberInstruction(Sel);
1369    LHS = Sel;
1370  }
1371  // In the case of mixed integer and pointer types, cast the
1372  // final result back to the pointer type.
1373  if (LHS->getType() != S->getType())
1374    LHS = InsertNoopCastOfTo(LHS, S->getType());
1375  return LHS;
1376}
1377
1378Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1379  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1380  Type *Ty = LHS->getType();
1381  for (int i = S->getNumOperands()-2; i >= 0; --i) {
1382    // In the case of mixed integer and pointer types, do the
1383    // rest of the comparisons as integer.
1384    if (S->getOperand(i)->getType() != Ty) {
1385      Ty = SE.getEffectiveSCEVType(Ty);
1386      LHS = InsertNoopCastOfTo(LHS, Ty);
1387    }
1388    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1389    Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
1390    rememberInstruction(ICmp);
1391    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1392    rememberInstruction(Sel);
1393    LHS = Sel;
1394  }
1395  // In the case of mixed integer and pointer types, cast the
1396  // final result back to the pointer type.
1397  if (LHS->getType() != S->getType())
1398    LHS = InsertNoopCastOfTo(LHS, S->getType());
1399  return LHS;
1400}
1401
1402Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
1403                                   Instruction *I) {
1404  BasicBlock::iterator IP = I;
1405  while (isInsertedInstruction(IP) || isa<DbgInfoIntrinsic>(IP))
1406    ++IP;
1407  Builder.SetInsertPoint(IP->getParent(), IP);
1408  return expandCodeFor(SH, Ty);
1409}
1410
1411Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
1412  // Expand the code for this SCEV.
1413  Value *V = expand(SH);
1414  if (Ty) {
1415    assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1416           "non-trivial casts should be done with the SCEVs directly!");
1417    V = InsertNoopCastOfTo(V, Ty);
1418  }
1419  return V;
1420}
1421
1422Value *SCEVExpander::expand(const SCEV *S) {
1423  // Compute an insertion point for this SCEV object. Hoist the instructions
1424  // as far out in the loop nest as possible.
1425  Instruction *InsertPt = Builder.GetInsertPoint();
1426  for (Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock()); ;
1427       L = L->getParentLoop())
1428    if (SE.isLoopInvariant(S, L)) {
1429      if (!L) break;
1430      if (BasicBlock *Preheader = L->getLoopPreheader())
1431        InsertPt = Preheader->getTerminator();
1432      else {
1433        // LSR sets the insertion point for AddRec start/step values to the
1434        // block start to simplify value reuse, even though it's an invalid
1435        // position. SCEVExpander must correct for this in all cases.
1436        InsertPt = L->getHeader()->getFirstInsertionPt();
1437      }
1438    } else {
1439      // If the SCEV is computable at this level, insert it into the header
1440      // after the PHIs (and after any other instructions that we've inserted
1441      // there) so that it is guaranteed to dominate any user inside the loop.
1442      if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1443        InsertPt = L->getHeader()->getFirstInsertionPt();
1444      while (isInsertedInstruction(InsertPt) || isa<DbgInfoIntrinsic>(InsertPt))
1445        InsertPt = llvm::next(BasicBlock::iterator(InsertPt));
1446      break;
1447    }
1448
1449  // Check to see if we already expanded this here.
1450  std::map<std::pair<const SCEV *, Instruction *>,
1451           AssertingVH<Value> >::iterator I =
1452    InsertedExpressions.find(std::make_pair(S, InsertPt));
1453  if (I != InsertedExpressions.end())
1454    return I->second;
1455
1456  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1457  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1458  Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
1459
1460  // Expand the expression into instructions.
1461  Value *V = visit(S);
1462
1463  // Remember the expanded value for this SCEV at this location.
1464  //
1465  // This is independent of PostIncLoops. The mapped value simply materializes
1466  // the expression at this insertion point. If the mapped value happened to be
1467  // a postinc expansion, it could be reused by a non postinc user, but only if
1468  // its insertion point was already at the head of the loop.
1469  InsertedExpressions[std::make_pair(S, InsertPt)] = V;
1470
1471  restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1472  return V;
1473}
1474
1475void SCEVExpander::rememberInstruction(Value *I) {
1476  if (!PostIncLoops.empty())
1477    InsertedPostIncValues.insert(I);
1478  else
1479    InsertedValues.insert(I);
1480
1481  // If we just claimed an existing instruction and that instruction had
1482  // been the insert point, adjust the insert point forward so that
1483  // subsequently inserted code will be dominated.
1484  if (Builder.GetInsertPoint() == I) {
1485    BasicBlock::iterator It = cast<Instruction>(I);
1486    do { ++It; } while (isInsertedInstruction(It) ||
1487                        isa<DbgInfoIntrinsic>(It));
1488    Builder.SetInsertPoint(Builder.GetInsertBlock(), It);
1489  }
1490}
1491
1492void SCEVExpander::restoreInsertPoint(BasicBlock *BB, BasicBlock::iterator I) {
1493  // If we acquired more instructions since the old insert point was saved,
1494  // advance past them.
1495  while (isInsertedInstruction(I) || isa<DbgInfoIntrinsic>(I)) ++I;
1496
1497  Builder.SetInsertPoint(BB, I);
1498}
1499
1500/// getOrInsertCanonicalInductionVariable - This method returns the
1501/// canonical induction variable of the specified type for the specified
1502/// loop (inserting one if there is none).  A canonical induction variable
1503/// starts at zero and steps by one on each iteration.
1504PHINode *
1505SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
1506                                                    Type *Ty) {
1507  assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
1508
1509  // Build a SCEV for {0,+,1}<L>.
1510  // Conservatively use FlagAnyWrap for now.
1511  const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
1512                                   SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap);
1513
1514  // Emit code for it.
1515  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1516  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1517  PHINode *V = cast<PHINode>(expandCodeFor(H, 0, L->getHeader()->begin()));
1518  if (SaveInsertBB)
1519    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1520
1521  return V;
1522}
1523
1524/// hoistStep - Attempt to hoist an IV increment above a potential use.
1525///
1526/// To successfully hoist, two criteria must be met:
1527/// - IncV operands dominate InsertPos and
1528/// - InsertPos dominates IncV
1529///
1530/// Meeting the second condition means that we don't need to check all of IncV's
1531/// existing uses (it's moving up in the domtree).
1532///
1533/// This does not yet recursively hoist the operands, although that would
1534/// not be difficult.
1535///
1536/// This does not require a SCEVExpander instance and could be replaced by a
1537/// general code-insertion helper.
1538bool SCEVExpander::hoistStep(Instruction *IncV, Instruction *InsertPos,
1539                             const DominatorTree *DT) {
1540  if (DT->dominates(IncV, InsertPos))
1541    return true;
1542
1543  if (!DT->dominates(InsertPos->getParent(), IncV->getParent()))
1544    return false;
1545
1546  if (IncV->mayHaveSideEffects())
1547    return false;
1548
1549  // Attempt to hoist IncV
1550  for (User::op_iterator OI = IncV->op_begin(), OE = IncV->op_end();
1551       OI != OE; ++OI) {
1552    Instruction *OInst = dyn_cast<Instruction>(OI);
1553    if (OInst && (OInst == InsertPos || !DT->dominates(OInst, InsertPos)))
1554      return false;
1555  }
1556  IncV->moveBefore(InsertPos);
1557  return true;
1558}
1559
1560/// replaceCongruentIVs - Check for congruent phis in this loop header and
1561/// replace them with their most canonical representative. Return the number of
1562/// phis eliminated.
1563///
1564/// This does not depend on any SCEVExpander state but should be used in
1565/// the same context that SCEVExpander is used.
1566unsigned SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
1567                                           SmallVectorImpl<WeakVH> &DeadInsts) {
1568  unsigned NumElim = 0;
1569  DenseMap<const SCEV *, PHINode *> ExprToIVMap;
1570  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1571    PHINode *Phi = cast<PHINode>(I);
1572    if (!SE.isSCEVable(Phi->getType()))
1573      continue;
1574
1575    PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
1576    if (!OrigPhiRef) {
1577      OrigPhiRef = Phi;
1578      continue;
1579    }
1580
1581    // If one phi derives from the other via GEPs, types may differ.
1582    // We could consider adding a bitcast here to handle it.
1583    if (OrigPhiRef->getType() != Phi->getType())
1584      continue;
1585
1586    if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1587      Instruction *OrigInc =
1588        cast<Instruction>(OrigPhiRef->getIncomingValueForBlock(LatchBlock));
1589      Instruction *IsomorphicInc =
1590        cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
1591
1592      // If this phi is more canonical, swap it with the original.
1593      if (!isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)
1594          && isExpandedAddRecExprPHI(Phi, IsomorphicInc, L)) {
1595        std::swap(OrigPhiRef, Phi);
1596        std::swap(OrigInc, IsomorphicInc);
1597      }
1598      // Replacing the congruent phi is sufficient because acyclic redundancy
1599      // elimination, CSE/GVN, should handle the rest. However, once SCEV proves
1600      // that a phi is congruent, it's often the head of an IV user cycle that
1601      // is isomorphic with the original phi. So it's worth eagerly cleaning up
1602      // the common case of a single IV increment.
1603      if (OrigInc != IsomorphicInc &&
1604          OrigInc->getType() == IsomorphicInc->getType() &&
1605          SE.getSCEV(OrigInc) == SE.getSCEV(IsomorphicInc) &&
1606          hoistStep(OrigInc, IsomorphicInc, DT)) {
1607        DEBUG_WITH_TYPE(DebugType, dbgs()
1608                        << "INDVARS: Eliminated congruent iv.inc: "
1609                        << *IsomorphicInc << '\n');
1610        IsomorphicInc->replaceAllUsesWith(OrigInc);
1611        DeadInsts.push_back(IsomorphicInc);
1612      }
1613    }
1614    DEBUG_WITH_TYPE(DebugType, dbgs()
1615                    << "INDVARS: Eliminated congruent iv: " << *Phi << '\n');
1616    ++NumElim;
1617    Phi->replaceAllUsesWith(OrigPhiRef);
1618    DeadInsts.push_back(Phi);
1619  }
1620  return NumElim;
1621}
1622