MachineFunction.cpp revision 5c8aa950fe3484b6e115647328c196f8be64f9ed
1//===-- MachineFunction.cpp -----------------------------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// Collect native machine code information for a function. This allows 11// target-specific information about the generated code to be stored with each 12// function. 13// 14//===----------------------------------------------------------------------===// 15 16#include "llvm/DerivedTypes.h" 17#include "llvm/Function.h" 18#include "llvm/Instructions.h" 19#include "llvm/Config/config.h" 20#include "llvm/CodeGen/MachineConstantPool.h" 21#include "llvm/CodeGen/MachineFunction.h" 22#include "llvm/CodeGen/MachineFunctionPass.h" 23#include "llvm/CodeGen/MachineFrameInfo.h" 24#include "llvm/CodeGen/MachineInstr.h" 25#include "llvm/CodeGen/MachineJumpTableInfo.h" 26#include "llvm/CodeGen/MachineRegisterInfo.h" 27#include "llvm/CodeGen/Passes.h" 28#include "llvm/MC/MCAsmInfo.h" 29#include "llvm/MC/MCContext.h" 30#include "llvm/Analysis/DebugInfo.h" 31#include "llvm/Support/Debug.h" 32#include "llvm/Target/TargetData.h" 33#include "llvm/Target/TargetLowering.h" 34#include "llvm/Target/TargetMachine.h" 35#include "llvm/Target/TargetFrameInfo.h" 36#include "llvm/ADT/SmallString.h" 37#include "llvm/ADT/STLExtras.h" 38#include "llvm/Support/GraphWriter.h" 39#include "llvm/Support/raw_ostream.h" 40using namespace llvm; 41 42//===----------------------------------------------------------------------===// 43// MachineFunction implementation 44//===----------------------------------------------------------------------===// 45 46// Out of line virtual method. 47MachineFunctionInfo::~MachineFunctionInfo() {} 48 49void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { 50 MBB->getParent()->DeleteMachineBasicBlock(MBB); 51} 52 53MachineFunction::MachineFunction(Function *F, const TargetMachine &TM, 54 unsigned FunctionNum, MCContext &ctx) 55 : Fn(F), Target(TM), Ctx(ctx) { 56 if (TM.getRegisterInfo()) 57 RegInfo = new (Allocator) MachineRegisterInfo(*TM.getRegisterInfo()); 58 else 59 RegInfo = 0; 60 MFInfo = 0; 61 FrameInfo = new (Allocator) MachineFrameInfo(*TM.getFrameInfo()); 62 if (Fn->hasFnAttr(Attribute::StackAlignment)) 63 FrameInfo->setMaxAlignment(Attribute::getStackAlignmentFromAttrs( 64 Fn->getAttributes().getFnAttributes())); 65 ConstantPool = new (Allocator) MachineConstantPool(TM.getTargetData()); 66 Alignment = TM.getTargetLowering()->getFunctionAlignment(F); 67 FunctionNumber = FunctionNum; 68 JumpTableInfo = 0; 69} 70 71MachineFunction::~MachineFunction() { 72 BasicBlocks.clear(); 73 InstructionRecycler.clear(Allocator); 74 BasicBlockRecycler.clear(Allocator); 75 if (RegInfo) { 76 RegInfo->~MachineRegisterInfo(); 77 Allocator.Deallocate(RegInfo); 78 } 79 if (MFInfo) { 80 MFInfo->~MachineFunctionInfo(); 81 Allocator.Deallocate(MFInfo); 82 } 83 FrameInfo->~MachineFrameInfo(); Allocator.Deallocate(FrameInfo); 84 ConstantPool->~MachineConstantPool(); Allocator.Deallocate(ConstantPool); 85 86 if (JumpTableInfo) { 87 JumpTableInfo->~MachineJumpTableInfo(); 88 Allocator.Deallocate(JumpTableInfo); 89 } 90} 91 92/// getOrCreateJumpTableInfo - Get the JumpTableInfo for this function, if it 93/// does already exist, allocate one. 94MachineJumpTableInfo *MachineFunction:: 95getOrCreateJumpTableInfo(unsigned EntryKind) { 96 if (JumpTableInfo) return JumpTableInfo; 97 98 JumpTableInfo = new (Allocator) 99 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); 100 return JumpTableInfo; 101} 102 103/// RenumberBlocks - This discards all of the MachineBasicBlock numbers and 104/// recomputes them. This guarantees that the MBB numbers are sequential, 105/// dense, and match the ordering of the blocks within the function. If a 106/// specific MachineBasicBlock is specified, only that block and those after 107/// it are renumbered. 108void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { 109 if (empty()) { MBBNumbering.clear(); return; } 110 MachineFunction::iterator MBBI, E = end(); 111 if (MBB == 0) 112 MBBI = begin(); 113 else 114 MBBI = MBB; 115 116 // Figure out the block number this should have. 117 unsigned BlockNo = 0; 118 if (MBBI != begin()) 119 BlockNo = prior(MBBI)->getNumber()+1; 120 121 for (; MBBI != E; ++MBBI, ++BlockNo) { 122 if (MBBI->getNumber() != (int)BlockNo) { 123 // Remove use of the old number. 124 if (MBBI->getNumber() != -1) { 125 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && 126 "MBB number mismatch!"); 127 MBBNumbering[MBBI->getNumber()] = 0; 128 } 129 130 // If BlockNo is already taken, set that block's number to -1. 131 if (MBBNumbering[BlockNo]) 132 MBBNumbering[BlockNo]->setNumber(-1); 133 134 MBBNumbering[BlockNo] = MBBI; 135 MBBI->setNumber(BlockNo); 136 } 137 } 138 139 // Okay, all the blocks are renumbered. If we have compactified the block 140 // numbering, shrink MBBNumbering now. 141 assert(BlockNo <= MBBNumbering.size() && "Mismatch!"); 142 MBBNumbering.resize(BlockNo); 143} 144 145/// CreateMachineInstr - Allocate a new MachineInstr. Use this instead 146/// of `new MachineInstr'. 147/// 148MachineInstr * 149MachineFunction::CreateMachineInstr(const TargetInstrDesc &TID, 150 DebugLoc DL, bool NoImp) { 151 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 152 MachineInstr(TID, DL, NoImp); 153} 154 155/// CloneMachineInstr - Create a new MachineInstr which is a copy of the 156/// 'Orig' instruction, identical in all ways except the instruction 157/// has no parent, prev, or next. 158/// 159MachineInstr * 160MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { 161 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) 162 MachineInstr(*this, *Orig); 163} 164 165/// DeleteMachineInstr - Delete the given MachineInstr. 166/// 167void 168MachineFunction::DeleteMachineInstr(MachineInstr *MI) { 169 MI->~MachineInstr(); 170 InstructionRecycler.Deallocate(Allocator, MI); 171} 172 173/// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this 174/// instead of `new MachineBasicBlock'. 175/// 176MachineBasicBlock * 177MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) { 178 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) 179 MachineBasicBlock(*this, bb); 180} 181 182/// DeleteMachineBasicBlock - Delete the given MachineBasicBlock. 183/// 184void 185MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) { 186 assert(MBB->getParent() == this && "MBB parent mismatch!"); 187 MBB->~MachineBasicBlock(); 188 BasicBlockRecycler.Deallocate(Allocator, MBB); 189} 190 191MachineMemOperand * 192MachineFunction::getMachineMemOperand(const Value *v, unsigned f, 193 int64_t o, uint64_t s, 194 unsigned base_alignment) { 195 return new (Allocator) MachineMemOperand(v, f, o, s, base_alignment); 196} 197 198MachineMemOperand * 199MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, 200 int64_t Offset, uint64_t Size) { 201 return new (Allocator) 202 MachineMemOperand(MMO->getValue(), MMO->getFlags(), 203 int64_t(uint64_t(MMO->getOffset()) + 204 uint64_t(Offset)), 205 Size, MMO->getBaseAlignment()); 206} 207 208MachineInstr::mmo_iterator 209MachineFunction::allocateMemRefsArray(unsigned long Num) { 210 return Allocator.Allocate<MachineMemOperand *>(Num); 211} 212 213std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 214MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin, 215 MachineInstr::mmo_iterator End) { 216 // Count the number of load mem refs. 217 unsigned Num = 0; 218 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 219 if ((*I)->isLoad()) 220 ++Num; 221 222 // Allocate a new array and populate it with the load information. 223 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 224 unsigned Index = 0; 225 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 226 if ((*I)->isLoad()) { 227 if (!(*I)->isStore()) 228 // Reuse the MMO. 229 Result[Index] = *I; 230 else { 231 // Clone the MMO and unset the store flag. 232 MachineMemOperand *JustLoad = 233 getMachineMemOperand((*I)->getValue(), 234 (*I)->getFlags() & ~MachineMemOperand::MOStore, 235 (*I)->getOffset(), (*I)->getSize(), 236 (*I)->getBaseAlignment()); 237 Result[Index] = JustLoad; 238 } 239 ++Index; 240 } 241 } 242 return std::make_pair(Result, Result + Num); 243} 244 245std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> 246MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin, 247 MachineInstr::mmo_iterator End) { 248 // Count the number of load mem refs. 249 unsigned Num = 0; 250 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) 251 if ((*I)->isStore()) 252 ++Num; 253 254 // Allocate a new array and populate it with the store information. 255 MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num); 256 unsigned Index = 0; 257 for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) { 258 if ((*I)->isStore()) { 259 if (!(*I)->isLoad()) 260 // Reuse the MMO. 261 Result[Index] = *I; 262 else { 263 // Clone the MMO and unset the load flag. 264 MachineMemOperand *JustStore = 265 getMachineMemOperand((*I)->getValue(), 266 (*I)->getFlags() & ~MachineMemOperand::MOLoad, 267 (*I)->getOffset(), (*I)->getSize(), 268 (*I)->getBaseAlignment()); 269 Result[Index] = JustStore; 270 } 271 ++Index; 272 } 273 } 274 return std::make_pair(Result, Result + Num); 275} 276 277void MachineFunction::dump() const { 278 print(dbgs()); 279} 280 281void MachineFunction::print(raw_ostream &OS) const { 282 OS << "# Machine code for function " << Fn->getName() << ":\n"; 283 284 // Print Frame Information 285 FrameInfo->print(*this, OS); 286 287 // Print JumpTable Information 288 if (JumpTableInfo) 289 JumpTableInfo->print(OS); 290 291 // Print Constant Pool 292 ConstantPool->print(OS); 293 294 const TargetRegisterInfo *TRI = getTarget().getRegisterInfo(); 295 296 if (RegInfo && !RegInfo->livein_empty()) { 297 OS << "Function Live Ins: "; 298 for (MachineRegisterInfo::livein_iterator 299 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { 300 if (TRI) 301 OS << "%" << TRI->getName(I->first); 302 else 303 OS << " %physreg" << I->first; 304 305 if (I->second) 306 OS << " in reg%" << I->second; 307 308 if (llvm::next(I) != E) 309 OS << ", "; 310 } 311 OS << '\n'; 312 } 313 if (RegInfo && !RegInfo->liveout_empty()) { 314 OS << "Function Live Outs: "; 315 for (MachineRegisterInfo::liveout_iterator 316 I = RegInfo->liveout_begin(), E = RegInfo->liveout_end(); I != E; ++I){ 317 if (TRI) 318 OS << '%' << TRI->getName(*I); 319 else 320 OS << "%physreg" << *I; 321 322 if (llvm::next(I) != E) 323 OS << " "; 324 } 325 OS << '\n'; 326 } 327 328 for (const_iterator BB = begin(), E = end(); BB != E; ++BB) { 329 OS << '\n'; 330 BB->print(OS); 331 } 332 333 OS << "\n# End machine code for function " << Fn->getName() << ".\n\n"; 334} 335 336namespace llvm { 337 template<> 338 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { 339 340 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} 341 342 static std::string getGraphName(const MachineFunction *F) { 343 return "CFG for '" + F->getFunction()->getNameStr() + "' function"; 344 } 345 346 std::string getNodeLabel(const MachineBasicBlock *Node, 347 const MachineFunction *Graph) { 348 if (isSimple () && Node->getBasicBlock() && 349 !Node->getBasicBlock()->getName().empty()) 350 return Node->getBasicBlock()->getNameStr() + ":"; 351 352 std::string OutStr; 353 { 354 raw_string_ostream OSS(OutStr); 355 356 if (isSimple()) 357 OSS << Node->getNumber() << ':'; 358 else 359 Node->print(OSS); 360 } 361 362 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); 363 364 // Process string output to make it nicer... 365 for (unsigned i = 0; i != OutStr.length(); ++i) 366 if (OutStr[i] == '\n') { // Left justify 367 OutStr[i] = '\\'; 368 OutStr.insert(OutStr.begin()+i+1, 'l'); 369 } 370 return OutStr; 371 } 372 }; 373} 374 375void MachineFunction::viewCFG() const 376{ 377#ifndef NDEBUG 378 ViewGraph(this, "mf" + getFunction()->getNameStr()); 379#else 380 errs() << "SelectionDAG::viewGraph is only available in debug builds on " 381 << "systems with Graphviz or gv!\n"; 382#endif // NDEBUG 383} 384 385void MachineFunction::viewCFGOnly() const 386{ 387#ifndef NDEBUG 388 ViewGraph(this, "mf" + getFunction()->getNameStr(), true); 389#else 390 errs() << "SelectionDAG::viewGraph is only available in debug builds on " 391 << "systems with Graphviz or gv!\n"; 392#endif // NDEBUG 393} 394 395/// addLiveIn - Add the specified physical register as a live-in value and 396/// create a corresponding virtual register for it. 397unsigned MachineFunction::addLiveIn(unsigned PReg, 398 const TargetRegisterClass *RC) { 399 assert(RC->contains(PReg) && "Not the correct regclass!"); 400 unsigned VReg = getRegInfo().createVirtualRegister(RC); 401 getRegInfo().addLiveIn(PReg, VReg); 402 return VReg; 403} 404 405/// getJTISymbol - Return the MCSymbol for the specified non-empty jump table. 406/// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a 407/// normal 'L' label is returned. 408MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, 409 bool isLinkerPrivate) const { 410 assert(JumpTableInfo && "No jump tables"); 411 412 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!"); 413 const MCAsmInfo &MAI = *getTarget().getMCAsmInfo(); 414 415 const char *Prefix = isLinkerPrivate ? MAI.getLinkerPrivateGlobalPrefix() : 416 MAI.getPrivateGlobalPrefix(); 417 SmallString<60> Name; 418 raw_svector_ostream(Name) 419 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; 420 return Ctx.GetOrCreateSymbol(Name.str()); 421} 422 423 424//===----------------------------------------------------------------------===// 425// MachineFrameInfo implementation 426//===----------------------------------------------------------------------===// 427 428/// CreateFixedObject - Create a new object at a fixed location on the stack. 429/// All fixed objects should be created before other objects are created for 430/// efficiency. By default, fixed objects are immutable. This returns an 431/// index with a negative value. 432/// 433int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset, 434 bool Immutable, bool isSS) { 435 assert(Size != 0 && "Cannot allocate zero size fixed stack objects!"); 436 Objects.insert(Objects.begin(), StackObject(Size, 1, SPOffset, Immutable, 437 isSS)); 438 return -++NumFixedObjects; 439} 440 441 442BitVector 443MachineFrameInfo::getPristineRegs(const MachineBasicBlock *MBB) const { 444 assert(MBB && "MBB must be valid"); 445 const MachineFunction *MF = MBB->getParent(); 446 assert(MF && "MBB must be part of a MachineFunction"); 447 const TargetMachine &TM = MF->getTarget(); 448 const TargetRegisterInfo *TRI = TM.getRegisterInfo(); 449 BitVector BV(TRI->getNumRegs()); 450 451 // Before CSI is calculated, no registers are considered pristine. They can be 452 // freely used and PEI will make sure they are saved. 453 if (!isCalleeSavedInfoValid()) 454 return BV; 455 456 for (const unsigned *CSR = TRI->getCalleeSavedRegs(MF); CSR && *CSR; ++CSR) 457 BV.set(*CSR); 458 459 // The entry MBB always has all CSRs pristine. 460 if (MBB == &MF->front()) 461 return BV; 462 463 // On other MBBs the saved CSRs are not pristine. 464 const std::vector<CalleeSavedInfo> &CSI = getCalleeSavedInfo(); 465 for (std::vector<CalleeSavedInfo>::const_iterator I = CSI.begin(), 466 E = CSI.end(); I != E; ++I) 467 BV.reset(I->getReg()); 468 469 return BV; 470} 471 472 473void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{ 474 if (Objects.empty()) return; 475 476 const TargetFrameInfo *FI = MF.getTarget().getFrameInfo(); 477 int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0); 478 479 OS << "Frame Objects:\n"; 480 481 for (unsigned i = 0, e = Objects.size(); i != e; ++i) { 482 const StackObject &SO = Objects[i]; 483 OS << " fi#" << (int)(i-NumFixedObjects) << ": "; 484 if (SO.Size == ~0ULL) { 485 OS << "dead\n"; 486 continue; 487 } 488 if (SO.Size == 0) 489 OS << "variable sized"; 490 else 491 OS << "size=" << SO.Size; 492 OS << ", align=" << SO.Alignment; 493 494 if (i < NumFixedObjects) 495 OS << ", fixed"; 496 if (i < NumFixedObjects || SO.SPOffset != -1) { 497 int64_t Off = SO.SPOffset - ValOffset; 498 OS << ", at location [SP"; 499 if (Off > 0) 500 OS << "+" << Off; 501 else if (Off < 0) 502 OS << Off; 503 OS << "]"; 504 } 505 OS << "\n"; 506 } 507} 508 509void MachineFrameInfo::dump(const MachineFunction &MF) const { 510 print(MF, dbgs()); 511} 512 513//===----------------------------------------------------------------------===// 514// MachineJumpTableInfo implementation 515//===----------------------------------------------------------------------===// 516 517/// getEntrySize - Return the size of each entry in the jump table. 518unsigned MachineJumpTableInfo::getEntrySize(const TargetData &TD) const { 519 // The size of a jump table entry is 4 bytes unless the entry is just the 520 // address of a block, in which case it is the pointer size. 521 switch (getEntryKind()) { 522 case MachineJumpTableInfo::EK_BlockAddress: 523 return TD.getPointerSize(); 524 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 525 case MachineJumpTableInfo::EK_LabelDifference32: 526 case MachineJumpTableInfo::EK_Custom32: 527 return 4; 528 case MachineJumpTableInfo::EK_Inline: 529 return 0; 530 } 531 assert(0 && "Unknown jump table encoding!"); 532 return ~0; 533} 534 535/// getEntryAlignment - Return the alignment of each entry in the jump table. 536unsigned MachineJumpTableInfo::getEntryAlignment(const TargetData &TD) const { 537 // The alignment of a jump table entry is the alignment of int32 unless the 538 // entry is just the address of a block, in which case it is the pointer 539 // alignment. 540 switch (getEntryKind()) { 541 case MachineJumpTableInfo::EK_BlockAddress: 542 return TD.getPointerABIAlignment(); 543 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 544 case MachineJumpTableInfo::EK_LabelDifference32: 545 case MachineJumpTableInfo::EK_Custom32: 546 return TD.getABIIntegerTypeAlignment(32); 547 case MachineJumpTableInfo::EK_Inline: 548 return 1; 549 } 550 assert(0 && "Unknown jump table encoding!"); 551 return ~0; 552} 553 554/// createJumpTableIndex - Create a new jump table entry in the jump table info. 555/// 556unsigned MachineJumpTableInfo::createJumpTableIndex( 557 const std::vector<MachineBasicBlock*> &DestBBs) { 558 assert(!DestBBs.empty() && "Cannot create an empty jump table!"); 559 JumpTables.push_back(MachineJumpTableEntry(DestBBs)); 560 return JumpTables.size()-1; 561} 562 563/// ReplaceMBBInJumpTables - If Old is the target of any jump tables, update 564/// the jump tables to branch to New instead. 565bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, 566 MachineBasicBlock *New) { 567 assert(Old != New && "Not making a change?"); 568 bool MadeChange = false; 569 for (size_t i = 0, e = JumpTables.size(); i != e; ++i) 570 ReplaceMBBInJumpTable(i, Old, New); 571 return MadeChange; 572} 573 574/// ReplaceMBBInJumpTable - If Old is a target of the jump tables, update 575/// the jump table to branch to New instead. 576bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, 577 MachineBasicBlock *Old, 578 MachineBasicBlock *New) { 579 assert(Old != New && "Not making a change?"); 580 bool MadeChange = false; 581 MachineJumpTableEntry &JTE = JumpTables[Idx]; 582 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j) 583 if (JTE.MBBs[j] == Old) { 584 JTE.MBBs[j] = New; 585 MadeChange = true; 586 } 587 return MadeChange; 588} 589 590void MachineJumpTableInfo::print(raw_ostream &OS) const { 591 if (JumpTables.empty()) return; 592 593 OS << "Jump Tables:\n"; 594 595 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { 596 OS << " jt#" << i << ": "; 597 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j) 598 OS << " BB#" << JumpTables[i].MBBs[j]->getNumber(); 599 } 600 601 OS << '\n'; 602} 603 604void MachineJumpTableInfo::dump() const { print(dbgs()); } 605 606 607//===----------------------------------------------------------------------===// 608// MachineConstantPool implementation 609//===----------------------------------------------------------------------===// 610 611const Type *MachineConstantPoolEntry::getType() const { 612 if (isMachineConstantPoolEntry()) 613 return Val.MachineCPVal->getType(); 614 return Val.ConstVal->getType(); 615} 616 617 618unsigned MachineConstantPoolEntry::getRelocationInfo() const { 619 if (isMachineConstantPoolEntry()) 620 return Val.MachineCPVal->getRelocationInfo(); 621 return Val.ConstVal->getRelocationInfo(); 622} 623 624MachineConstantPool::~MachineConstantPool() { 625 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 626 if (Constants[i].isMachineConstantPoolEntry()) 627 delete Constants[i].Val.MachineCPVal; 628} 629 630/// CanShareConstantPoolEntry - Test whether the given two constants 631/// can be allocated the same constant pool entry. 632static bool CanShareConstantPoolEntry(Constant *A, Constant *B, 633 const TargetData *TD) { 634 // Handle the trivial case quickly. 635 if (A == B) return true; 636 637 // If they have the same type but weren't the same constant, quickly 638 // reject them. 639 if (A->getType() == B->getType()) return false; 640 641 // For now, only support constants with the same size. 642 if (TD->getTypeStoreSize(A->getType()) != TD->getTypeStoreSize(B->getType())) 643 return false; 644 645 // If a floating-point value and an integer value have the same encoding, 646 // they can share a constant-pool entry. 647 if (ConstantFP *AFP = dyn_cast<ConstantFP>(A)) 648 if (ConstantInt *BI = dyn_cast<ConstantInt>(B)) 649 return AFP->getValueAPF().bitcastToAPInt() == BI->getValue(); 650 if (ConstantFP *BFP = dyn_cast<ConstantFP>(B)) 651 if (ConstantInt *AI = dyn_cast<ConstantInt>(A)) 652 return BFP->getValueAPF().bitcastToAPInt() == AI->getValue(); 653 654 // Two vectors can share an entry if each pair of corresponding 655 // elements could. 656 if (ConstantVector *AV = dyn_cast<ConstantVector>(A)) 657 if (ConstantVector *BV = dyn_cast<ConstantVector>(B)) { 658 if (AV->getType()->getNumElements() != BV->getType()->getNumElements()) 659 return false; 660 for (unsigned i = 0, e = AV->getType()->getNumElements(); i != e; ++i) 661 if (!CanShareConstantPoolEntry(AV->getOperand(i), 662 BV->getOperand(i), TD)) 663 return false; 664 return true; 665 } 666 667 // TODO: Handle other cases. 668 669 return false; 670} 671 672/// getConstantPoolIndex - Create a new entry in the constant pool or return 673/// an existing one. User must specify the log2 of the minimum required 674/// alignment for the object. 675/// 676unsigned MachineConstantPool::getConstantPoolIndex(Constant *C, 677 unsigned Alignment) { 678 assert(Alignment && "Alignment must be specified!"); 679 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 680 681 // Check to see if we already have this constant. 682 // 683 // FIXME, this could be made much more efficient for large constant pools. 684 for (unsigned i = 0, e = Constants.size(); i != e; ++i) 685 if (!Constants[i].isMachineConstantPoolEntry() && 686 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, TD)) { 687 if ((unsigned)Constants[i].getAlignment() < Alignment) 688 Constants[i].Alignment = Alignment; 689 return i; 690 } 691 692 Constants.push_back(MachineConstantPoolEntry(C, Alignment)); 693 return Constants.size()-1; 694} 695 696unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, 697 unsigned Alignment) { 698 assert(Alignment && "Alignment must be specified!"); 699 if (Alignment > PoolAlignment) PoolAlignment = Alignment; 700 701 // Check to see if we already have this constant. 702 // 703 // FIXME, this could be made much more efficient for large constant pools. 704 int Idx = V->getExistingMachineCPValue(this, Alignment); 705 if (Idx != -1) 706 return (unsigned)Idx; 707 708 Constants.push_back(MachineConstantPoolEntry(V, Alignment)); 709 return Constants.size()-1; 710} 711 712void MachineConstantPool::print(raw_ostream &OS) const { 713 if (Constants.empty()) return; 714 715 OS << "Constant Pool:\n"; 716 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 717 OS << " cp#" << i << ": "; 718 if (Constants[i].isMachineConstantPoolEntry()) 719 Constants[i].Val.MachineCPVal->print(OS); 720 else 721 OS << *(Value*)Constants[i].Val.ConstVal; 722 OS << ", align=" << Constants[i].getAlignment(); 723 OS << "\n"; 724 } 725} 726 727void MachineConstantPool::dump() const { print(dbgs()); } 728