1//===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the generic RegisterCoalescer interface which
11// is used as the common interface used by all clients and
12// implementations of register coalescing.
13//
14//===----------------------------------------------------------------------===//
15
16#include "RegisterCoalescer.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/CodeGen/LiveIntervalAnalysis.h"
22#include "llvm/CodeGen/LiveRangeEdit.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineInstr.h"
25#include "llvm/CodeGen/MachineLoopInfo.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/Passes.h"
28#include "llvm/CodeGen/RegisterClassInfo.h"
29#include "llvm/CodeGen/VirtRegMap.h"
30#include "llvm/IR/Value.h"
31#include "llvm/Pass.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/Format.h"
36#include "llvm/Support/raw_ostream.h"
37#include "llvm/Target/TargetInstrInfo.h"
38#include "llvm/Target/TargetMachine.h"
39#include "llvm/Target/TargetRegisterInfo.h"
40#include "llvm/Target/TargetSubtargetInfo.h"
41#include <algorithm>
42#include <cmath>
43using namespace llvm;
44
45#define DEBUG_TYPE "regalloc"
46
47STATISTIC(numJoins    , "Number of interval joins performed");
48STATISTIC(numCrossRCs , "Number of cross class joins performed");
49STATISTIC(numCommutes , "Number of instruction commuting performed");
50STATISTIC(numExtends  , "Number of copies extended");
51STATISTIC(NumReMats   , "Number of instructions re-materialized");
52STATISTIC(NumInflated , "Number of register classes inflated");
53STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
54STATISTIC(NumLaneResolves,  "Number of dead lane conflicts resolved");
55
56static cl::opt<bool>
57EnableJoining("join-liveintervals",
58              cl::desc("Coalesce copies (default=true)"),
59              cl::init(true));
60
61static cl::opt<bool> UseTerminalRule("terminal-rule",
62                                     cl::desc("Apply the terminal rule"),
63                                     cl::init(false));
64
65/// Temporary flag to test critical edge unsplitting.
66static cl::opt<bool>
67EnableJoinSplits("join-splitedges",
68  cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
69
70/// Temporary flag to test global copy optimization.
71static cl::opt<cl::boolOrDefault>
72EnableGlobalCopies("join-globalcopies",
73  cl::desc("Coalesce copies that span blocks (default=subtarget)"),
74  cl::init(cl::BOU_UNSET), cl::Hidden);
75
76static cl::opt<bool>
77VerifyCoalescing("verify-coalescing",
78         cl::desc("Verify machine instrs before and after register coalescing"),
79         cl::Hidden);
80
81namespace {
82  class RegisterCoalescer : public MachineFunctionPass,
83                            private LiveRangeEdit::Delegate {
84    MachineFunction* MF;
85    MachineRegisterInfo* MRI;
86    const TargetMachine* TM;
87    const TargetRegisterInfo* TRI;
88    const TargetInstrInfo* TII;
89    LiveIntervals *LIS;
90    const MachineLoopInfo* Loops;
91    AliasAnalysis *AA;
92    RegisterClassInfo RegClassInfo;
93
94    /// A LaneMask to remember on which subregister live ranges we need to call
95    /// shrinkToUses() later.
96    unsigned ShrinkMask;
97
98    /// True if the main range of the currently coalesced intervals should be
99    /// checked for smaller live intervals.
100    bool ShrinkMainRange;
101
102    /// \brief True if the coalescer should aggressively coalesce global copies
103    /// in favor of keeping local copies.
104    bool JoinGlobalCopies;
105
106    /// \brief True if the coalescer should aggressively coalesce fall-thru
107    /// blocks exclusively containing copies.
108    bool JoinSplitEdges;
109
110    /// Copy instructions yet to be coalesced.
111    SmallVector<MachineInstr*, 8> WorkList;
112    SmallVector<MachineInstr*, 8> LocalWorkList;
113
114    /// Set of instruction pointers that have been erased, and
115    /// that may be present in WorkList.
116    SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
117
118    /// Dead instructions that are about to be deleted.
119    SmallVector<MachineInstr*, 8> DeadDefs;
120
121    /// Virtual registers to be considered for register class inflation.
122    SmallVector<unsigned, 8> InflateRegs;
123
124    /// Recursively eliminate dead defs in DeadDefs.
125    void eliminateDeadDefs();
126
127    /// LiveRangeEdit callback for eliminateDeadDefs().
128    void LRE_WillEraseInstruction(MachineInstr *MI) override;
129
130    /// Coalesce the LocalWorkList.
131    void coalesceLocals();
132
133    /// Join compatible live intervals
134    void joinAllIntervals();
135
136    /// Coalesce copies in the specified MBB, putting
137    /// copies that cannot yet be coalesced into WorkList.
138    void copyCoalesceInMBB(MachineBasicBlock *MBB);
139
140    /// Tries to coalesce all copies in CurrList. Returns true if any progress
141    /// was made.
142    bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
143
144    /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
145    /// src/dst of the copy instruction CopyMI.  This returns true if the copy
146    /// was successfully coalesced away. If it is not currently possible to
147    /// coalesce this interval, but it may be possible if other things get
148    /// coalesced, then it returns true by reference in 'Again'.
149    bool joinCopy(MachineInstr *TheCopy, bool &Again);
150
151    /// Attempt to join these two intervals.  On failure, this
152    /// returns false.  The output "SrcInt" will not have been modified, so we
153    /// can use this information below to update aliases.
154    bool joinIntervals(CoalescerPair &CP);
155
156    /// Attempt joining two virtual registers. Return true on success.
157    bool joinVirtRegs(CoalescerPair &CP);
158
159    /// Attempt joining with a reserved physreg.
160    bool joinReservedPhysReg(CoalescerPair &CP);
161
162    /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
163    /// Subranges in @p LI which only partially interfere with the desired
164    /// LaneMask are split as necessary. @p LaneMask are the lanes that
165    /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
166    /// lanemasks already adjusted to the coalesced register.
167    /// @returns false if live range conflicts couldn't get resolved.
168    bool mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge,
169                           unsigned LaneMask, CoalescerPair &CP);
170
171    /// Join the liveranges of two subregisters. Joins @p RRange into
172    /// @p LRange, @p RRange may be invalid afterwards.
173    /// @returns false if live range conflicts couldn't get resolved.
174    bool joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
175                          unsigned LaneMask, const CoalescerPair &CP);
176
177    /// We found a non-trivially-coalescable copy. If the source value number is
178    /// defined by a copy from the destination reg see if we can merge these two
179    /// destination reg valno# into a single value number, eliminating a copy.
180    /// This returns true if an interval was modified.
181    bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
182
183    /// Return true if there are definitions of IntB
184    /// other than BValNo val# that can reach uses of AValno val# of IntA.
185    bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
186                              VNInfo *AValNo, VNInfo *BValNo);
187
188    /// We found a non-trivially-coalescable copy.
189    /// If the source value number is defined by a commutable instruction and
190    /// its other operand is coalesced to the copy dest register, see if we
191    /// can transform the copy into a noop by commuting the definition.
192    /// This returns true if an interval was modified.
193    bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI);
194
195    /// If the source of a copy is defined by a
196    /// trivial computation, replace the copy by rematerialize the definition.
197    bool reMaterializeTrivialDef(CoalescerPair &CP, MachineInstr *CopyMI,
198                                 bool &IsDefCopy);
199
200    /// Return true if a copy involving a physreg should be joined.
201    bool canJoinPhys(const CoalescerPair &CP);
202
203    /// Replace all defs and uses of SrcReg to DstReg and update the subregister
204    /// number if it is not zero. If DstReg is a physical register and the
205    /// existing subregister number of the def / use being updated is not zero,
206    /// make sure to set it to the correct physical subregister.
207    void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
208
209    /// Handle copies of undef values.
210    /// Returns true if @p CopyMI was a copy of an undef value and eliminated.
211    bool eliminateUndefCopy(MachineInstr *CopyMI);
212
213    /// Check whether or not we should apply the terminal rule on the
214    /// destination (Dst) of \p Copy.
215    /// When the terminal rule applies, Copy is not profitable to
216    /// coalesce.
217    /// Dst is terminal if it has exactly one affinity (Dst, Src) and
218    /// at least one interference (Dst, Dst2). If Dst is terminal, the
219    /// terminal rule consists in checking that at least one of
220    /// interfering node, say Dst2, has an affinity of equal or greater
221    /// weight with Src.
222    /// In that case, Dst2 and Dst will not be able to be both coalesced
223    /// with Src. Since Dst2 exposes more coalescing opportunities than
224    /// Dst, we can drop \p Copy.
225    bool applyTerminalRule(const MachineInstr &Copy) const;
226
227  public:
228    static char ID; ///< Class identification, replacement for typeinfo
229    RegisterCoalescer() : MachineFunctionPass(ID) {
230      initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
231    }
232
233    void getAnalysisUsage(AnalysisUsage &AU) const override;
234
235    void releaseMemory() override;
236
237    /// This is the pass entry point.
238    bool runOnMachineFunction(MachineFunction&) override;
239
240    /// Implement the dump method.
241    void print(raw_ostream &O, const Module* = nullptr) const override;
242  };
243} // end anonymous namespace
244
245char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
246
247INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
248                      "Simple Register Coalescing", false, false)
249INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
250INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
251INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
252INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
253INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
254                    "Simple Register Coalescing", false, false)
255
256char RegisterCoalescer::ID = 0;
257
258static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
259                        unsigned &Src, unsigned &Dst,
260                        unsigned &SrcSub, unsigned &DstSub) {
261  if (MI->isCopy()) {
262    Dst = MI->getOperand(0).getReg();
263    DstSub = MI->getOperand(0).getSubReg();
264    Src = MI->getOperand(1).getReg();
265    SrcSub = MI->getOperand(1).getSubReg();
266  } else if (MI->isSubregToReg()) {
267    Dst = MI->getOperand(0).getReg();
268    DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
269                                      MI->getOperand(3).getImm());
270    Src = MI->getOperand(2).getReg();
271    SrcSub = MI->getOperand(2).getSubReg();
272  } else
273    return false;
274  return true;
275}
276
277/// Return true if this block should be vacated by the coalescer to eliminate
278/// branches. The important cases to handle in the coalescer are critical edges
279/// split during phi elimination which contain only copies. Simple blocks that
280/// contain non-branches should also be vacated, but this can be handled by an
281/// earlier pass similar to early if-conversion.
282static bool isSplitEdge(const MachineBasicBlock *MBB) {
283  if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
284    return false;
285
286  for (const auto &MI : *MBB) {
287    if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
288      return false;
289  }
290  return true;
291}
292
293bool CoalescerPair::setRegisters(const MachineInstr *MI) {
294  SrcReg = DstReg = 0;
295  SrcIdx = DstIdx = 0;
296  NewRC = nullptr;
297  Flipped = CrossClass = false;
298
299  unsigned Src, Dst, SrcSub, DstSub;
300  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
301    return false;
302  Partial = SrcSub || DstSub;
303
304  // If one register is a physreg, it must be Dst.
305  if (TargetRegisterInfo::isPhysicalRegister(Src)) {
306    if (TargetRegisterInfo::isPhysicalRegister(Dst))
307      return false;
308    std::swap(Src, Dst);
309    std::swap(SrcSub, DstSub);
310    Flipped = true;
311  }
312
313  const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
314
315  if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
316    // Eliminate DstSub on a physreg.
317    if (DstSub) {
318      Dst = TRI.getSubReg(Dst, DstSub);
319      if (!Dst) return false;
320      DstSub = 0;
321    }
322
323    // Eliminate SrcSub by picking a corresponding Dst superregister.
324    if (SrcSub) {
325      Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
326      if (!Dst) return false;
327    } else if (!MRI.getRegClass(Src)->contains(Dst)) {
328      return false;
329    }
330  } else {
331    // Both registers are virtual.
332    const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
333    const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
334
335    // Both registers have subreg indices.
336    if (SrcSub && DstSub) {
337      // Copies between different sub-registers are never coalescable.
338      if (Src == Dst && SrcSub != DstSub)
339        return false;
340
341      NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
342                                         SrcIdx, DstIdx);
343      if (!NewRC)
344        return false;
345    } else if (DstSub) {
346      // SrcReg will be merged with a sub-register of DstReg.
347      SrcIdx = DstSub;
348      NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
349    } else if (SrcSub) {
350      // DstReg will be merged with a sub-register of SrcReg.
351      DstIdx = SrcSub;
352      NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
353    } else {
354      // This is a straight copy without sub-registers.
355      NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
356    }
357
358    // The combined constraint may be impossible to satisfy.
359    if (!NewRC)
360      return false;
361
362    // Prefer SrcReg to be a sub-register of DstReg.
363    // FIXME: Coalescer should support subregs symmetrically.
364    if (DstIdx && !SrcIdx) {
365      std::swap(Src, Dst);
366      std::swap(SrcIdx, DstIdx);
367      Flipped = !Flipped;
368    }
369
370    CrossClass = NewRC != DstRC || NewRC != SrcRC;
371  }
372  // Check our invariants
373  assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
374  assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
375         "Cannot have a physical SubIdx");
376  SrcReg = Src;
377  DstReg = Dst;
378  return true;
379}
380
381bool CoalescerPair::flip() {
382  if (TargetRegisterInfo::isPhysicalRegister(DstReg))
383    return false;
384  std::swap(SrcReg, DstReg);
385  std::swap(SrcIdx, DstIdx);
386  Flipped = !Flipped;
387  return true;
388}
389
390bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
391  if (!MI)
392    return false;
393  unsigned Src, Dst, SrcSub, DstSub;
394  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
395    return false;
396
397  // Find the virtual register that is SrcReg.
398  if (Dst == SrcReg) {
399    std::swap(Src, Dst);
400    std::swap(SrcSub, DstSub);
401  } else if (Src != SrcReg) {
402    return false;
403  }
404
405  // Now check that Dst matches DstReg.
406  if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
407    if (!TargetRegisterInfo::isPhysicalRegister(Dst))
408      return false;
409    assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
410    // DstSub could be set for a physreg from INSERT_SUBREG.
411    if (DstSub)
412      Dst = TRI.getSubReg(Dst, DstSub);
413    // Full copy of Src.
414    if (!SrcSub)
415      return DstReg == Dst;
416    // This is a partial register copy. Check that the parts match.
417    return TRI.getSubReg(DstReg, SrcSub) == Dst;
418  } else {
419    // DstReg is virtual.
420    if (DstReg != Dst)
421      return false;
422    // Registers match, do the subregisters line up?
423    return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
424           TRI.composeSubRegIndices(DstIdx, DstSub);
425  }
426}
427
428void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
429  AU.setPreservesCFG();
430  AU.addRequired<AliasAnalysis>();
431  AU.addRequired<LiveIntervals>();
432  AU.addPreserved<LiveIntervals>();
433  AU.addPreserved<SlotIndexes>();
434  AU.addRequired<MachineLoopInfo>();
435  AU.addPreserved<MachineLoopInfo>();
436  AU.addPreservedID(MachineDominatorsID);
437  MachineFunctionPass::getAnalysisUsage(AU);
438}
439
440void RegisterCoalescer::eliminateDeadDefs() {
441  SmallVector<unsigned, 8> NewRegs;
442  LiveRangeEdit(nullptr, NewRegs, *MF, *LIS,
443                nullptr, this).eliminateDeadDefs(DeadDefs);
444}
445
446void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
447  // MI may be in WorkList. Make sure we don't visit it.
448  ErasedInstrs.insert(MI);
449}
450
451bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
452                                             MachineInstr *CopyMI) {
453  assert(!CP.isPartial() && "This doesn't work for partial copies.");
454  assert(!CP.isPhys() && "This doesn't work for physreg copies.");
455
456  LiveInterval &IntA =
457    LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
458  LiveInterval &IntB =
459    LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
460  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
461
462  // We have a non-trivially-coalescable copy with IntA being the source and
463  // IntB being the dest, thus this defines a value number in IntB.  If the
464  // source value number (in IntA) is defined by a copy from B, see if we can
465  // merge these two pieces of B into a single value number, eliminating a copy.
466  // For example:
467  //
468  //  A3 = B0
469  //    ...
470  //  B1 = A3      <- this copy
471  //
472  // In this case, B0 can be extended to where the B1 copy lives, allowing the
473  // B1 value number to be replaced with B0 (which simplifies the B
474  // liveinterval).
475
476  // BValNo is a value number in B that is defined by a copy from A.  'B1' in
477  // the example above.
478  LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx);
479  if (BS == IntB.end()) return false;
480  VNInfo *BValNo = BS->valno;
481
482  // Get the location that B is defined at.  Two options: either this value has
483  // an unknown definition point or it is defined at CopyIdx.  If unknown, we
484  // can't process it.
485  if (BValNo->def != CopyIdx) return false;
486
487  // AValNo is the value number in A that defines the copy, A3 in the example.
488  SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
489  LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
490  // The live segment might not exist after fun with physreg coalescing.
491  if (AS == IntA.end()) return false;
492  VNInfo *AValNo = AS->valno;
493
494  // If AValNo is defined as a copy from IntB, we can potentially process this.
495  // Get the instruction that defines this value number.
496  MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
497  // Don't allow any partial copies, even if isCoalescable() allows them.
498  if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
499    return false;
500
501  // Get the Segment in IntB that this value number starts with.
502  LiveInterval::iterator ValS =
503    IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
504  if (ValS == IntB.end())
505    return false;
506
507  // Make sure that the end of the live segment is inside the same block as
508  // CopyMI.
509  MachineInstr *ValSEndInst =
510    LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
511  if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
512    return false;
513
514  // Okay, we now know that ValS ends in the same block that the CopyMI
515  // live-range starts.  If there are no intervening live segments between them
516  // in IntB, we can merge them.
517  if (ValS+1 != BS) return false;
518
519  DEBUG(dbgs() << "Extending: " << PrintReg(IntB.reg, TRI));
520
521  SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
522  // We are about to delete CopyMI, so need to remove it as the 'instruction
523  // that defines this value #'. Update the valnum with the new defining
524  // instruction #.
525  BValNo->def = FillerStart;
526
527  // Okay, we can merge them.  We need to insert a new liverange:
528  // [ValS.end, BS.begin) of either value number, then we merge the
529  // two value numbers.
530  IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
531
532  // Okay, merge "B1" into the same value number as "B0".
533  if (BValNo != ValS->valno)
534    IntB.MergeValueNumberInto(BValNo, ValS->valno);
535
536  // Do the same for the subregister segments.
537  for (LiveInterval::SubRange &S : IntB.subranges()) {
538    VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
539    S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo));
540    VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot());
541    if (SubBValNo != SubValSNo)
542      S.MergeValueNumberInto(SubBValNo, SubValSNo);
543  }
544
545  DEBUG(dbgs() << "   result = " << IntB << '\n');
546
547  // If the source instruction was killing the source register before the
548  // merge, unset the isKill marker given the live range has been extended.
549  int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true);
550  if (UIdx != -1) {
551    ValSEndInst->getOperand(UIdx).setIsKill(false);
552  }
553
554  // Rewrite the copy. If the copy instruction was killing the destination
555  // register before the merge, find the last use and trim the live range. That
556  // will also add the isKill marker.
557  CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
558  if (AS->end == CopyIdx)
559    LIS->shrinkToUses(&IntA);
560
561  ++numExtends;
562  return true;
563}
564
565bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
566                                             LiveInterval &IntB,
567                                             VNInfo *AValNo,
568                                             VNInfo *BValNo) {
569  // If AValNo has PHI kills, conservatively assume that IntB defs can reach
570  // the PHI values.
571  if (LIS->hasPHIKill(IntA, AValNo))
572    return true;
573
574  for (LiveRange::Segment &ASeg : IntA.segments) {
575    if (ASeg.valno != AValNo) continue;
576    LiveInterval::iterator BI =
577      std::upper_bound(IntB.begin(), IntB.end(), ASeg.start);
578    if (BI != IntB.begin())
579      --BI;
580    for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) {
581      if (BI->valno == BValNo)
582        continue;
583      if (BI->start <= ASeg.start && BI->end > ASeg.start)
584        return true;
585      if (BI->start > ASeg.start && BI->start < ASeg.end)
586        return true;
587    }
588  }
589  return false;
590}
591
592/// Copy segements with value number @p SrcValNo from liverange @p Src to live
593/// range @Dst and use value number @p DstValNo there.
594static void addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo,
595                                 const LiveRange &Src, const VNInfo *SrcValNo)
596{
597  for (const LiveRange::Segment &S : Src.segments) {
598    if (S.valno != SrcValNo)
599      continue;
600    Dst.addSegment(LiveRange::Segment(S.start, S.end, DstValNo));
601  }
602}
603
604bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
605                                                 MachineInstr *CopyMI) {
606  assert(!CP.isPhys());
607
608  LiveInterval &IntA =
609      LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
610  LiveInterval &IntB =
611      LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
612
613  // We found a non-trivially-coalescable copy with IntA being the source and
614  // IntB being the dest, thus this defines a value number in IntB.  If the
615  // source value number (in IntA) is defined by a commutable instruction and
616  // its other operand is coalesced to the copy dest register, see if we can
617  // transform the copy into a noop by commuting the definition. For example,
618  //
619  //  A3 = op A2 B0<kill>
620  //    ...
621  //  B1 = A3      <- this copy
622  //    ...
623  //     = op A3   <- more uses
624  //
625  // ==>
626  //
627  //  B2 = op B0 A2<kill>
628  //    ...
629  //  B1 = B2      <- now an identity copy
630  //    ...
631  //     = op B2   <- more uses
632
633  // BValNo is a value number in B that is defined by a copy from A. 'B1' in
634  // the example above.
635  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
636  VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
637  assert(BValNo != nullptr && BValNo->def == CopyIdx);
638
639  // AValNo is the value number in A that defines the copy, A3 in the example.
640  VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
641  assert(AValNo && !AValNo->isUnused() && "COPY source not live");
642  if (AValNo->isPHIDef())
643    return false;
644  MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
645  if (!DefMI)
646    return false;
647  if (!DefMI->isCommutable())
648    return false;
649  // If DefMI is a two-address instruction then commuting it will change the
650  // destination register.
651  int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
652  assert(DefIdx != -1);
653  unsigned UseOpIdx;
654  if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
655    return false;
656  unsigned Op1, Op2, NewDstIdx;
657  if (!TII->findCommutedOpIndices(DefMI, Op1, Op2))
658    return false;
659  if (Op1 == UseOpIdx)
660    NewDstIdx = Op2;
661  else if (Op2 == UseOpIdx)
662    NewDstIdx = Op1;
663  else
664    return false;
665
666  MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
667  unsigned NewReg = NewDstMO.getReg();
668  if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill())
669    return false;
670
671  // Make sure there are no other definitions of IntB that would reach the
672  // uses which the new definition can reach.
673  if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
674    return false;
675
676  // If some of the uses of IntA.reg is already coalesced away, return false.
677  // It's not possible to determine whether it's safe to perform the coalescing.
678  for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) {
679    MachineInstr *UseMI = MO.getParent();
680    unsigned OpNo = &MO - &UseMI->getOperand(0);
681    SlotIndex UseIdx = LIS->getInstructionIndex(UseMI);
682    LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
683    if (US == IntA.end() || US->valno != AValNo)
684      continue;
685    // If this use is tied to a def, we can't rewrite the register.
686    if (UseMI->isRegTiedToDefOperand(OpNo))
687      return false;
688  }
689
690  DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
691               << *DefMI);
692
693  // At this point we have decided that it is legal to do this
694  // transformation.  Start by commuting the instruction.
695  MachineBasicBlock *MBB = DefMI->getParent();
696  MachineInstr *NewMI = TII->commuteInstruction(DefMI);
697  if (!NewMI)
698    return false;
699  if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
700      TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
701      !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
702    return false;
703  if (NewMI != DefMI) {
704    LIS->ReplaceMachineInstrInMaps(DefMI, NewMI);
705    MachineBasicBlock::iterator Pos = DefMI;
706    MBB->insert(Pos, NewMI);
707    MBB->erase(DefMI);
708  }
709
710  // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
711  // A = or A, B
712  // ...
713  // B = A
714  // ...
715  // C = A<kill>
716  // ...
717  //   = B
718
719  // Update uses of IntA of the specific Val# with IntB.
720  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
721                                         UE = MRI->use_end();
722       UI != UE; /* ++UI is below because of possible MI removal */) {
723    MachineOperand &UseMO = *UI;
724    ++UI;
725    if (UseMO.isUndef())
726      continue;
727    MachineInstr *UseMI = UseMO.getParent();
728    if (UseMI->isDebugValue()) {
729      // FIXME These don't have an instruction index.  Not clear we have enough
730      // info to decide whether to do this replacement or not.  For now do it.
731      UseMO.setReg(NewReg);
732      continue;
733    }
734    SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getRegSlot(true);
735    LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
736    assert(US != IntA.end() && "Use must be live");
737    if (US->valno != AValNo)
738      continue;
739    // Kill flags are no longer accurate. They are recomputed after RA.
740    UseMO.setIsKill(false);
741    if (TargetRegisterInfo::isPhysicalRegister(NewReg))
742      UseMO.substPhysReg(NewReg, *TRI);
743    else
744      UseMO.setReg(NewReg);
745    if (UseMI == CopyMI)
746      continue;
747    if (!UseMI->isCopy())
748      continue;
749    if (UseMI->getOperand(0).getReg() != IntB.reg ||
750        UseMI->getOperand(0).getSubReg())
751      continue;
752
753    // This copy will become a noop. If it's defining a new val#, merge it into
754    // BValNo.
755    SlotIndex DefIdx = UseIdx.getRegSlot();
756    VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
757    if (!DVNI)
758      continue;
759    DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
760    assert(DVNI->def == DefIdx);
761    BValNo = IntB.MergeValueNumberInto(DVNI, BValNo);
762    for (LiveInterval::SubRange &S : IntB.subranges()) {
763      VNInfo *SubDVNI = S.getVNInfoAt(DefIdx);
764      if (!SubDVNI)
765        continue;
766      VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
767      assert(SubBValNo->def == CopyIdx);
768      S.MergeValueNumberInto(SubDVNI, SubBValNo);
769    }
770
771    ErasedInstrs.insert(UseMI);
772    LIS->RemoveMachineInstrFromMaps(UseMI);
773    UseMI->eraseFromParent();
774  }
775
776  // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
777  // is updated.
778  BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
779  if (IntB.hasSubRanges()) {
780    if (!IntA.hasSubRanges()) {
781      unsigned Mask = MRI->getMaxLaneMaskForVReg(IntA.reg);
782      IntA.createSubRangeFrom(Allocator, Mask, IntA);
783    }
784    SlotIndex AIdx = CopyIdx.getRegSlot(true);
785    for (LiveInterval::SubRange &SA : IntA.subranges()) {
786      VNInfo *ASubValNo = SA.getVNInfoAt(AIdx);
787      assert(ASubValNo != nullptr);
788
789      unsigned AMask = SA.LaneMask;
790      for (LiveInterval::SubRange &SB : IntB.subranges()) {
791        unsigned BMask = SB.LaneMask;
792        unsigned Common = BMask & AMask;
793        if (Common == 0)
794          continue;
795
796        DEBUG(
797            dbgs() << format("\t\tCopy+Merge %04X into %04X\n", BMask, Common));
798        unsigned BRest = BMask & ~AMask;
799        LiveInterval::SubRange *CommonRange;
800        if (BRest != 0) {
801          SB.LaneMask = BRest;
802          DEBUG(dbgs() << format("\t\tReduce Lane to %04X\n", BRest));
803          // Duplicate SubRange for newly merged common stuff.
804          CommonRange = IntB.createSubRangeFrom(Allocator, Common, SB);
805        } else {
806          // We van reuse the L SubRange.
807          SB.LaneMask = Common;
808          CommonRange = &SB;
809        }
810        LiveRange RangeCopy(SB, Allocator);
811
812        VNInfo *BSubValNo = CommonRange->getVNInfoAt(CopyIdx);
813        assert(BSubValNo->def == CopyIdx);
814        BSubValNo->def = ASubValNo->def;
815        addSegmentsWithValNo(*CommonRange, BSubValNo, SA, ASubValNo);
816        AMask &= ~BMask;
817      }
818      if (AMask != 0) {
819        DEBUG(dbgs() << format("\t\tNew Lane %04X\n", AMask));
820        LiveRange *NewRange = IntB.createSubRange(Allocator, AMask);
821        VNInfo *BSubValNo = NewRange->getNextValue(CopyIdx, Allocator);
822        addSegmentsWithValNo(*NewRange, BSubValNo, SA, ASubValNo);
823      }
824    }
825  }
826
827  BValNo->def = AValNo->def;
828  addSegmentsWithValNo(IntB, BValNo, IntA, AValNo);
829  DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
830
831  LIS->removeVRegDefAt(IntA, AValNo->def);
832
833  DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
834  ++numCommutes;
835  return true;
836}
837
838/// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
839/// defining a subregister.
840static bool definesFullReg(const MachineInstr &MI, unsigned Reg) {
841  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) &&
842         "This code cannot handle physreg aliasing");
843  for (const MachineOperand &Op : MI.operands()) {
844    if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
845      continue;
846    // Return true if we define the full register or don't care about the value
847    // inside other subregisters.
848    if (Op.getSubReg() == 0 || Op.isUndef())
849      return true;
850  }
851  return false;
852}
853
854bool RegisterCoalescer::reMaterializeTrivialDef(CoalescerPair &CP,
855                                                MachineInstr *CopyMI,
856                                                bool &IsDefCopy) {
857  IsDefCopy = false;
858  unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
859  unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
860  unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
861  unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
862  if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
863    return false;
864
865  LiveInterval &SrcInt = LIS->getInterval(SrcReg);
866  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI);
867  VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
868  assert(ValNo && "CopyMI input register not live");
869  if (ValNo->isPHIDef() || ValNo->isUnused())
870    return false;
871  MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
872  if (!DefMI)
873    return false;
874  if (DefMI->isCopyLike()) {
875    IsDefCopy = true;
876    return false;
877  }
878  if (!TII->isAsCheapAsAMove(DefMI))
879    return false;
880  if (!TII->isTriviallyReMaterializable(DefMI, AA))
881    return false;
882  if (!definesFullReg(*DefMI, SrcReg))
883    return false;
884  bool SawStore = false;
885  if (!DefMI->isSafeToMove(TII, AA, SawStore))
886    return false;
887  const MCInstrDesc &MCID = DefMI->getDesc();
888  if (MCID.getNumDefs() != 1)
889    return false;
890  // Only support subregister destinations when the def is read-undef.
891  MachineOperand &DstOperand = CopyMI->getOperand(0);
892  unsigned CopyDstReg = DstOperand.getReg();
893  if (DstOperand.getSubReg() && !DstOperand.isUndef())
894    return false;
895
896  // If both SrcIdx and DstIdx are set, correct rematerialization would widen
897  // the register substantially (beyond both source and dest size). This is bad
898  // for performance since it can cascade through a function, introducing many
899  // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
900  // around after a few subreg copies).
901  if (SrcIdx && DstIdx)
902    return false;
903
904  const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
905  if (!DefMI->isImplicitDef()) {
906    if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
907      unsigned NewDstReg = DstReg;
908
909      unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
910                                              DefMI->getOperand(0).getSubReg());
911      if (NewDstIdx)
912        NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
913
914      // Finally, make sure that the physical subregister that will be
915      // constructed later is permitted for the instruction.
916      if (!DefRC->contains(NewDstReg))
917        return false;
918    } else {
919      // Theoretically, some stack frame reference could exist. Just make sure
920      // it hasn't actually happened.
921      assert(TargetRegisterInfo::isVirtualRegister(DstReg) &&
922             "Only expect to deal with virtual or physical registers");
923    }
924  }
925
926  MachineBasicBlock *MBB = CopyMI->getParent();
927  MachineBasicBlock::iterator MII =
928    std::next(MachineBasicBlock::iterator(CopyMI));
929  TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, DefMI, *TRI);
930  MachineInstr *NewMI = std::prev(MII);
931
932  LIS->ReplaceMachineInstrInMaps(CopyMI, NewMI);
933  CopyMI->eraseFromParent();
934  ErasedInstrs.insert(CopyMI);
935
936  // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
937  // We need to remember these so we can add intervals once we insert
938  // NewMI into SlotIndexes.
939  SmallVector<unsigned, 4> NewMIImplDefs;
940  for (unsigned i = NewMI->getDesc().getNumOperands(),
941         e = NewMI->getNumOperands(); i != e; ++i) {
942    MachineOperand &MO = NewMI->getOperand(i);
943    if (MO.isReg()) {
944      assert(MO.isDef() && MO.isImplicit() && MO.isDead() &&
945             TargetRegisterInfo::isPhysicalRegister(MO.getReg()));
946      NewMIImplDefs.push_back(MO.getReg());
947    }
948  }
949
950  if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
951    const TargetRegisterClass *NewRC = CP.getNewRC();
952    unsigned NewIdx = NewMI->getOperand(0).getSubReg();
953
954    if (DefRC != nullptr) {
955      if (NewIdx)
956        NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx);
957      else
958        NewRC = TRI->getCommonSubClass(NewRC, DefRC);
959      assert(NewRC && "subreg chosen for remat incompatible with instruction");
960    }
961    MRI->setRegClass(DstReg, NewRC);
962
963    updateRegDefsUses(DstReg, DstReg, DstIdx);
964    NewMI->getOperand(0).setSubReg(NewIdx);
965  } else if (NewMI->getOperand(0).getReg() != CopyDstReg) {
966    // The New instruction may be defining a sub-register of what's actually
967    // been asked for. If so it must implicitly define the whole thing.
968    assert(TargetRegisterInfo::isPhysicalRegister(DstReg) &&
969           "Only expect virtual or physical registers in remat");
970    NewMI->getOperand(0).setIsDead(true);
971    NewMI->addOperand(MachineOperand::CreateReg(CopyDstReg,
972                                                true  /*IsDef*/,
973                                                true  /*IsImp*/,
974                                                false /*IsKill*/));
975    // Record small dead def live-ranges for all the subregisters
976    // of the destination register.
977    // Otherwise, variables that live through may miss some
978    // interferences, thus creating invalid allocation.
979    // E.g., i386 code:
980    // vreg1 = somedef ; vreg1 GR8
981    // vreg2 = remat ; vreg2 GR32
982    // CL = COPY vreg2.sub_8bit
983    // = somedef vreg1 ; vreg1 GR8
984    // =>
985    // vreg1 = somedef ; vreg1 GR8
986    // ECX<def, dead> = remat ; CL<imp-def>
987    // = somedef vreg1 ; vreg1 GR8
988    // vreg1 will see the inteferences with CL but not with CH since
989    // no live-ranges would have been created for ECX.
990    // Fix that!
991    SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
992    for (MCRegUnitIterator Units(NewMI->getOperand(0).getReg(), TRI);
993         Units.isValid(); ++Units)
994      if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
995        LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
996  }
997
998  if (NewMI->getOperand(0).getSubReg())
999    NewMI->getOperand(0).setIsUndef();
1000
1001  // CopyMI may have implicit operands, transfer them over to the newly
1002  // rematerialized instruction. And update implicit def interval valnos.
1003  for (unsigned i = CopyMI->getDesc().getNumOperands(),
1004         e = CopyMI->getNumOperands(); i != e; ++i) {
1005    MachineOperand &MO = CopyMI->getOperand(i);
1006    if (MO.isReg()) {
1007      assert(MO.isImplicit() && "No explicit operands after implict operands.");
1008      // Discard VReg implicit defs.
1009      if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
1010        NewMI->addOperand(MO);
1011      }
1012    }
1013  }
1014
1015  SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1016  for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
1017    unsigned Reg = NewMIImplDefs[i];
1018    for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1019      if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1020        LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1021  }
1022
1023  DEBUG(dbgs() << "Remat: " << *NewMI);
1024  ++NumReMats;
1025
1026  // The source interval can become smaller because we removed a use.
1027  LIS->shrinkToUses(&SrcInt, &DeadDefs);
1028  if (!DeadDefs.empty()) {
1029    // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
1030    // to describe DstReg instead.
1031    for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) {
1032      MachineInstr *UseMI = UseMO.getParent();
1033      if (UseMI->isDebugValue()) {
1034        UseMO.setReg(DstReg);
1035        DEBUG(dbgs() << "\t\tupdated: " << *UseMI);
1036      }
1037    }
1038    eliminateDeadDefs();
1039  }
1040
1041  return true;
1042}
1043
1044bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
1045  // ProcessImpicitDefs may leave some copies of <undef> values, it only removes
1046  // local variables. When we have a copy like:
1047  //
1048  //   %vreg1 = COPY %vreg2<undef>
1049  //
1050  // We delete the copy and remove the corresponding value number from %vreg1.
1051  // Any uses of that value number are marked as <undef>.
1052
1053  // Note that we do not query CoalescerPair here but redo isMoveInstr as the
1054  // CoalescerPair may have a new register class with adjusted subreg indices
1055  // at this point.
1056  unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
1057  isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx);
1058
1059  SlotIndex Idx = LIS->getInstructionIndex(CopyMI);
1060  const LiveInterval &SrcLI = LIS->getInterval(SrcReg);
1061  // CopyMI is undef iff SrcReg is not live before the instruction.
1062  if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
1063    unsigned SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx);
1064    for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
1065      if ((SR.LaneMask & SrcMask) == 0)
1066        continue;
1067      if (SR.liveAt(Idx))
1068        return false;
1069    }
1070  } else if (SrcLI.liveAt(Idx))
1071    return false;
1072
1073  DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
1074
1075  // Remove any DstReg segments starting at the instruction.
1076  LiveInterval &DstLI = LIS->getInterval(DstReg);
1077  SlotIndex RegIndex = Idx.getRegSlot();
1078  // Remove value or merge with previous one in case of a subregister def.
1079  if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) {
1080    VNInfo *VNI = DstLI.getVNInfoAt(RegIndex);
1081    DstLI.MergeValueNumberInto(VNI, PrevVNI);
1082
1083    // The affected subregister segments can be removed.
1084    unsigned DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx);
1085    for (LiveInterval::SubRange &SR : DstLI.subranges()) {
1086      if ((SR.LaneMask & DstMask) == 0)
1087        continue;
1088
1089      VNInfo *SVNI = SR.getVNInfoAt(RegIndex);
1090      assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex));
1091      SR.removeValNo(SVNI);
1092    }
1093    DstLI.removeEmptySubRanges();
1094  } else
1095    LIS->removeVRegDefAt(DstLI, RegIndex);
1096
1097  // Mark uses as undef.
1098  for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) {
1099    if (MO.isDef() /*|| MO.isUndef()*/)
1100      continue;
1101    const MachineInstr &MI = *MO.getParent();
1102    SlotIndex UseIdx = LIS->getInstructionIndex(&MI);
1103    unsigned UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
1104    bool isLive;
1105    if (UseMask != ~0u && DstLI.hasSubRanges()) {
1106      isLive = false;
1107      for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
1108        if ((SR.LaneMask & UseMask) == 0)
1109          continue;
1110        if (SR.liveAt(UseIdx)) {
1111          isLive = true;
1112          break;
1113        }
1114      }
1115    } else
1116      isLive = DstLI.liveAt(UseIdx);
1117    if (isLive)
1118      continue;
1119    MO.setIsUndef(true);
1120    DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI);
1121  }
1122  return true;
1123}
1124
1125void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
1126                                          unsigned DstReg,
1127                                          unsigned SubIdx) {
1128  bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
1129  LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg);
1130
1131  SmallPtrSet<MachineInstr*, 8> Visited;
1132  for (MachineRegisterInfo::reg_instr_iterator
1133       I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end();
1134       I != E; ) {
1135    MachineInstr *UseMI = &*(I++);
1136
1137    // Each instruction can only be rewritten once because sub-register
1138    // composition is not always idempotent. When SrcReg != DstReg, rewriting
1139    // the UseMI operands removes them from the SrcReg use-def chain, but when
1140    // SrcReg is DstReg we could encounter UseMI twice if it has multiple
1141    // operands mentioning the virtual register.
1142    if (SrcReg == DstReg && !Visited.insert(UseMI).second)
1143      continue;
1144
1145    SmallVector<unsigned,8> Ops;
1146    bool Reads, Writes;
1147    std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
1148
1149    // If SrcReg wasn't read, it may still be the case that DstReg is live-in
1150    // because SrcReg is a sub-register.
1151    if (DstInt && !Reads && SubIdx)
1152      Reads = DstInt->liveAt(LIS->getInstructionIndex(UseMI));
1153
1154    // Replace SrcReg with DstReg in all UseMI operands.
1155    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1156      MachineOperand &MO = UseMI->getOperand(Ops[i]);
1157
1158      // Adjust <undef> flags in case of sub-register joins. We don't want to
1159      // turn a full def into a read-modify-write sub-register def and vice
1160      // versa.
1161      if (SubIdx && MO.isDef())
1162        MO.setIsUndef(!Reads);
1163
1164      // A subreg use of a partially undef (super) register may be a complete
1165      // undef use now and then has to be marked that way.
1166      if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) {
1167        if (!DstInt->hasSubRanges()) {
1168          BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
1169          unsigned Mask = MRI->getMaxLaneMaskForVReg(DstInt->reg);
1170          DstInt->createSubRangeFrom(Allocator, Mask, *DstInt);
1171        }
1172        unsigned Mask = TRI->getSubRegIndexLaneMask(SubIdx);
1173        bool IsUndef = true;
1174        SlotIndex MIIdx = UseMI->isDebugValue()
1175          ? LIS->getSlotIndexes()->getIndexBefore(UseMI)
1176          : LIS->getInstructionIndex(UseMI);
1177        SlotIndex UseIdx = MIIdx.getRegSlot(true);
1178        for (LiveInterval::SubRange &S : DstInt->subranges()) {
1179          if ((S.LaneMask & Mask) == 0)
1180            continue;
1181          if (S.liveAt(UseIdx)) {
1182            IsUndef = false;
1183            break;
1184          }
1185        }
1186        if (IsUndef) {
1187          MO.setIsUndef(true);
1188          // We found out some subregister use is actually reading an undefined
1189          // value. In some cases the whole vreg has become undefined at this
1190          // point so we have to potentially shrink the main range if the
1191          // use was ending a live segment there.
1192          LiveQueryResult Q = DstInt->Query(MIIdx);
1193          if (Q.valueOut() == nullptr)
1194            ShrinkMainRange = true;
1195        }
1196      }
1197
1198      if (DstIsPhys)
1199        MO.substPhysReg(DstReg, *TRI);
1200      else
1201        MO.substVirtReg(DstReg, SubIdx, *TRI);
1202    }
1203
1204    DEBUG({
1205        dbgs() << "\t\tupdated: ";
1206        if (!UseMI->isDebugValue())
1207          dbgs() << LIS->getInstructionIndex(UseMI) << "\t";
1208        dbgs() << *UseMI;
1209      });
1210  }
1211}
1212
1213bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
1214  // Always join simple intervals that are defined by a single copy from a
1215  // reserved register. This doesn't increase register pressure, so it is
1216  // always beneficial.
1217  if (!MRI->isReserved(CP.getDstReg())) {
1218    DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
1219    return false;
1220  }
1221
1222  LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
1223  if (JoinVInt.containsOneValue())
1224    return true;
1225
1226  DEBUG(dbgs() << "\tCannot join complex intervals into reserved register.\n");
1227  return false;
1228}
1229
1230bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
1231
1232  Again = false;
1233  DEBUG(dbgs() << LIS->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
1234
1235  CoalescerPair CP(*TRI);
1236  if (!CP.setRegisters(CopyMI)) {
1237    DEBUG(dbgs() << "\tNot coalescable.\n");
1238    return false;
1239  }
1240
1241  if (CP.getNewRC()) {
1242    auto SrcRC = MRI->getRegClass(CP.getSrcReg());
1243    auto DstRC = MRI->getRegClass(CP.getDstReg());
1244    unsigned SrcIdx = CP.getSrcIdx();
1245    unsigned DstIdx = CP.getDstIdx();
1246    if (CP.isFlipped()) {
1247      std::swap(SrcIdx, DstIdx);
1248      std::swap(SrcRC, DstRC);
1249    }
1250    if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx,
1251                            CP.getNewRC())) {
1252      DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
1253      return false;
1254    }
1255  }
1256
1257  // Dead code elimination. This really should be handled by MachineDCE, but
1258  // sometimes dead copies slip through, and we can't generate invalid live
1259  // ranges.
1260  if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
1261    DEBUG(dbgs() << "\tCopy is dead.\n");
1262    DeadDefs.push_back(CopyMI);
1263    eliminateDeadDefs();
1264    return true;
1265  }
1266
1267  // Eliminate undefs.
1268  if (!CP.isPhys() && eliminateUndefCopy(CopyMI)) {
1269    LIS->RemoveMachineInstrFromMaps(CopyMI);
1270    CopyMI->eraseFromParent();
1271    return false;  // Not coalescable.
1272  }
1273
1274  // Coalesced copies are normally removed immediately, but transformations
1275  // like removeCopyByCommutingDef() can inadvertently create identity copies.
1276  // When that happens, just join the values and remove the copy.
1277  if (CP.getSrcReg() == CP.getDstReg()) {
1278    LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
1279    DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
1280    const SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI);
1281    LiveQueryResult LRQ = LI.Query(CopyIdx);
1282    if (VNInfo *DefVNI = LRQ.valueDefined()) {
1283      VNInfo *ReadVNI = LRQ.valueIn();
1284      assert(ReadVNI && "No value before copy and no <undef> flag.");
1285      assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
1286      LI.MergeValueNumberInto(DefVNI, ReadVNI);
1287
1288      // Process subregister liveranges.
1289      for (LiveInterval::SubRange &S : LI.subranges()) {
1290        LiveQueryResult SLRQ = S.Query(CopyIdx);
1291        if (VNInfo *SDefVNI = SLRQ.valueDefined()) {
1292          VNInfo *SReadVNI = SLRQ.valueIn();
1293          S.MergeValueNumberInto(SDefVNI, SReadVNI);
1294        }
1295      }
1296      DEBUG(dbgs() << "\tMerged values:          " << LI << '\n');
1297    }
1298    LIS->RemoveMachineInstrFromMaps(CopyMI);
1299    CopyMI->eraseFromParent();
1300    return true;
1301  }
1302
1303  // Enforce policies.
1304  if (CP.isPhys()) {
1305    DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI)
1306                 << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx())
1307                 << '\n');
1308    if (!canJoinPhys(CP)) {
1309      // Before giving up coalescing, if definition of source is defined by
1310      // trivial computation, try rematerializing it.
1311      bool IsDefCopy;
1312      if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1313        return true;
1314      if (IsDefCopy)
1315        Again = true;  // May be possible to coalesce later.
1316      return false;
1317    }
1318  } else {
1319    // When possible, let DstReg be the larger interval.
1320    if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
1321                           LIS->getInterval(CP.getDstReg()).size())
1322      CP.flip();
1323
1324    DEBUG({
1325      dbgs() << "\tConsidering merging to "
1326             << TRI->getRegClassName(CP.getNewRC()) << " with ";
1327      if (CP.getDstIdx() && CP.getSrcIdx())
1328        dbgs() << PrintReg(CP.getDstReg()) << " in "
1329               << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
1330               << PrintReg(CP.getSrcReg()) << " in "
1331               << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
1332      else
1333        dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in "
1334               << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
1335    });
1336  }
1337
1338  ShrinkMask = 0;
1339  ShrinkMainRange = false;
1340
1341  // Okay, attempt to join these two intervals.  On failure, this returns false.
1342  // Otherwise, if one of the intervals being joined is a physreg, this method
1343  // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
1344  // been modified, so we can use this information below to update aliases.
1345  if (!joinIntervals(CP)) {
1346    // Coalescing failed.
1347
1348    // If definition of source is defined by trivial computation, try
1349    // rematerializing it.
1350    bool IsDefCopy;
1351    if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1352      return true;
1353
1354    // If we can eliminate the copy without merging the live segments, do so
1355    // now.
1356    if (!CP.isPartial() && !CP.isPhys()) {
1357      if (adjustCopiesBackFrom(CP, CopyMI) ||
1358          removeCopyByCommutingDef(CP, CopyMI)) {
1359        LIS->RemoveMachineInstrFromMaps(CopyMI);
1360        CopyMI->eraseFromParent();
1361        DEBUG(dbgs() << "\tTrivial!\n");
1362        return true;
1363      }
1364    }
1365
1366    // Otherwise, we are unable to join the intervals.
1367    DEBUG(dbgs() << "\tInterference!\n");
1368    Again = true;  // May be possible to coalesce later.
1369    return false;
1370  }
1371
1372  // Coalescing to a virtual register that is of a sub-register class of the
1373  // other. Make sure the resulting register is set to the right register class.
1374  if (CP.isCrossClass()) {
1375    ++numCrossRCs;
1376    MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
1377  }
1378
1379  // Removing sub-register copies can ease the register class constraints.
1380  // Make sure we attempt to inflate the register class of DstReg.
1381  if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
1382    InflateRegs.push_back(CP.getDstReg());
1383
1384  // CopyMI has been erased by joinIntervals at this point. Remove it from
1385  // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
1386  // to the work list. This keeps ErasedInstrs from growing needlessly.
1387  ErasedInstrs.erase(CopyMI);
1388
1389  // Rewrite all SrcReg operands to DstReg.
1390  // Also update DstReg operands to include DstIdx if it is set.
1391  if (CP.getDstIdx())
1392    updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
1393  updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
1394
1395  // Shrink subregister ranges if necessary.
1396  if (ShrinkMask != 0) {
1397    LiveInterval &LI = LIS->getInterval(CP.getDstReg());
1398    for (LiveInterval::SubRange &S : LI.subranges()) {
1399      if ((S.LaneMask & ShrinkMask) == 0)
1400        continue;
1401      DEBUG(dbgs() << "Shrink LaneUses (Lane "
1402                   << format("%04X", S.LaneMask) << ")\n");
1403      LIS->shrinkToUses(S, LI.reg);
1404    }
1405  }
1406  if (ShrinkMainRange) {
1407    LiveInterval &LI = LIS->getInterval(CP.getDstReg());
1408    LIS->shrinkToUses(&LI);
1409  }
1410
1411  // SrcReg is guaranteed to be the register whose live interval that is
1412  // being merged.
1413  LIS->removeInterval(CP.getSrcReg());
1414
1415  // Update regalloc hint.
1416  TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
1417
1418  DEBUG({
1419    dbgs() << "\tSuccess: " << PrintReg(CP.getSrcReg(), TRI, CP.getSrcIdx())
1420           << " -> " << PrintReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
1421    dbgs() << "\tResult = ";
1422    if (CP.isPhys())
1423      dbgs() << PrintReg(CP.getDstReg(), TRI);
1424    else
1425      dbgs() << LIS->getInterval(CP.getDstReg());
1426    dbgs() << '\n';
1427  });
1428
1429  ++numJoins;
1430  return true;
1431}
1432
1433bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
1434  unsigned DstReg = CP.getDstReg();
1435  assert(CP.isPhys() && "Must be a physreg copy");
1436  assert(MRI->isReserved(DstReg) && "Not a reserved register");
1437  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
1438  DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
1439
1440  assert(RHS.containsOneValue() && "Invalid join with reserved register");
1441
1442  // Optimization for reserved registers like ESP. We can only merge with a
1443  // reserved physreg if RHS has a single value that is a copy of DstReg.
1444  // The live range of the reserved register will look like a set of dead defs
1445  // - we don't properly track the live range of reserved registers.
1446
1447  // Deny any overlapping intervals.  This depends on all the reserved
1448  // register live ranges to look like dead defs.
1449  for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI)
1450    if (RHS.overlaps(LIS->getRegUnit(*UI))) {
1451      DEBUG(dbgs() << "\t\tInterference: " << PrintRegUnit(*UI, TRI) << '\n');
1452      return false;
1453    }
1454
1455  // Skip any value computations, we are not adding new values to the
1456  // reserved register.  Also skip merging the live ranges, the reserved
1457  // register live range doesn't need to be accurate as long as all the
1458  // defs are there.
1459
1460  // Delete the identity copy.
1461  MachineInstr *CopyMI;
1462  if (CP.isFlipped()) {
1463    CopyMI = MRI->getVRegDef(RHS.reg);
1464  } else {
1465    if (!MRI->hasOneNonDBGUse(RHS.reg)) {
1466      DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
1467      return false;
1468    }
1469
1470    MachineInstr *DestMI = MRI->getVRegDef(RHS.reg);
1471    CopyMI = &*MRI->use_instr_nodbg_begin(RHS.reg);
1472    const SlotIndex CopyRegIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
1473    const SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot();
1474
1475    // We checked above that there are no interfering defs of the physical
1476    // register. However, for this case, where we intent to move up the def of
1477    // the physical register, we also need to check for interfering uses.
1478    SlotIndexes *Indexes = LIS->getSlotIndexes();
1479    for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx);
1480         SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) {
1481      MachineInstr *MI = LIS->getInstructionFromIndex(SI);
1482      if (MI->readsRegister(DstReg, TRI)) {
1483        DEBUG(dbgs() << "\t\tInterference (read): " << *MI);
1484        return false;
1485      }
1486    }
1487
1488    // We're going to remove the copy which defines a physical reserved
1489    // register, so remove its valno, etc.
1490    DEBUG(dbgs() << "\t\tRemoving phys reg def of " << DstReg << " at "
1491          << CopyRegIdx << "\n");
1492
1493    LIS->removePhysRegDefAt(DstReg, CopyRegIdx);
1494    // Create a new dead def at the new def location.
1495    for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
1496      LiveRange &LR = LIS->getRegUnit(*UI);
1497      LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator());
1498    }
1499  }
1500
1501  LIS->RemoveMachineInstrFromMaps(CopyMI);
1502  CopyMI->eraseFromParent();
1503
1504  // We don't track kills for reserved registers.
1505  MRI->clearKillFlags(CP.getSrcReg());
1506
1507  return true;
1508}
1509
1510//===----------------------------------------------------------------------===//
1511//                 Interference checking and interval joining
1512//===----------------------------------------------------------------------===//
1513//
1514// In the easiest case, the two live ranges being joined are disjoint, and
1515// there is no interference to consider. It is quite common, though, to have
1516// overlapping live ranges, and we need to check if the interference can be
1517// resolved.
1518//
1519// The live range of a single SSA value forms a sub-tree of the dominator tree.
1520// This means that two SSA values overlap if and only if the def of one value
1521// is contained in the live range of the other value. As a special case, the
1522// overlapping values can be defined at the same index.
1523//
1524// The interference from an overlapping def can be resolved in these cases:
1525//
1526// 1. Coalescable copies. The value is defined by a copy that would become an
1527//    identity copy after joining SrcReg and DstReg. The copy instruction will
1528//    be removed, and the value will be merged with the source value.
1529//
1530//    There can be several copies back and forth, causing many values to be
1531//    merged into one. We compute a list of ultimate values in the joined live
1532//    range as well as a mappings from the old value numbers.
1533//
1534// 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
1535//    predecessors have a live out value. It doesn't cause real interference,
1536//    and can be merged into the value it overlaps. Like a coalescable copy, it
1537//    can be erased after joining.
1538//
1539// 3. Copy of external value. The overlapping def may be a copy of a value that
1540//    is already in the other register. This is like a coalescable copy, but
1541//    the live range of the source register must be trimmed after erasing the
1542//    copy instruction:
1543//
1544//      %src = COPY %ext
1545//      %dst = COPY %ext  <-- Remove this COPY, trim the live range of %ext.
1546//
1547// 4. Clobbering undefined lanes. Vector registers are sometimes built by
1548//    defining one lane at a time:
1549//
1550//      %dst:ssub0<def,read-undef> = FOO
1551//      %src = BAR
1552//      %dst:ssub1<def> = COPY %src
1553//
1554//    The live range of %src overlaps the %dst value defined by FOO, but
1555//    merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
1556//    which was undef anyway.
1557//
1558//    The value mapping is more complicated in this case. The final live range
1559//    will have different value numbers for both FOO and BAR, but there is no
1560//    simple mapping from old to new values. It may even be necessary to add
1561//    new PHI values.
1562//
1563// 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
1564//    is live, but never read. This can happen because we don't compute
1565//    individual live ranges per lane.
1566//
1567//      %dst<def> = FOO
1568//      %src = BAR
1569//      %dst:ssub1<def> = COPY %src
1570//
1571//    This kind of interference is only resolved locally. If the clobbered
1572//    lane value escapes the block, the join is aborted.
1573
1574namespace {
1575/// Track information about values in a single virtual register about to be
1576/// joined. Objects of this class are always created in pairs - one for each
1577/// side of the CoalescerPair (or one for each lane of a side of the coalescer
1578/// pair)
1579class JoinVals {
1580  /// Live range we work on.
1581  LiveRange &LR;
1582  /// (Main) register we work on.
1583  const unsigned Reg;
1584
1585  /// Reg (and therefore the values in this liverange) will end up as
1586  /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
1587  /// CP.SrcIdx.
1588  const unsigned SubIdx;
1589  /// The LaneMask that this liverange will occupy the coalesced register. May
1590  /// be smaller than the lanemask produced by SubIdx when merging subranges.
1591  const unsigned LaneMask;
1592
1593  /// This is true when joining sub register ranges, false when joining main
1594  /// ranges.
1595  const bool SubRangeJoin;
1596  /// Whether the current LiveInterval tracks subregister liveness.
1597  const bool TrackSubRegLiveness;
1598
1599  /// Values that will be present in the final live range.
1600  SmallVectorImpl<VNInfo*> &NewVNInfo;
1601
1602  const CoalescerPair &CP;
1603  LiveIntervals *LIS;
1604  SlotIndexes *Indexes;
1605  const TargetRegisterInfo *TRI;
1606
1607  /// Value number assignments. Maps value numbers in LI to entries in
1608  /// NewVNInfo. This is suitable for passing to LiveInterval::join().
1609  SmallVector<int, 8> Assignments;
1610
1611  /// Conflict resolution for overlapping values.
1612  enum ConflictResolution {
1613    /// No overlap, simply keep this value.
1614    CR_Keep,
1615
1616    /// Merge this value into OtherVNI and erase the defining instruction.
1617    /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
1618    /// values.
1619    CR_Erase,
1620
1621    /// Merge this value into OtherVNI but keep the defining instruction.
1622    /// This is for the special case where OtherVNI is defined by the same
1623    /// instruction.
1624    CR_Merge,
1625
1626    /// Keep this value, and have it replace OtherVNI where possible. This
1627    /// complicates value mapping since OtherVNI maps to two different values
1628    /// before and after this def.
1629    /// Used when clobbering undefined or dead lanes.
1630    CR_Replace,
1631
1632    /// Unresolved conflict. Visit later when all values have been mapped.
1633    CR_Unresolved,
1634
1635    /// Unresolvable conflict. Abort the join.
1636    CR_Impossible
1637  };
1638
1639  /// Per-value info for LI. The lane bit masks are all relative to the final
1640  /// joined register, so they can be compared directly between SrcReg and
1641  /// DstReg.
1642  struct Val {
1643    ConflictResolution Resolution;
1644
1645    /// Lanes written by this def, 0 for unanalyzed values.
1646    unsigned WriteLanes;
1647
1648    /// Lanes with defined values in this register. Other lanes are undef and
1649    /// safe to clobber.
1650    unsigned ValidLanes;
1651
1652    /// Value in LI being redefined by this def.
1653    VNInfo *RedefVNI;
1654
1655    /// Value in the other live range that overlaps this def, if any.
1656    VNInfo *OtherVNI;
1657
1658    /// Is this value an IMPLICIT_DEF that can be erased?
1659    ///
1660    /// IMPLICIT_DEF values should only exist at the end of a basic block that
1661    /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
1662    /// safely erased if they are overlapping a live value in the other live
1663    /// interval.
1664    ///
1665    /// Weird control flow graphs and incomplete PHI handling in
1666    /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
1667    /// longer live ranges. Such IMPLICIT_DEF values should be treated like
1668    /// normal values.
1669    bool ErasableImplicitDef;
1670
1671    /// True when the live range of this value will be pruned because of an
1672    /// overlapping CR_Replace value in the other live range.
1673    bool Pruned;
1674
1675    /// True once Pruned above has been computed.
1676    bool PrunedComputed;
1677
1678    Val() : Resolution(CR_Keep), WriteLanes(0), ValidLanes(0),
1679            RedefVNI(nullptr), OtherVNI(nullptr), ErasableImplicitDef(false),
1680            Pruned(false), PrunedComputed(false) {}
1681
1682    bool isAnalyzed() const { return WriteLanes != 0; }
1683  };
1684
1685  /// One entry per value number in LI.
1686  SmallVector<Val, 8> Vals;
1687
1688  /// Compute the bitmask of lanes actually written by DefMI.
1689  /// Set Redef if there are any partial register definitions that depend on the
1690  /// previous value of the register.
1691  unsigned computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const;
1692
1693  /// Find the ultimate value that VNI was copied from.
1694  std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const;
1695
1696  bool valuesIdentical(VNInfo *Val0, VNInfo *Val1, const JoinVals &Other) const;
1697
1698  /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
1699  /// Return a conflict resolution when possible, but leave the hard cases as
1700  /// CR_Unresolved.
1701  /// Recursively calls computeAssignment() on this and Other, guaranteeing that
1702  /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
1703  /// The recursion always goes upwards in the dominator tree, making loops
1704  /// impossible.
1705  ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
1706
1707  /// Compute the value assignment for ValNo in RI.
1708  /// This may be called recursively by analyzeValue(), but never for a ValNo on
1709  /// the stack.
1710  void computeAssignment(unsigned ValNo, JoinVals &Other);
1711
1712  /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
1713  /// the extent of the tainted lanes in the block.
1714  ///
1715  /// Multiple values in Other.LR can be affected since partial redefinitions
1716  /// can preserve previously tainted lanes.
1717  ///
1718  ///   1 %dst = VLOAD           <-- Define all lanes in %dst
1719  ///   2 %src = FOO             <-- ValNo to be joined with %dst:ssub0
1720  ///   3 %dst:ssub1 = BAR       <-- Partial redef doesn't clear taint in ssub0
1721  ///   4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
1722  ///
1723  /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
1724  /// entry to TaintedVals.
1725  ///
1726  /// Returns false if the tainted lanes extend beyond the basic block.
1727  bool taintExtent(unsigned, unsigned, JoinVals&,
1728                   SmallVectorImpl<std::pair<SlotIndex, unsigned> >&);
1729
1730  /// Return true if MI uses any of the given Lanes from Reg.
1731  /// This does not include partial redefinitions of Reg.
1732  bool usesLanes(const MachineInstr *MI, unsigned, unsigned, unsigned) const;
1733
1734  /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
1735  /// be pruned:
1736  ///
1737  ///   %dst = COPY %src
1738  ///   %src = COPY %dst  <-- This value to be pruned.
1739  ///   %dst = COPY %src  <-- This value is a copy of a pruned value.
1740  bool isPrunedValue(unsigned ValNo, JoinVals &Other);
1741
1742public:
1743  JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, unsigned LaneMask,
1744           SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp,
1745           LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin,
1746           bool TrackSubRegLiveness)
1747    : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask),
1748      SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
1749      NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
1750      TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums())
1751  {}
1752
1753  /// Analyze defs in LR and compute a value mapping in NewVNInfo.
1754  /// Returns false if any conflicts were impossible to resolve.
1755  bool mapValues(JoinVals &Other);
1756
1757  /// Try to resolve conflicts that require all values to be mapped.
1758  /// Returns false if any conflicts were impossible to resolve.
1759  bool resolveConflicts(JoinVals &Other);
1760
1761  /// Prune the live range of values in Other.LR where they would conflict with
1762  /// CR_Replace values in LR. Collect end points for restoring the live range
1763  /// after joining.
1764  void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints,
1765                   bool changeInstrs);
1766
1767  /// Removes subranges starting at copies that get removed. This sometimes
1768  /// happens when undefined subranges are copied around. These ranges contain
1769  /// no usefull information and can be removed.
1770  void pruneSubRegValues(LiveInterval &LI, unsigned &ShrinkMask);
1771
1772  /// Erase any machine instructions that have been coalesced away.
1773  /// Add erased instructions to ErasedInstrs.
1774  /// Add foreign virtual registers to ShrinkRegs if their live range ended at
1775  /// the erased instrs.
1776  void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
1777                   SmallVectorImpl<unsigned> &ShrinkRegs);
1778
1779  /// Remove liverange defs at places where implicit defs will be removed.
1780  void removeImplicitDefs();
1781
1782  /// Get the value assignments suitable for passing to LiveInterval::join.
1783  const int *getAssignments() const { return Assignments.data(); }
1784};
1785} // end anonymous namespace
1786
1787unsigned JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef)
1788  const {
1789  unsigned L = 0;
1790  for (ConstMIOperands MO(DefMI); MO.isValid(); ++MO) {
1791    if (!MO->isReg() || MO->getReg() != Reg || !MO->isDef())
1792      continue;
1793    L |= TRI->getSubRegIndexLaneMask(
1794           TRI->composeSubRegIndices(SubIdx, MO->getSubReg()));
1795    if (MO->readsReg())
1796      Redef = true;
1797  }
1798  return L;
1799}
1800
1801std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain(
1802    const VNInfo *VNI) const {
1803  unsigned Reg = this->Reg;
1804
1805  while (!VNI->isPHIDef()) {
1806    SlotIndex Def = VNI->def;
1807    MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
1808    assert(MI && "No defining instruction");
1809    if (!MI->isFullCopy())
1810      return std::make_pair(VNI, Reg);
1811    unsigned SrcReg = MI->getOperand(1).getReg();
1812    if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
1813      return std::make_pair(VNI, Reg);
1814
1815    const LiveInterval &LI = LIS->getInterval(SrcReg);
1816    const VNInfo *ValueIn;
1817    // No subrange involved.
1818    if (!SubRangeJoin || !LI.hasSubRanges()) {
1819      LiveQueryResult LRQ = LI.Query(Def);
1820      ValueIn = LRQ.valueIn();
1821    } else {
1822      // Query subranges. Pick the first matching one.
1823      ValueIn = nullptr;
1824      for (const LiveInterval::SubRange &S : LI.subranges()) {
1825        // Transform lanemask to a mask in the joined live interval.
1826        unsigned SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask);
1827        if ((SMask & LaneMask) == 0)
1828          continue;
1829        LiveQueryResult LRQ = S.Query(Def);
1830        ValueIn = LRQ.valueIn();
1831        break;
1832      }
1833    }
1834    if (ValueIn == nullptr)
1835      break;
1836    VNI = ValueIn;
1837    Reg = SrcReg;
1838  }
1839  return std::make_pair(VNI, Reg);
1840}
1841
1842bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1,
1843                               const JoinVals &Other) const {
1844  const VNInfo *Orig0;
1845  unsigned Reg0;
1846  std::tie(Orig0, Reg0) = followCopyChain(Value0);
1847  if (Orig0 == Value1)
1848    return true;
1849
1850  const VNInfo *Orig1;
1851  unsigned Reg1;
1852  std::tie(Orig1, Reg1) = Other.followCopyChain(Value1);
1853
1854  // The values are equal if they are defined at the same place and use the
1855  // same register. Note that we cannot compare VNInfos directly as some of
1856  // them might be from a copy created in mergeSubRangeInto()  while the other
1857  // is from the original LiveInterval.
1858  return Orig0->def == Orig1->def && Reg0 == Reg1;
1859}
1860
1861JoinVals::ConflictResolution
1862JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
1863  Val &V = Vals[ValNo];
1864  assert(!V.isAnalyzed() && "Value has already been analyzed!");
1865  VNInfo *VNI = LR.getValNumInfo(ValNo);
1866  if (VNI->isUnused()) {
1867    V.WriteLanes = ~0u;
1868    return CR_Keep;
1869  }
1870
1871  // Get the instruction defining this value, compute the lanes written.
1872  const MachineInstr *DefMI = nullptr;
1873  if (VNI->isPHIDef()) {
1874    // Conservatively assume that all lanes in a PHI are valid.
1875    unsigned Lanes = SubRangeJoin ? 1 : TRI->getSubRegIndexLaneMask(SubIdx);
1876    V.ValidLanes = V.WriteLanes = Lanes;
1877  } else {
1878    DefMI = Indexes->getInstructionFromIndex(VNI->def);
1879    assert(DefMI != nullptr);
1880    if (SubRangeJoin) {
1881      // We don't care about the lanes when joining subregister ranges.
1882      V.WriteLanes = V.ValidLanes = 1;
1883      if (DefMI->isImplicitDef()) {
1884        V.ValidLanes = 0;
1885        V.ErasableImplicitDef = true;
1886      }
1887    } else {
1888      bool Redef = false;
1889      V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
1890
1891      // If this is a read-modify-write instruction, there may be more valid
1892      // lanes than the ones written by this instruction.
1893      // This only covers partial redef operands. DefMI may have normal use
1894      // operands reading the register. They don't contribute valid lanes.
1895      //
1896      // This adds ssub1 to the set of valid lanes in %src:
1897      //
1898      //   %src:ssub1<def> = FOO
1899      //
1900      // This leaves only ssub1 valid, making any other lanes undef:
1901      //
1902      //   %src:ssub1<def,read-undef> = FOO %src:ssub2
1903      //
1904      // The <read-undef> flag on the def operand means that old lane values are
1905      // not important.
1906      if (Redef) {
1907        V.RedefVNI = LR.Query(VNI->def).valueIn();
1908        assert((TrackSubRegLiveness || V.RedefVNI) &&
1909               "Instruction is reading nonexistent value");
1910        if (V.RedefVNI != nullptr) {
1911          computeAssignment(V.RedefVNI->id, Other);
1912          V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
1913        }
1914      }
1915
1916      // An IMPLICIT_DEF writes undef values.
1917      if (DefMI->isImplicitDef()) {
1918        // We normally expect IMPLICIT_DEF values to be live only until the end
1919        // of their block. If the value is really live longer and gets pruned in
1920        // another block, this flag is cleared again.
1921        V.ErasableImplicitDef = true;
1922        V.ValidLanes &= ~V.WriteLanes;
1923      }
1924    }
1925  }
1926
1927  // Find the value in Other that overlaps VNI->def, if any.
1928  LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def);
1929
1930  // It is possible that both values are defined by the same instruction, or
1931  // the values are PHIs defined in the same block. When that happens, the two
1932  // values should be merged into one, but not into any preceding value.
1933  // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
1934  if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
1935    assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
1936
1937    // One value stays, the other is merged. Keep the earlier one, or the first
1938    // one we see.
1939    if (OtherVNI->def < VNI->def)
1940      Other.computeAssignment(OtherVNI->id, *this);
1941    else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
1942      // This is an early-clobber def overlapping a live-in value in the other
1943      // register. Not mergeable.
1944      V.OtherVNI = OtherLRQ.valueIn();
1945      return CR_Impossible;
1946    }
1947    V.OtherVNI = OtherVNI;
1948    Val &OtherV = Other.Vals[OtherVNI->id];
1949    // Keep this value, check for conflicts when analyzing OtherVNI.
1950    if (!OtherV.isAnalyzed())
1951      return CR_Keep;
1952    // Both sides have been analyzed now.
1953    // Allow overlapping PHI values. Any real interference would show up in a
1954    // predecessor, the PHI itself can't introduce any conflicts.
1955    if (VNI->isPHIDef())
1956      return CR_Merge;
1957    if (V.ValidLanes & OtherV.ValidLanes)
1958      // Overlapping lanes can't be resolved.
1959      return CR_Impossible;
1960    else
1961      return CR_Merge;
1962  }
1963
1964  // No simultaneous def. Is Other live at the def?
1965  V.OtherVNI = OtherLRQ.valueIn();
1966  if (!V.OtherVNI)
1967    // No overlap, no conflict.
1968    return CR_Keep;
1969
1970  assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
1971
1972  // We have overlapping values, or possibly a kill of Other.
1973  // Recursively compute assignments up the dominator tree.
1974  Other.computeAssignment(V.OtherVNI->id, *this);
1975  Val &OtherV = Other.Vals[V.OtherVNI->id];
1976
1977  // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
1978  // This shouldn't normally happen, but ProcessImplicitDefs can leave such
1979  // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
1980  // technically.
1981  //
1982  // WHen it happens, treat that IMPLICIT_DEF as a normal value, and don't try
1983  // to erase the IMPLICIT_DEF instruction.
1984  if (OtherV.ErasableImplicitDef && DefMI &&
1985      DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
1986    DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
1987                 << " extends into BB#" << DefMI->getParent()->getNumber()
1988                 << ", keeping it.\n");
1989    OtherV.ErasableImplicitDef = false;
1990  }
1991
1992  // Allow overlapping PHI values. Any real interference would show up in a
1993  // predecessor, the PHI itself can't introduce any conflicts.
1994  if (VNI->isPHIDef())
1995    return CR_Replace;
1996
1997  // Check for simple erasable conflicts.
1998  if (DefMI->isImplicitDef()) {
1999    // We need the def for the subregister if there is nothing else live at the
2000    // subrange at this point.
2001    if (TrackSubRegLiveness
2002        && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)) == 0)
2003      return CR_Replace;
2004    return CR_Erase;
2005  }
2006
2007  // Include the non-conflict where DefMI is a coalescable copy that kills
2008  // OtherVNI. We still want the copy erased and value numbers merged.
2009  if (CP.isCoalescable(DefMI)) {
2010    // Some of the lanes copied from OtherVNI may be undef, making them undef
2011    // here too.
2012    V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
2013    return CR_Erase;
2014  }
2015
2016  // This may not be a real conflict if DefMI simply kills Other and defines
2017  // VNI.
2018  if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
2019    return CR_Keep;
2020
2021  // Handle the case where VNI and OtherVNI can be proven to be identical:
2022  //
2023  //   %other = COPY %ext
2024  //   %this  = COPY %ext <-- Erase this copy
2025  //
2026  if (DefMI->isFullCopy() && !CP.isPartial()
2027      && valuesIdentical(VNI, V.OtherVNI, Other))
2028    return CR_Erase;
2029
2030  // If the lanes written by this instruction were all undef in OtherVNI, it is
2031  // still safe to join the live ranges. This can't be done with a simple value
2032  // mapping, though - OtherVNI will map to multiple values:
2033  //
2034  //   1 %dst:ssub0 = FOO                <-- OtherVNI
2035  //   2 %src = BAR                      <-- VNI
2036  //   3 %dst:ssub1 = COPY %src<kill>    <-- Eliminate this copy.
2037  //   4 BAZ %dst<kill>
2038  //   5 QUUX %src<kill>
2039  //
2040  // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
2041  // handles this complex value mapping.
2042  if ((V.WriteLanes & OtherV.ValidLanes) == 0)
2043    return CR_Replace;
2044
2045  // If the other live range is killed by DefMI and the live ranges are still
2046  // overlapping, it must be because we're looking at an early clobber def:
2047  //
2048  //   %dst<def,early-clobber> = ASM %src<kill>
2049  //
2050  // In this case, it is illegal to merge the two live ranges since the early
2051  // clobber def would clobber %src before it was read.
2052  if (OtherLRQ.isKill()) {
2053    // This case where the def doesn't overlap the kill is handled above.
2054    assert(VNI->def.isEarlyClobber() &&
2055           "Only early clobber defs can overlap a kill");
2056    return CR_Impossible;
2057  }
2058
2059  // VNI is clobbering live lanes in OtherVNI, but there is still the
2060  // possibility that no instructions actually read the clobbered lanes.
2061  // If we're clobbering all the lanes in OtherVNI, at least one must be read.
2062  // Otherwise Other.RI wouldn't be live here.
2063  if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes) == 0)
2064    return CR_Impossible;
2065
2066  // We need to verify that no instructions are reading the clobbered lanes. To
2067  // save compile time, we'll only check that locally. Don't allow the tainted
2068  // value to escape the basic block.
2069  MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2070  if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
2071    return CR_Impossible;
2072
2073  // There are still some things that could go wrong besides clobbered lanes
2074  // being read, for example OtherVNI may be only partially redefined in MBB,
2075  // and some clobbered lanes could escape the block. Save this analysis for
2076  // resolveConflicts() when all values have been mapped. We need to know
2077  // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
2078  // that now - the recursive analyzeValue() calls must go upwards in the
2079  // dominator tree.
2080  return CR_Unresolved;
2081}
2082
2083void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
2084  Val &V = Vals[ValNo];
2085  if (V.isAnalyzed()) {
2086    // Recursion should always move up the dominator tree, so ValNo is not
2087    // supposed to reappear before it has been assigned.
2088    assert(Assignments[ValNo] != -1 && "Bad recursion?");
2089    return;
2090  }
2091  switch ((V.Resolution = analyzeValue(ValNo, Other))) {
2092  case CR_Erase:
2093  case CR_Merge:
2094    // Merge this ValNo into OtherVNI.
2095    assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
2096    assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
2097    Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
2098    DEBUG(dbgs() << "\t\tmerge " << PrintReg(Reg) << ':' << ValNo << '@'
2099                 << LR.getValNumInfo(ValNo)->def << " into "
2100                 << PrintReg(Other.Reg) << ':' << V.OtherVNI->id << '@'
2101                 << V.OtherVNI->def << " --> @"
2102                 << NewVNInfo[Assignments[ValNo]]->def << '\n');
2103    break;
2104  case CR_Replace:
2105  case CR_Unresolved: {
2106    // The other value is going to be pruned if this join is successful.
2107    assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
2108    Val &OtherV = Other.Vals[V.OtherVNI->id];
2109    // We cannot erase an IMPLICIT_DEF if we don't have valid values for all
2110    // its lanes.
2111    if ((OtherV.WriteLanes & ~V.ValidLanes) != 0 && TrackSubRegLiveness)
2112      OtherV.ErasableImplicitDef = false;
2113    OtherV.Pruned = true;
2114  }
2115    // Fall through.
2116  default:
2117    // This value number needs to go in the final joined live range.
2118    Assignments[ValNo] = NewVNInfo.size();
2119    NewVNInfo.push_back(LR.getValNumInfo(ValNo));
2120    break;
2121  }
2122}
2123
2124bool JoinVals::mapValues(JoinVals &Other) {
2125  for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2126    computeAssignment(i, Other);
2127    if (Vals[i].Resolution == CR_Impossible) {
2128      DEBUG(dbgs() << "\t\tinterference at " << PrintReg(Reg) << ':' << i
2129                   << '@' << LR.getValNumInfo(i)->def << '\n');
2130      return false;
2131    }
2132  }
2133  return true;
2134}
2135
2136bool JoinVals::
2137taintExtent(unsigned ValNo, unsigned TaintedLanes, JoinVals &Other,
2138            SmallVectorImpl<std::pair<SlotIndex, unsigned> > &TaintExtent) {
2139  VNInfo *VNI = LR.getValNumInfo(ValNo);
2140  MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2141  SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
2142
2143  // Scan Other.LR from VNI.def to MBBEnd.
2144  LiveInterval::iterator OtherI = Other.LR.find(VNI->def);
2145  assert(OtherI != Other.LR.end() && "No conflict?");
2146  do {
2147    // OtherI is pointing to a tainted value. Abort the join if the tainted
2148    // lanes escape the block.
2149    SlotIndex End = OtherI->end;
2150    if (End >= MBBEnd) {
2151      DEBUG(dbgs() << "\t\ttaints global " << PrintReg(Other.Reg) << ':'
2152                   << OtherI->valno->id << '@' << OtherI->start << '\n');
2153      return false;
2154    }
2155    DEBUG(dbgs() << "\t\ttaints local " << PrintReg(Other.Reg) << ':'
2156                 << OtherI->valno->id << '@' << OtherI->start
2157                 << " to " << End << '\n');
2158    // A dead def is not a problem.
2159    if (End.isDead())
2160      break;
2161    TaintExtent.push_back(std::make_pair(End, TaintedLanes));
2162
2163    // Check for another def in the MBB.
2164    if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd)
2165      break;
2166
2167    // Lanes written by the new def are no longer tainted.
2168    const Val &OV = Other.Vals[OtherI->valno->id];
2169    TaintedLanes &= ~OV.WriteLanes;
2170    if (!OV.RedefVNI)
2171      break;
2172  } while (TaintedLanes);
2173  return true;
2174}
2175
2176bool JoinVals::usesLanes(const MachineInstr *MI, unsigned Reg, unsigned SubIdx,
2177                         unsigned Lanes) const {
2178  if (MI->isDebugValue())
2179    return false;
2180  for (ConstMIOperands MO(MI); MO.isValid(); ++MO) {
2181    if (!MO->isReg() || MO->isDef() || MO->getReg() != Reg)
2182      continue;
2183    if (!MO->readsReg())
2184      continue;
2185    if (Lanes & TRI->getSubRegIndexLaneMask(
2186                  TRI->composeSubRegIndices(SubIdx, MO->getSubReg())))
2187      return true;
2188  }
2189  return false;
2190}
2191
2192bool JoinVals::resolveConflicts(JoinVals &Other) {
2193  for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2194    Val &V = Vals[i];
2195    assert (V.Resolution != CR_Impossible && "Unresolvable conflict");
2196    if (V.Resolution != CR_Unresolved)
2197      continue;
2198    DEBUG(dbgs() << "\t\tconflict at " << PrintReg(Reg) << ':' << i
2199                 << '@' << LR.getValNumInfo(i)->def << '\n');
2200    if (SubRangeJoin)
2201      return false;
2202
2203    ++NumLaneConflicts;
2204    assert(V.OtherVNI && "Inconsistent conflict resolution.");
2205    VNInfo *VNI = LR.getValNumInfo(i);
2206    const Val &OtherV = Other.Vals[V.OtherVNI->id];
2207
2208    // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
2209    // join, those lanes will be tainted with a wrong value. Get the extent of
2210    // the tainted lanes.
2211    unsigned TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
2212    SmallVector<std::pair<SlotIndex, unsigned>, 8> TaintExtent;
2213    if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
2214      // Tainted lanes would extend beyond the basic block.
2215      return false;
2216
2217    assert(!TaintExtent.empty() && "There should be at least one conflict.");
2218
2219    // Now look at the instructions from VNI->def to TaintExtent (inclusive).
2220    MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2221    MachineBasicBlock::iterator MI = MBB->begin();
2222    if (!VNI->isPHIDef()) {
2223      MI = Indexes->getInstructionFromIndex(VNI->def);
2224      // No need to check the instruction defining VNI for reads.
2225      ++MI;
2226    }
2227    assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
2228           "Interference ends on VNI->def. Should have been handled earlier");
2229    MachineInstr *LastMI =
2230      Indexes->getInstructionFromIndex(TaintExtent.front().first);
2231    assert(LastMI && "Range must end at a proper instruction");
2232    unsigned TaintNum = 0;
2233    for(;;) {
2234      assert(MI != MBB->end() && "Bad LastMI");
2235      if (usesLanes(MI, Other.Reg, Other.SubIdx, TaintedLanes)) {
2236        DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
2237        return false;
2238      }
2239      // LastMI is the last instruction to use the current value.
2240      if (&*MI == LastMI) {
2241        if (++TaintNum == TaintExtent.size())
2242          break;
2243        LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
2244        assert(LastMI && "Range must end at a proper instruction");
2245        TaintedLanes = TaintExtent[TaintNum].second;
2246      }
2247      ++MI;
2248    }
2249
2250    // The tainted lanes are unused.
2251    V.Resolution = CR_Replace;
2252    ++NumLaneResolves;
2253  }
2254  return true;
2255}
2256
2257bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
2258  Val &V = Vals[ValNo];
2259  if (V.Pruned || V.PrunedComputed)
2260    return V.Pruned;
2261
2262  if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
2263    return V.Pruned;
2264
2265  // Follow copies up the dominator tree and check if any intermediate value
2266  // has been pruned.
2267  V.PrunedComputed = true;
2268  V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
2269  return V.Pruned;
2270}
2271
2272void JoinVals::pruneValues(JoinVals &Other,
2273                           SmallVectorImpl<SlotIndex> &EndPoints,
2274                           bool changeInstrs) {
2275  for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2276    SlotIndex Def = LR.getValNumInfo(i)->def;
2277    switch (Vals[i].Resolution) {
2278    case CR_Keep:
2279      break;
2280    case CR_Replace: {
2281      // This value takes precedence over the value in Other.LR.
2282      LIS->pruneValue(Other.LR, Def, &EndPoints);
2283      // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
2284      // instructions are only inserted to provide a live-out value for PHI
2285      // predecessors, so the instruction should simply go away once its value
2286      // has been replaced.
2287      Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
2288      bool EraseImpDef = OtherV.ErasableImplicitDef &&
2289                         OtherV.Resolution == CR_Keep;
2290      if (!Def.isBlock()) {
2291        if (changeInstrs) {
2292          // Remove <def,read-undef> flags. This def is now a partial redef.
2293          // Also remove <def,dead> flags since the joined live range will
2294          // continue past this instruction.
2295          for (MIOperands MO(Indexes->getInstructionFromIndex(Def));
2296               MO.isValid(); ++MO) {
2297            if (MO->isReg() && MO->isDef() && MO->getReg() == Reg) {
2298              MO->setIsUndef(EraseImpDef);
2299              MO->setIsDead(false);
2300            }
2301          }
2302        }
2303        // This value will reach instructions below, but we need to make sure
2304        // the live range also reaches the instruction at Def.
2305        if (!EraseImpDef)
2306          EndPoints.push_back(Def);
2307      }
2308      DEBUG(dbgs() << "\t\tpruned " << PrintReg(Other.Reg) << " at " << Def
2309                   << ": " << Other.LR << '\n');
2310      break;
2311    }
2312    case CR_Erase:
2313    case CR_Merge:
2314      if (isPrunedValue(i, Other)) {
2315        // This value is ultimately a copy of a pruned value in LR or Other.LR.
2316        // We can no longer trust the value mapping computed by
2317        // computeAssignment(), the value that was originally copied could have
2318        // been replaced.
2319        LIS->pruneValue(LR, Def, &EndPoints);
2320        DEBUG(dbgs() << "\t\tpruned all of " << PrintReg(Reg) << " at "
2321                     << Def << ": " << LR << '\n');
2322      }
2323      break;
2324    case CR_Unresolved:
2325    case CR_Impossible:
2326      llvm_unreachable("Unresolved conflicts");
2327    }
2328  }
2329}
2330
2331void JoinVals::pruneSubRegValues(LiveInterval &LI, unsigned &ShrinkMask)
2332{
2333  // Look for values being erased.
2334  bool DidPrune = false;
2335  for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2336    if (Vals[i].Resolution != CR_Erase)
2337      continue;
2338
2339    // Check subranges at the point where the copy will be removed.
2340    SlotIndex Def = LR.getValNumInfo(i)->def;
2341    for (LiveInterval::SubRange &S : LI.subranges()) {
2342      LiveQueryResult Q = S.Query(Def);
2343
2344      // If a subrange starts at the copy then an undefined value has been
2345      // copied and we must remove that subrange value as well.
2346      VNInfo *ValueOut = Q.valueOutOrDead();
2347      if (ValueOut != nullptr && Q.valueIn() == nullptr) {
2348        DEBUG(dbgs() << "\t\tPrune sublane " << format("%04X", S.LaneMask)
2349                     << " at " << Def << "\n");
2350        LIS->pruneValue(S, Def, nullptr);
2351        DidPrune = true;
2352        // Mark value number as unused.
2353        ValueOut->markUnused();
2354        continue;
2355      }
2356      // If a subrange ends at the copy, then a value was copied but only
2357      // partially used later. Shrink the subregister range apropriately.
2358      if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) {
2359        DEBUG(dbgs() << "\t\tDead uses at sublane "
2360                     << format("%04X", S.LaneMask) << " at " << Def << "\n");
2361        ShrinkMask |= S.LaneMask;
2362      }
2363    }
2364  }
2365  if (DidPrune)
2366    LI.removeEmptySubRanges();
2367}
2368
2369void JoinVals::removeImplicitDefs() {
2370  for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2371    Val &V = Vals[i];
2372    if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)
2373      continue;
2374
2375    VNInfo *VNI = LR.getValNumInfo(i);
2376    VNI->markUnused();
2377    LR.removeValNo(VNI);
2378  }
2379}
2380
2381void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
2382                           SmallVectorImpl<unsigned> &ShrinkRegs) {
2383  for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2384    // Get the def location before markUnused() below invalidates it.
2385    SlotIndex Def = LR.getValNumInfo(i)->def;
2386    switch (Vals[i].Resolution) {
2387    case CR_Keep: {
2388      // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
2389      // longer. The IMPLICIT_DEF instructions are only inserted by
2390      // PHIElimination to guarantee that all PHI predecessors have a value.
2391      if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
2392        break;
2393      // Remove value number i from LR.
2394      VNInfo *VNI = LR.getValNumInfo(i);
2395      LR.removeValNo(VNI);
2396      // Note that this VNInfo is reused and still referenced in NewVNInfo,
2397      // make it appear like an unused value number.
2398      VNI->markUnused();
2399      DEBUG(dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n');
2400      // FALL THROUGH.
2401    }
2402
2403    case CR_Erase: {
2404      MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
2405      assert(MI && "No instruction to erase");
2406      if (MI->isCopy()) {
2407        unsigned Reg = MI->getOperand(1).getReg();
2408        if (TargetRegisterInfo::isVirtualRegister(Reg) &&
2409            Reg != CP.getSrcReg() && Reg != CP.getDstReg())
2410          ShrinkRegs.push_back(Reg);
2411      }
2412      ErasedInstrs.insert(MI);
2413      DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
2414      LIS->RemoveMachineInstrFromMaps(MI);
2415      MI->eraseFromParent();
2416      break;
2417    }
2418    default:
2419      break;
2420    }
2421  }
2422}
2423
2424bool RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
2425                                         unsigned LaneMask,
2426                                         const CoalescerPair &CP) {
2427  SmallVector<VNInfo*, 16> NewVNInfo;
2428  JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask,
2429                   NewVNInfo, CP, LIS, TRI, true, true);
2430  JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask,
2431                   NewVNInfo, CP, LIS, TRI, true, true);
2432
2433  // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
2434  // We should be able to resolve all conflicts here as we could successfully do
2435  // it on the mainrange already. There is however a problem when multiple
2436  // ranges get mapped to the "overflow" lane mask bit which creates unexpected
2437  // interferences.
2438  if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) {
2439    DEBUG(dbgs() << "*** Couldn't join subrange!\n");
2440    return false;
2441  }
2442  if (!LHSVals.resolveConflicts(RHSVals) ||
2443      !RHSVals.resolveConflicts(LHSVals)) {
2444    DEBUG(dbgs() << "*** Couldn't join subrange!\n");
2445    return false;
2446  }
2447
2448  // The merging algorithm in LiveInterval::join() can't handle conflicting
2449  // value mappings, so we need to remove any live ranges that overlap a
2450  // CR_Replace resolution. Collect a set of end points that can be used to
2451  // restore the live range after joining.
2452  SmallVector<SlotIndex, 8> EndPoints;
2453  LHSVals.pruneValues(RHSVals, EndPoints, false);
2454  RHSVals.pruneValues(LHSVals, EndPoints, false);
2455
2456  LHSVals.removeImplicitDefs();
2457  RHSVals.removeImplicitDefs();
2458
2459  LRange.verify();
2460  RRange.verify();
2461
2462  // Join RRange into LHS.
2463  LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(),
2464              NewVNInfo);
2465
2466  DEBUG(dbgs() << "\t\tjoined lanes: " << LRange << "\n");
2467  if (EndPoints.empty())
2468    return true;
2469
2470  // Recompute the parts of the live range we had to remove because of
2471  // CR_Replace conflicts.
2472  DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size()
2473               << " points: " << LRange << '\n');
2474  LIS->extendToIndices(LRange, EndPoints);
2475  return true;
2476}
2477
2478bool RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
2479                                          const LiveRange &ToMerge,
2480                                          unsigned LaneMask, CoalescerPair &CP) {
2481  BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
2482  for (LiveInterval::SubRange &R : LI.subranges()) {
2483    unsigned RMask = R.LaneMask;
2484    // LaneMask of subregisters common to subrange R and ToMerge.
2485    unsigned Common = RMask & LaneMask;
2486    // There is nothing to do without common subregs.
2487    if (Common == 0)
2488      continue;
2489
2490    DEBUG(dbgs() << format("\t\tCopy+Merge %04X into %04X\n", RMask, Common));
2491    // LaneMask of subregisters contained in the R range but not in ToMerge,
2492    // they have to split into their own subrange.
2493    unsigned LRest = RMask & ~LaneMask;
2494    LiveInterval::SubRange *CommonRange;
2495    if (LRest != 0) {
2496      R.LaneMask = LRest;
2497      DEBUG(dbgs() << format("\t\tReduce Lane to %04X\n", LRest));
2498      // Duplicate SubRange for newly merged common stuff.
2499      CommonRange = LI.createSubRangeFrom(Allocator, Common, R);
2500    } else {
2501      // Reuse the existing range.
2502      R.LaneMask = Common;
2503      CommonRange = &R;
2504    }
2505    LiveRange RangeCopy(ToMerge, Allocator);
2506    if (!joinSubRegRanges(*CommonRange, RangeCopy, Common, CP))
2507      return false;
2508    LaneMask &= ~RMask;
2509  }
2510
2511  if (LaneMask != 0) {
2512    DEBUG(dbgs() << format("\t\tNew Lane %04X\n", LaneMask));
2513    LI.createSubRangeFrom(Allocator, LaneMask, ToMerge);
2514  }
2515  return true;
2516}
2517
2518bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
2519  SmallVector<VNInfo*, 16> NewVNInfo;
2520  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
2521  LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
2522  bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC());
2523  JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), 0, NewVNInfo, CP, LIS,
2524                   TRI, false, TrackSubRegLiveness);
2525  JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), 0, NewVNInfo, CP, LIS,
2526                   TRI, false, TrackSubRegLiveness);
2527
2528  DEBUG(dbgs() << "\t\tRHS = " << RHS
2529               << "\n\t\tLHS = " << LHS
2530               << '\n');
2531
2532  // First compute NewVNInfo and the simple value mappings.
2533  // Detect impossible conflicts early.
2534  if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
2535    return false;
2536
2537  // Some conflicts can only be resolved after all values have been mapped.
2538  if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
2539    return false;
2540
2541  // All clear, the live ranges can be merged.
2542  if (RHS.hasSubRanges() || LHS.hasSubRanges()) {
2543    BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
2544
2545    // Transform lanemasks from the LHS to masks in the coalesced register and
2546    // create initial subranges if necessary.
2547    unsigned DstIdx = CP.getDstIdx();
2548    if (!LHS.hasSubRanges()) {
2549      unsigned Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
2550                                  : TRI->getSubRegIndexLaneMask(DstIdx);
2551      // LHS must support subregs or we wouldn't be in this codepath.
2552      assert(Mask != 0);
2553      LHS.createSubRangeFrom(Allocator, Mask, LHS);
2554    } else if (DstIdx != 0) {
2555      // Transform LHS lanemasks to new register class if necessary.
2556      for (LiveInterval::SubRange &R : LHS.subranges()) {
2557        unsigned Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask);
2558        R.LaneMask = Mask;
2559      }
2560    }
2561    DEBUG(dbgs() << "\t\tLHST = " << PrintReg(CP.getDstReg())
2562                 << ' ' << LHS << '\n');
2563
2564    // Determine lanemasks of RHS in the coalesced register and merge subranges.
2565    unsigned SrcIdx = CP.getSrcIdx();
2566    bool Abort = false;
2567    if (!RHS.hasSubRanges()) {
2568      unsigned Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask()
2569                                  : TRI->getSubRegIndexLaneMask(SrcIdx);
2570      if (!mergeSubRangeInto(LHS, RHS, Mask, CP))
2571        Abort = true;
2572    } else {
2573      // Pair up subranges and merge.
2574      for (LiveInterval::SubRange &R : RHS.subranges()) {
2575        unsigned Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask);
2576        if (!mergeSubRangeInto(LHS, R, Mask, CP)) {
2577          Abort = true;
2578          break;
2579        }
2580      }
2581    }
2582    if (Abort) {
2583      // This shouldn't have happened :-(
2584      // However we are aware of at least one existing problem where we
2585      // can't merge subranges when multiple ranges end up in the
2586      // "overflow bit" 32. As a workaround we drop all subregister ranges
2587      // which means we loose some precision but are back to a well defined
2588      // state.
2589      assert((CP.getNewRC()->getLaneMask() & 0x80000000u)
2590             && "SubRange merge should only fail when merging into bit 32.");
2591      DEBUG(dbgs() << "\tSubrange join aborted!\n");
2592      LHS.clearSubRanges();
2593      RHS.clearSubRanges();
2594    } else {
2595      DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n");
2596
2597      LHSVals.pruneSubRegValues(LHS, ShrinkMask);
2598      RHSVals.pruneSubRegValues(LHS, ShrinkMask);
2599    }
2600  }
2601
2602  // The merging algorithm in LiveInterval::join() can't handle conflicting
2603  // value mappings, so we need to remove any live ranges that overlap a
2604  // CR_Replace resolution. Collect a set of end points that can be used to
2605  // restore the live range after joining.
2606  SmallVector<SlotIndex, 8> EndPoints;
2607  LHSVals.pruneValues(RHSVals, EndPoints, true);
2608  RHSVals.pruneValues(LHSVals, EndPoints, true);
2609
2610  // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
2611  // registers to require trimming.
2612  SmallVector<unsigned, 8> ShrinkRegs;
2613  LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
2614  RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
2615  while (!ShrinkRegs.empty())
2616    LIS->shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
2617
2618  // Join RHS into LHS.
2619  LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
2620
2621  // Kill flags are going to be wrong if the live ranges were overlapping.
2622  // Eventually, we should simply clear all kill flags when computing live
2623  // ranges. They are reinserted after register allocation.
2624  MRI->clearKillFlags(LHS.reg);
2625  MRI->clearKillFlags(RHS.reg);
2626
2627  if (!EndPoints.empty()) {
2628    // Recompute the parts of the live range we had to remove because of
2629    // CR_Replace conflicts.
2630    DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size()
2631                 << " points: " << LHS << '\n');
2632    LIS->extendToIndices((LiveRange&)LHS, EndPoints);
2633  }
2634
2635  return true;
2636}
2637
2638bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
2639  return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
2640}
2641
2642namespace {
2643/// Information concerning MBB coalescing priority.
2644struct MBBPriorityInfo {
2645  MachineBasicBlock *MBB;
2646  unsigned Depth;
2647  bool IsSplit;
2648
2649  MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
2650    : MBB(mbb), Depth(depth), IsSplit(issplit) {}
2651};
2652}
2653
2654/// C-style comparator that sorts first based on the loop depth of the basic
2655/// block (the unsigned), and then on the MBB number.
2656///
2657/// EnableGlobalCopies assumes that the primary sort key is loop depth.
2658static int compareMBBPriority(const MBBPriorityInfo *LHS,
2659                              const MBBPriorityInfo *RHS) {
2660  // Deeper loops first
2661  if (LHS->Depth != RHS->Depth)
2662    return LHS->Depth > RHS->Depth ? -1 : 1;
2663
2664  // Try to unsplit critical edges next.
2665  if (LHS->IsSplit != RHS->IsSplit)
2666    return LHS->IsSplit ? -1 : 1;
2667
2668  // Prefer blocks that are more connected in the CFG. This takes care of
2669  // the most difficult copies first while intervals are short.
2670  unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
2671  unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
2672  if (cl != cr)
2673    return cl > cr ? -1 : 1;
2674
2675  // As a last resort, sort by block number.
2676  return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
2677}
2678
2679/// \returns true if the given copy uses or defines a local live range.
2680static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
2681  if (!Copy->isCopy())
2682    return false;
2683
2684  if (Copy->getOperand(1).isUndef())
2685    return false;
2686
2687  unsigned SrcReg = Copy->getOperand(1).getReg();
2688  unsigned DstReg = Copy->getOperand(0).getReg();
2689  if (TargetRegisterInfo::isPhysicalRegister(SrcReg)
2690      || TargetRegisterInfo::isPhysicalRegister(DstReg))
2691    return false;
2692
2693  return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
2694    || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
2695}
2696
2697bool RegisterCoalescer::
2698copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
2699  bool Progress = false;
2700  for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
2701    if (!CurrList[i])
2702      continue;
2703    // Skip instruction pointers that have already been erased, for example by
2704    // dead code elimination.
2705    if (ErasedInstrs.erase(CurrList[i])) {
2706      CurrList[i] = nullptr;
2707      continue;
2708    }
2709    bool Again = false;
2710    bool Success = joinCopy(CurrList[i], Again);
2711    Progress |= Success;
2712    if (Success || !Again)
2713      CurrList[i] = nullptr;
2714  }
2715  return Progress;
2716}
2717
2718/// Check if DstReg is a terminal node.
2719/// I.e., it does not have any affinity other than \p Copy.
2720static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy,
2721                          const MachineRegisterInfo *MRI) {
2722  assert(Copy.isCopyLike());
2723  // Check if the destination of this copy as any other affinity.
2724  for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg))
2725    if (&MI != &Copy && MI.isCopyLike())
2726      return false;
2727  return true;
2728}
2729
2730bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const {
2731  assert(Copy.isCopyLike());
2732  if (!UseTerminalRule)
2733    return false;
2734  unsigned DstReg, DstSubReg, SrcReg, SrcSubReg;
2735  isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg);
2736  // Check if the destination of this copy has any other affinity.
2737  if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
2738      // If SrcReg is a physical register, the copy won't be coalesced.
2739      // Ignoring it may have other side effect (like missing
2740      // rematerialization). So keep it.
2741      TargetRegisterInfo::isPhysicalRegister(SrcReg) ||
2742      !isTerminalReg(DstReg, Copy, MRI))
2743    return false;
2744
2745  // DstReg is a terminal node. Check if it inteferes with any other
2746  // copy involving SrcReg.
2747  const MachineBasicBlock *OrigBB = Copy.getParent();
2748  const LiveInterval &DstLI = LIS->getInterval(DstReg);
2749  for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) {
2750    // Technically we should check if the weight of the new copy is
2751    // interesting compared to the other one and update the weight
2752    // of the copies accordingly. However, this would only work if
2753    // we would gather all the copies first then coalesce, whereas
2754    // right now we interleave both actions.
2755    // For now, just consider the copies that are in the same block.
2756    if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB)
2757      continue;
2758    unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg;
2759    isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg,
2760                OtherSubReg);
2761    if (OtherReg == SrcReg)
2762      OtherReg = OtherSrcReg;
2763    // Check if OtherReg is a non-terminal.
2764    if (TargetRegisterInfo::isPhysicalRegister(OtherReg) ||
2765        isTerminalReg(OtherReg, MI, MRI))
2766      continue;
2767    // Check that OtherReg interfere with DstReg.
2768    if (LIS->getInterval(OtherReg).overlaps(DstLI)) {
2769      DEBUG(dbgs() << "Apply terminal rule for: " << PrintReg(DstReg) << '\n');
2770      return true;
2771    }
2772  }
2773  return false;
2774}
2775
2776void
2777RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
2778  DEBUG(dbgs() << MBB->getName() << ":\n");
2779
2780  // Collect all copy-like instructions in MBB. Don't start coalescing anything
2781  // yet, it might invalidate the iterator.
2782  const unsigned PrevSize = WorkList.size();
2783  if (JoinGlobalCopies) {
2784    SmallVector<MachineInstr*, 2> LocalTerminals;
2785    SmallVector<MachineInstr*, 2> GlobalTerminals;
2786    // Coalesce copies bottom-up to coalesce local defs before local uses. They
2787    // are not inherently easier to resolve, but slightly preferable until we
2788    // have local live range splitting. In particular this is required by
2789    // cmp+jmp macro fusion.
2790    for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
2791         MII != E; ++MII) {
2792      if (!MII->isCopyLike())
2793        continue;
2794      bool ApplyTerminalRule = applyTerminalRule(*MII);
2795      if (isLocalCopy(&(*MII), LIS)) {
2796        if (ApplyTerminalRule)
2797          LocalTerminals.push_back(&(*MII));
2798        else
2799          LocalWorkList.push_back(&(*MII));
2800      } else {
2801        if (ApplyTerminalRule)
2802          GlobalTerminals.push_back(&(*MII));
2803        else
2804          WorkList.push_back(&(*MII));
2805      }
2806    }
2807    // Append the copies evicted by the terminal rule at the end of the list.
2808    LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end());
2809    WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end());
2810  }
2811  else {
2812    SmallVector<MachineInstr*, 2> Terminals;
2813     for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
2814          MII != E; ++MII)
2815       if (MII->isCopyLike()) {
2816        if (applyTerminalRule(*MII))
2817          Terminals.push_back(&(*MII));
2818        else
2819          WorkList.push_back(MII);
2820       }
2821     // Append the copies evicted by the terminal rule at the end of the list.
2822     WorkList.append(Terminals.begin(), Terminals.end());
2823  }
2824  // Try coalescing the collected copies immediately, and remove the nulls.
2825  // This prevents the WorkList from getting too large since most copies are
2826  // joinable on the first attempt.
2827  MutableArrayRef<MachineInstr*>
2828    CurrList(WorkList.begin() + PrevSize, WorkList.end());
2829  if (copyCoalesceWorkList(CurrList))
2830    WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
2831                               (MachineInstr*)nullptr), WorkList.end());
2832}
2833
2834void RegisterCoalescer::coalesceLocals() {
2835  copyCoalesceWorkList(LocalWorkList);
2836  for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
2837    if (LocalWorkList[j])
2838      WorkList.push_back(LocalWorkList[j]);
2839  }
2840  LocalWorkList.clear();
2841}
2842
2843void RegisterCoalescer::joinAllIntervals() {
2844  DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
2845  assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
2846
2847  std::vector<MBBPriorityInfo> MBBs;
2848  MBBs.reserve(MF->size());
2849  for (MachineFunction::iterator I = MF->begin(), E = MF->end();I != E;++I){
2850    MachineBasicBlock *MBB = I;
2851    MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB),
2852                                   JoinSplitEdges && isSplitEdge(MBB)));
2853  }
2854  array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
2855
2856  // Coalesce intervals in MBB priority order.
2857  unsigned CurrDepth = UINT_MAX;
2858  for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
2859    // Try coalescing the collected local copies for deeper loops.
2860    if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
2861      coalesceLocals();
2862      CurrDepth = MBBs[i].Depth;
2863    }
2864    copyCoalesceInMBB(MBBs[i].MBB);
2865  }
2866  coalesceLocals();
2867
2868  // Joining intervals can allow other intervals to be joined.  Iteratively join
2869  // until we make no progress.
2870  while (copyCoalesceWorkList(WorkList))
2871    /* empty */ ;
2872}
2873
2874void RegisterCoalescer::releaseMemory() {
2875  ErasedInstrs.clear();
2876  WorkList.clear();
2877  DeadDefs.clear();
2878  InflateRegs.clear();
2879}
2880
2881bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
2882  MF = &fn;
2883  MRI = &fn.getRegInfo();
2884  TM = &fn.getTarget();
2885  const TargetSubtargetInfo &STI = fn.getSubtarget();
2886  TRI = STI.getRegisterInfo();
2887  TII = STI.getInstrInfo();
2888  LIS = &getAnalysis<LiveIntervals>();
2889  AA = &getAnalysis<AliasAnalysis>();
2890  Loops = &getAnalysis<MachineLoopInfo>();
2891  if (EnableGlobalCopies == cl::BOU_UNSET)
2892    JoinGlobalCopies = STI.enableJoinGlobalCopies();
2893  else
2894    JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
2895
2896  // The MachineScheduler does not currently require JoinSplitEdges. This will
2897  // either be enabled unconditionally or replaced by a more general live range
2898  // splitting optimization.
2899  JoinSplitEdges = EnableJoinSplits;
2900
2901  DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
2902               << "********** Function: " << MF->getName() << '\n');
2903
2904  if (VerifyCoalescing)
2905    MF->verify(this, "Before register coalescing");
2906
2907  RegClassInfo.runOnMachineFunction(fn);
2908
2909  // Join (coalesce) intervals if requested.
2910  if (EnableJoining)
2911    joinAllIntervals();
2912
2913  // After deleting a lot of copies, register classes may be less constrained.
2914  // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
2915  // DPR inflation.
2916  array_pod_sort(InflateRegs.begin(), InflateRegs.end());
2917  InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
2918                    InflateRegs.end());
2919  DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n");
2920  for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
2921    unsigned Reg = InflateRegs[i];
2922    if (MRI->reg_nodbg_empty(Reg))
2923      continue;
2924    if (MRI->recomputeRegClass(Reg)) {
2925      DEBUG(dbgs() << PrintReg(Reg) << " inflated to "
2926                   << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n');
2927      LiveInterval &LI = LIS->getInterval(Reg);
2928      unsigned MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
2929      if (MaxMask == 0) {
2930        // If the inflated register class does not support subregisters anymore
2931        // remove the subranges.
2932        LI.clearSubRanges();
2933      } else {
2934#ifndef NDEBUG
2935        // If subranges are still supported, then the same subregs should still
2936        // be supported.
2937        for (LiveInterval::SubRange &S : LI.subranges()) {
2938          assert ((S.LaneMask & ~MaxMask) == 0);
2939        }
2940#endif
2941      }
2942      ++NumInflated;
2943    }
2944  }
2945
2946  DEBUG(dump());
2947  if (VerifyCoalescing)
2948    MF->verify(this, "After register coalescing");
2949  return true;
2950}
2951
2952void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
2953   LIS->print(O, m);
2954}
2955