1//===-- Constants.cpp - Implement Constant nodes --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Constant* classes.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/IR/Constants.h"
15#include "ConstantFold.h"
16#include "LLVMContextImpl.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/FoldingSet.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/ADT/StringMap.h"
23#include "llvm/IR/DerivedTypes.h"
24#include "llvm/IR/GetElementPtrTypeIterator.h"
25#include "llvm/IR/GlobalValue.h"
26#include "llvm/IR/Instructions.h"
27#include "llvm/IR/Module.h"
28#include "llvm/IR/Operator.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/ManagedStatic.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include <algorithm>
36#include <cstdarg>
37using namespace llvm;
38
39//===----------------------------------------------------------------------===//
40//                              Constant Class
41//===----------------------------------------------------------------------===//
42
43void Constant::anchor() { }
44
45bool Constant::isNegativeZeroValue() const {
46  // Floating point values have an explicit -0.0 value.
47  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
48    return CFP->isZero() && CFP->isNegative();
49
50  // Equivalent for a vector of -0.0's.
51  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
52    if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
53      if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
54        return true;
55
56  // We've already handled true FP case; any other FP vectors can't represent -0.0.
57  if (getType()->isFPOrFPVectorTy())
58    return false;
59
60  // Otherwise, just use +0.0.
61  return isNullValue();
62}
63
64// Return true iff this constant is positive zero (floating point), negative
65// zero (floating point), or a null value.
66bool Constant::isZeroValue() const {
67  // Floating point values have an explicit -0.0 value.
68  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
69    return CFP->isZero();
70
71  // Otherwise, just use +0.0.
72  return isNullValue();
73}
74
75bool Constant::isNullValue() const {
76  // 0 is null.
77  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
78    return CI->isZero();
79
80  // +0.0 is null.
81  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
82    return CFP->isZero() && !CFP->isNegative();
83
84  // constant zero is zero for aggregates and cpnull is null for pointers.
85  return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this);
86}
87
88bool Constant::isAllOnesValue() const {
89  // Check for -1 integers
90  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
91    return CI->isMinusOne();
92
93  // Check for FP which are bitcasted from -1 integers
94  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
95    return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
96
97  // Check for constant vectors which are splats of -1 values.
98  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
99    if (Constant *Splat = CV->getSplatValue())
100      return Splat->isAllOnesValue();
101
102  // Check for constant vectors which are splats of -1 values.
103  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
104    if (Constant *Splat = CV->getSplatValue())
105      return Splat->isAllOnesValue();
106
107  return false;
108}
109
110bool Constant::isOneValue() const {
111  // Check for 1 integers
112  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
113    return CI->isOne();
114
115  // Check for FP which are bitcasted from 1 integers
116  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
117    return CFP->getValueAPF().bitcastToAPInt() == 1;
118
119  // Check for constant vectors which are splats of 1 values.
120  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
121    if (Constant *Splat = CV->getSplatValue())
122      return Splat->isOneValue();
123
124  // Check for constant vectors which are splats of 1 values.
125  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
126    if (Constant *Splat = CV->getSplatValue())
127      return Splat->isOneValue();
128
129  return false;
130}
131
132bool Constant::isMinSignedValue() const {
133  // Check for INT_MIN integers
134  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
135    return CI->isMinValue(/*isSigned=*/true);
136
137  // Check for FP which are bitcasted from INT_MIN integers
138  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
139    return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
140
141  // Check for constant vectors which are splats of INT_MIN values.
142  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
143    if (Constant *Splat = CV->getSplatValue())
144      return Splat->isMinSignedValue();
145
146  // Check for constant vectors which are splats of INT_MIN values.
147  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
148    if (Constant *Splat = CV->getSplatValue())
149      return Splat->isMinSignedValue();
150
151  return false;
152}
153
154bool Constant::isNotMinSignedValue() const {
155  // Check for INT_MIN integers
156  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
157    return !CI->isMinValue(/*isSigned=*/true);
158
159  // Check for FP which are bitcasted from INT_MIN integers
160  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
161    return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
162
163  // Check for constant vectors which are splats of INT_MIN values.
164  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
165    if (Constant *Splat = CV->getSplatValue())
166      return Splat->isNotMinSignedValue();
167
168  // Check for constant vectors which are splats of INT_MIN values.
169  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
170    if (Constant *Splat = CV->getSplatValue())
171      return Splat->isNotMinSignedValue();
172
173  // It *may* contain INT_MIN, we can't tell.
174  return false;
175}
176
177// Constructor to create a '0' constant of arbitrary type...
178Constant *Constant::getNullValue(Type *Ty) {
179  switch (Ty->getTypeID()) {
180  case Type::IntegerTyID:
181    return ConstantInt::get(Ty, 0);
182  case Type::HalfTyID:
183    return ConstantFP::get(Ty->getContext(),
184                           APFloat::getZero(APFloat::IEEEhalf));
185  case Type::FloatTyID:
186    return ConstantFP::get(Ty->getContext(),
187                           APFloat::getZero(APFloat::IEEEsingle));
188  case Type::DoubleTyID:
189    return ConstantFP::get(Ty->getContext(),
190                           APFloat::getZero(APFloat::IEEEdouble));
191  case Type::X86_FP80TyID:
192    return ConstantFP::get(Ty->getContext(),
193                           APFloat::getZero(APFloat::x87DoubleExtended));
194  case Type::FP128TyID:
195    return ConstantFP::get(Ty->getContext(),
196                           APFloat::getZero(APFloat::IEEEquad));
197  case Type::PPC_FP128TyID:
198    return ConstantFP::get(Ty->getContext(),
199                           APFloat(APFloat::PPCDoubleDouble,
200                                   APInt::getNullValue(128)));
201  case Type::PointerTyID:
202    return ConstantPointerNull::get(cast<PointerType>(Ty));
203  case Type::StructTyID:
204  case Type::ArrayTyID:
205  case Type::VectorTyID:
206    return ConstantAggregateZero::get(Ty);
207  default:
208    // Function, Label, or Opaque type?
209    llvm_unreachable("Cannot create a null constant of that type!");
210  }
211}
212
213Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
214  Type *ScalarTy = Ty->getScalarType();
215
216  // Create the base integer constant.
217  Constant *C = ConstantInt::get(Ty->getContext(), V);
218
219  // Convert an integer to a pointer, if necessary.
220  if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
221    C = ConstantExpr::getIntToPtr(C, PTy);
222
223  // Broadcast a scalar to a vector, if necessary.
224  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
225    C = ConstantVector::getSplat(VTy->getNumElements(), C);
226
227  return C;
228}
229
230Constant *Constant::getAllOnesValue(Type *Ty) {
231  if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
232    return ConstantInt::get(Ty->getContext(),
233                            APInt::getAllOnesValue(ITy->getBitWidth()));
234
235  if (Ty->isFloatingPointTy()) {
236    APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
237                                          !Ty->isPPC_FP128Ty());
238    return ConstantFP::get(Ty->getContext(), FL);
239  }
240
241  VectorType *VTy = cast<VectorType>(Ty);
242  return ConstantVector::getSplat(VTy->getNumElements(),
243                                  getAllOnesValue(VTy->getElementType()));
244}
245
246/// getAggregateElement - For aggregates (struct/array/vector) return the
247/// constant that corresponds to the specified element if possible, or null if
248/// not.  This can return null if the element index is a ConstantExpr, or if
249/// 'this' is a constant expr.
250Constant *Constant::getAggregateElement(unsigned Elt) const {
251  if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this))
252    return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : nullptr;
253
254  if (const ConstantArray *CA = dyn_cast<ConstantArray>(this))
255    return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : nullptr;
256
257  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
258    return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : nullptr;
259
260  if (const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(this))
261    return Elt < CAZ->getNumElements() ? CAZ->getElementValue(Elt) : nullptr;
262
263  if (const UndefValue *UV = dyn_cast<UndefValue>(this))
264    return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr;
265
266  if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
267    return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
268                                       : nullptr;
269  return nullptr;
270}
271
272Constant *Constant::getAggregateElement(Constant *Elt) const {
273  assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
274  if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
275    return getAggregateElement(CI->getZExtValue());
276  return nullptr;
277}
278
279
280void Constant::destroyConstantImpl() {
281  // When a Constant is destroyed, there may be lingering
282  // references to the constant by other constants in the constant pool.  These
283  // constants are implicitly dependent on the module that is being deleted,
284  // but they don't know that.  Because we only find out when the CPV is
285  // deleted, we must now notify all of our users (that should only be
286  // Constants) that they are, in fact, invalid now and should be deleted.
287  //
288  while (!use_empty()) {
289    Value *V = user_back();
290#ifndef NDEBUG      // Only in -g mode...
291    if (!isa<Constant>(V)) {
292      dbgs() << "While deleting: " << *this
293             << "\n\nUse still stuck around after Def is destroyed: "
294             << *V << "\n\n";
295    }
296#endif
297    assert(isa<Constant>(V) && "References remain to Constant being destroyed");
298    cast<Constant>(V)->destroyConstant();
299
300    // The constant should remove itself from our use list...
301    assert((use_empty() || user_back() != V) && "Constant not removed!");
302  }
303
304  // Value has no outstanding references it is safe to delete it now...
305  delete this;
306}
307
308static bool canTrapImpl(const Constant *C,
309                        SmallPtrSetImpl<const ConstantExpr *> &NonTrappingOps) {
310  assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
311  // The only thing that could possibly trap are constant exprs.
312  const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
313  if (!CE)
314    return false;
315
316  // ConstantExpr traps if any operands can trap.
317  for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
318    if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
319      if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps))
320        return true;
321    }
322  }
323
324  // Otherwise, only specific operations can trap.
325  switch (CE->getOpcode()) {
326  default:
327    return false;
328  case Instruction::UDiv:
329  case Instruction::SDiv:
330  case Instruction::FDiv:
331  case Instruction::URem:
332  case Instruction::SRem:
333  case Instruction::FRem:
334    // Div and rem can trap if the RHS is not known to be non-zero.
335    if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
336      return true;
337    return false;
338  }
339}
340
341/// canTrap - Return true if evaluation of this constant could trap.  This is
342/// true for things like constant expressions that could divide by zero.
343bool Constant::canTrap() const {
344  SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps;
345  return canTrapImpl(this, NonTrappingOps);
346}
347
348/// Check if C contains a GlobalValue for which Predicate is true.
349static bool
350ConstHasGlobalValuePredicate(const Constant *C,
351                             bool (*Predicate)(const GlobalValue *)) {
352  SmallPtrSet<const Constant *, 8> Visited;
353  SmallVector<const Constant *, 8> WorkList;
354  WorkList.push_back(C);
355  Visited.insert(C);
356
357  while (!WorkList.empty()) {
358    const Constant *WorkItem = WorkList.pop_back_val();
359    if (const auto *GV = dyn_cast<GlobalValue>(WorkItem))
360      if (Predicate(GV))
361        return true;
362    for (const Value *Op : WorkItem->operands()) {
363      const Constant *ConstOp = dyn_cast<Constant>(Op);
364      if (!ConstOp)
365        continue;
366      if (Visited.insert(ConstOp).second)
367        WorkList.push_back(ConstOp);
368    }
369  }
370  return false;
371}
372
373/// Return true if the value can vary between threads.
374bool Constant::isThreadDependent() const {
375  auto DLLImportPredicate = [](const GlobalValue *GV) {
376    return GV->isThreadLocal();
377  };
378  return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
379}
380
381bool Constant::isDLLImportDependent() const {
382  auto DLLImportPredicate = [](const GlobalValue *GV) {
383    return GV->hasDLLImportStorageClass();
384  };
385  return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
386}
387
388/// Return true if the constant has users other than constant exprs and other
389/// dangling things.
390bool Constant::isConstantUsed() const {
391  for (const User *U : users()) {
392    const Constant *UC = dyn_cast<Constant>(U);
393    if (!UC || isa<GlobalValue>(UC))
394      return true;
395
396    if (UC->isConstantUsed())
397      return true;
398  }
399  return false;
400}
401
402
403
404/// getRelocationInfo - This method classifies the entry according to
405/// whether or not it may generate a relocation entry.  This must be
406/// conservative, so if it might codegen to a relocatable entry, it should say
407/// so.  The return values are:
408///
409///  NoRelocation: This constant pool entry is guaranteed to never have a
410///     relocation applied to it (because it holds a simple constant like
411///     '4').
412///  LocalRelocation: This entry has relocations, but the entries are
413///     guaranteed to be resolvable by the static linker, so the dynamic
414///     linker will never see them.
415///  GlobalRelocations: This entry may have arbitrary relocations.
416///
417/// FIXME: This really should not be in IR.
418Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
419  if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
420    if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
421      return LocalRelocation;  // Local to this file/library.
422    return GlobalRelocations;    // Global reference.
423  }
424
425  if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
426    return BA->getFunction()->getRelocationInfo();
427
428  // While raw uses of blockaddress need to be relocated, differences between
429  // two of them don't when they are for labels in the same function.  This is a
430  // common idiom when creating a table for the indirect goto extension, so we
431  // handle it efficiently here.
432  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
433    if (CE->getOpcode() == Instruction::Sub) {
434      ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
435      ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
436      if (LHS && RHS &&
437          LHS->getOpcode() == Instruction::PtrToInt &&
438          RHS->getOpcode() == Instruction::PtrToInt &&
439          isa<BlockAddress>(LHS->getOperand(0)) &&
440          isa<BlockAddress>(RHS->getOperand(0)) &&
441          cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
442            cast<BlockAddress>(RHS->getOperand(0))->getFunction())
443        return NoRelocation;
444    }
445
446  PossibleRelocationsTy Result = NoRelocation;
447  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
448    Result = std::max(Result,
449                      cast<Constant>(getOperand(i))->getRelocationInfo());
450
451  return Result;
452}
453
454/// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove
455/// it.  This involves recursively eliminating any dead users of the
456/// constantexpr.
457static bool removeDeadUsersOfConstant(const Constant *C) {
458  if (isa<GlobalValue>(C)) return false; // Cannot remove this
459
460  while (!C->use_empty()) {
461    const Constant *User = dyn_cast<Constant>(C->user_back());
462    if (!User) return false; // Non-constant usage;
463    if (!removeDeadUsersOfConstant(User))
464      return false; // Constant wasn't dead
465  }
466
467  const_cast<Constant*>(C)->destroyConstant();
468  return true;
469}
470
471
472/// removeDeadConstantUsers - If there are any dead constant users dangling
473/// off of this constant, remove them.  This method is useful for clients
474/// that want to check to see if a global is unused, but don't want to deal
475/// with potentially dead constants hanging off of the globals.
476void Constant::removeDeadConstantUsers() const {
477  Value::const_user_iterator I = user_begin(), E = user_end();
478  Value::const_user_iterator LastNonDeadUser = E;
479  while (I != E) {
480    const Constant *User = dyn_cast<Constant>(*I);
481    if (!User) {
482      LastNonDeadUser = I;
483      ++I;
484      continue;
485    }
486
487    if (!removeDeadUsersOfConstant(User)) {
488      // If the constant wasn't dead, remember that this was the last live use
489      // and move on to the next constant.
490      LastNonDeadUser = I;
491      ++I;
492      continue;
493    }
494
495    // If the constant was dead, then the iterator is invalidated.
496    if (LastNonDeadUser == E) {
497      I = user_begin();
498      if (I == E) break;
499    } else {
500      I = LastNonDeadUser;
501      ++I;
502    }
503  }
504}
505
506
507
508//===----------------------------------------------------------------------===//
509//                                ConstantInt
510//===----------------------------------------------------------------------===//
511
512void ConstantInt::anchor() { }
513
514ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V)
515  : Constant(Ty, ConstantIntVal, nullptr, 0), Val(V) {
516  assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
517}
518
519ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
520  LLVMContextImpl *pImpl = Context.pImpl;
521  if (!pImpl->TheTrueVal)
522    pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
523  return pImpl->TheTrueVal;
524}
525
526ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
527  LLVMContextImpl *pImpl = Context.pImpl;
528  if (!pImpl->TheFalseVal)
529    pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
530  return pImpl->TheFalseVal;
531}
532
533Constant *ConstantInt::getTrue(Type *Ty) {
534  VectorType *VTy = dyn_cast<VectorType>(Ty);
535  if (!VTy) {
536    assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
537    return ConstantInt::getTrue(Ty->getContext());
538  }
539  assert(VTy->getElementType()->isIntegerTy(1) &&
540         "True must be vector of i1 or i1.");
541  return ConstantVector::getSplat(VTy->getNumElements(),
542                                  ConstantInt::getTrue(Ty->getContext()));
543}
544
545Constant *ConstantInt::getFalse(Type *Ty) {
546  VectorType *VTy = dyn_cast<VectorType>(Ty);
547  if (!VTy) {
548    assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
549    return ConstantInt::getFalse(Ty->getContext());
550  }
551  assert(VTy->getElementType()->isIntegerTy(1) &&
552         "False must be vector of i1 or i1.");
553  return ConstantVector::getSplat(VTy->getNumElements(),
554                                  ConstantInt::getFalse(Ty->getContext()));
555}
556
557// Get a ConstantInt from an APInt.
558ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
559  // get an existing value or the insertion position
560  LLVMContextImpl *pImpl = Context.pImpl;
561  ConstantInt *&Slot = pImpl->IntConstants[V];
562  if (!Slot) {
563    // Get the corresponding integer type for the bit width of the value.
564    IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
565    Slot = new ConstantInt(ITy, V);
566  }
567  assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth()));
568  return Slot;
569}
570
571Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
572  Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
573
574  // For vectors, broadcast the value.
575  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
576    return ConstantVector::getSplat(VTy->getNumElements(), C);
577
578  return C;
579}
580
581ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V,
582                              bool isSigned) {
583  return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
584}
585
586ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
587  return get(Ty, V, true);
588}
589
590Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
591  return get(Ty, V, true);
592}
593
594Constant *ConstantInt::get(Type *Ty, const APInt& V) {
595  ConstantInt *C = get(Ty->getContext(), V);
596  assert(C->getType() == Ty->getScalarType() &&
597         "ConstantInt type doesn't match the type implied by its value!");
598
599  // For vectors, broadcast the value.
600  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
601    return ConstantVector::getSplat(VTy->getNumElements(), C);
602
603  return C;
604}
605
606ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str,
607                              uint8_t radix) {
608  return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
609}
610
611//===----------------------------------------------------------------------===//
612//                                ConstantFP
613//===----------------------------------------------------------------------===//
614
615static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
616  if (Ty->isHalfTy())
617    return &APFloat::IEEEhalf;
618  if (Ty->isFloatTy())
619    return &APFloat::IEEEsingle;
620  if (Ty->isDoubleTy())
621    return &APFloat::IEEEdouble;
622  if (Ty->isX86_FP80Ty())
623    return &APFloat::x87DoubleExtended;
624  else if (Ty->isFP128Ty())
625    return &APFloat::IEEEquad;
626
627  assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
628  return &APFloat::PPCDoubleDouble;
629}
630
631void ConstantFP::anchor() { }
632
633/// get() - This returns a constant fp for the specified value in the
634/// specified type.  This should only be used for simple constant values like
635/// 2.0/1.0 etc, that are known-valid both as double and as the target format.
636Constant *ConstantFP::get(Type *Ty, double V) {
637  LLVMContext &Context = Ty->getContext();
638
639  APFloat FV(V);
640  bool ignored;
641  FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
642             APFloat::rmNearestTiesToEven, &ignored);
643  Constant *C = get(Context, FV);
644
645  // For vectors, broadcast the value.
646  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
647    return ConstantVector::getSplat(VTy->getNumElements(), C);
648
649  return C;
650}
651
652
653Constant *ConstantFP::get(Type *Ty, StringRef Str) {
654  LLVMContext &Context = Ty->getContext();
655
656  APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
657  Constant *C = get(Context, FV);
658
659  // For vectors, broadcast the value.
660  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
661    return ConstantVector::getSplat(VTy->getNumElements(), C);
662
663  return C;
664}
665
666Constant *ConstantFP::getNegativeZero(Type *Ty) {
667  const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
668  APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true);
669  Constant *C = get(Ty->getContext(), NegZero);
670
671  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
672    return ConstantVector::getSplat(VTy->getNumElements(), C);
673
674  return C;
675}
676
677
678Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
679  if (Ty->isFPOrFPVectorTy())
680    return getNegativeZero(Ty);
681
682  return Constant::getNullValue(Ty);
683}
684
685
686// ConstantFP accessors.
687ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
688  LLVMContextImpl* pImpl = Context.pImpl;
689
690  ConstantFP *&Slot = pImpl->FPConstants[V];
691
692  if (!Slot) {
693    Type *Ty;
694    if (&V.getSemantics() == &APFloat::IEEEhalf)
695      Ty = Type::getHalfTy(Context);
696    else if (&V.getSemantics() == &APFloat::IEEEsingle)
697      Ty = Type::getFloatTy(Context);
698    else if (&V.getSemantics() == &APFloat::IEEEdouble)
699      Ty = Type::getDoubleTy(Context);
700    else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
701      Ty = Type::getX86_FP80Ty(Context);
702    else if (&V.getSemantics() == &APFloat::IEEEquad)
703      Ty = Type::getFP128Ty(Context);
704    else {
705      assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
706             "Unknown FP format");
707      Ty = Type::getPPC_FP128Ty(Context);
708    }
709    Slot = new ConstantFP(Ty, V);
710  }
711
712  return Slot;
713}
714
715Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) {
716  const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
717  Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative));
718
719  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
720    return ConstantVector::getSplat(VTy->getNumElements(), C);
721
722  return C;
723}
724
725ConstantFP::ConstantFP(Type *Ty, const APFloat& V)
726  : Constant(Ty, ConstantFPVal, nullptr, 0), Val(V) {
727  assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
728         "FP type Mismatch");
729}
730
731bool ConstantFP::isExactlyValue(const APFloat &V) const {
732  return Val.bitwiseIsEqual(V);
733}
734
735//===----------------------------------------------------------------------===//
736//                   ConstantAggregateZero Implementation
737//===----------------------------------------------------------------------===//
738
739/// getSequentialElement - If this CAZ has array or vector type, return a zero
740/// with the right element type.
741Constant *ConstantAggregateZero::getSequentialElement() const {
742  return Constant::getNullValue(getType()->getSequentialElementType());
743}
744
745/// getStructElement - If this CAZ has struct type, return a zero with the
746/// right element type for the specified element.
747Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
748  return Constant::getNullValue(getType()->getStructElementType(Elt));
749}
750
751/// getElementValue - Return a zero of the right value for the specified GEP
752/// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
753Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
754  if (isa<SequentialType>(getType()))
755    return getSequentialElement();
756  return getStructElement(cast<ConstantInt>(C)->getZExtValue());
757}
758
759/// getElementValue - Return a zero of the right value for the specified GEP
760/// index.
761Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
762  if (isa<SequentialType>(getType()))
763    return getSequentialElement();
764  return getStructElement(Idx);
765}
766
767unsigned ConstantAggregateZero::getNumElements() const {
768  const Type *Ty = getType();
769  if (const auto *AT = dyn_cast<ArrayType>(Ty))
770    return AT->getNumElements();
771  if (const auto *VT = dyn_cast<VectorType>(Ty))
772    return VT->getNumElements();
773  return Ty->getStructNumElements();
774}
775
776//===----------------------------------------------------------------------===//
777//                         UndefValue Implementation
778//===----------------------------------------------------------------------===//
779
780/// getSequentialElement - If this undef has array or vector type, return an
781/// undef with the right element type.
782UndefValue *UndefValue::getSequentialElement() const {
783  return UndefValue::get(getType()->getSequentialElementType());
784}
785
786/// getStructElement - If this undef has struct type, return a zero with the
787/// right element type for the specified element.
788UndefValue *UndefValue::getStructElement(unsigned Elt) const {
789  return UndefValue::get(getType()->getStructElementType(Elt));
790}
791
792/// getElementValue - Return an undef of the right value for the specified GEP
793/// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
794UndefValue *UndefValue::getElementValue(Constant *C) const {
795  if (isa<SequentialType>(getType()))
796    return getSequentialElement();
797  return getStructElement(cast<ConstantInt>(C)->getZExtValue());
798}
799
800/// getElementValue - Return an undef of the right value for the specified GEP
801/// index.
802UndefValue *UndefValue::getElementValue(unsigned Idx) const {
803  if (isa<SequentialType>(getType()))
804    return getSequentialElement();
805  return getStructElement(Idx);
806}
807
808unsigned UndefValue::getNumElements() const {
809  const Type *Ty = getType();
810  if (const auto *AT = dyn_cast<ArrayType>(Ty))
811    return AT->getNumElements();
812  if (const auto *VT = dyn_cast<VectorType>(Ty))
813    return VT->getNumElements();
814  return Ty->getStructNumElements();
815}
816
817//===----------------------------------------------------------------------===//
818//                            ConstantXXX Classes
819//===----------------------------------------------------------------------===//
820
821template <typename ItTy, typename EltTy>
822static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
823  for (; Start != End; ++Start)
824    if (*Start != Elt)
825      return false;
826  return true;
827}
828
829ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
830  : Constant(T, ConstantArrayVal,
831             OperandTraits<ConstantArray>::op_end(this) - V.size(),
832             V.size()) {
833  assert(V.size() == T->getNumElements() &&
834         "Invalid initializer vector for constant array");
835  for (unsigned i = 0, e = V.size(); i != e; ++i)
836    assert(V[i]->getType() == T->getElementType() &&
837           "Initializer for array element doesn't match array element type!");
838  std::copy(V.begin(), V.end(), op_begin());
839}
840
841Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
842  if (Constant *C = getImpl(Ty, V))
843    return C;
844  return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V);
845}
846Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) {
847  // Empty arrays are canonicalized to ConstantAggregateZero.
848  if (V.empty())
849    return ConstantAggregateZero::get(Ty);
850
851  for (unsigned i = 0, e = V.size(); i != e; ++i) {
852    assert(V[i]->getType() == Ty->getElementType() &&
853           "Wrong type in array element initializer");
854  }
855
856  // If this is an all-zero array, return a ConstantAggregateZero object.  If
857  // all undef, return an UndefValue, if "all simple", then return a
858  // ConstantDataArray.
859  Constant *C = V[0];
860  if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
861    return UndefValue::get(Ty);
862
863  if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
864    return ConstantAggregateZero::get(Ty);
865
866  // Check to see if all of the elements are ConstantFP or ConstantInt and if
867  // the element type is compatible with ConstantDataVector.  If so, use it.
868  if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
869    // We speculatively build the elements here even if it turns out that there
870    // is a constantexpr or something else weird in the array, since it is so
871    // uncommon for that to happen.
872    if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
873      if (CI->getType()->isIntegerTy(8)) {
874        SmallVector<uint8_t, 16> Elts;
875        for (unsigned i = 0, e = V.size(); i != e; ++i)
876          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
877            Elts.push_back(CI->getZExtValue());
878          else
879            break;
880        if (Elts.size() == V.size())
881          return ConstantDataArray::get(C->getContext(), Elts);
882      } else if (CI->getType()->isIntegerTy(16)) {
883        SmallVector<uint16_t, 16> Elts;
884        for (unsigned i = 0, e = V.size(); i != e; ++i)
885          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
886            Elts.push_back(CI->getZExtValue());
887          else
888            break;
889        if (Elts.size() == V.size())
890          return ConstantDataArray::get(C->getContext(), Elts);
891      } else if (CI->getType()->isIntegerTy(32)) {
892        SmallVector<uint32_t, 16> Elts;
893        for (unsigned i = 0, e = V.size(); i != e; ++i)
894          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
895            Elts.push_back(CI->getZExtValue());
896          else
897            break;
898        if (Elts.size() == V.size())
899          return ConstantDataArray::get(C->getContext(), Elts);
900      } else if (CI->getType()->isIntegerTy(64)) {
901        SmallVector<uint64_t, 16> Elts;
902        for (unsigned i = 0, e = V.size(); i != e; ++i)
903          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
904            Elts.push_back(CI->getZExtValue());
905          else
906            break;
907        if (Elts.size() == V.size())
908          return ConstantDataArray::get(C->getContext(), Elts);
909      }
910    }
911
912    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
913      if (CFP->getType()->isFloatTy()) {
914        SmallVector<uint32_t, 16> Elts;
915        for (unsigned i = 0, e = V.size(); i != e; ++i)
916          if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
917            Elts.push_back(
918                CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
919          else
920            break;
921        if (Elts.size() == V.size())
922          return ConstantDataArray::getFP(C->getContext(), Elts);
923      } else if (CFP->getType()->isDoubleTy()) {
924        SmallVector<uint64_t, 16> Elts;
925        for (unsigned i = 0, e = V.size(); i != e; ++i)
926          if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
927            Elts.push_back(
928                CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
929          else
930            break;
931        if (Elts.size() == V.size())
932          return ConstantDataArray::getFP(C->getContext(), Elts);
933      }
934    }
935  }
936
937  // Otherwise, we really do want to create a ConstantArray.
938  return nullptr;
939}
940
941/// getTypeForElements - Return an anonymous struct type to use for a constant
942/// with the specified set of elements.  The list must not be empty.
943StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
944                                               ArrayRef<Constant*> V,
945                                               bool Packed) {
946  unsigned VecSize = V.size();
947  SmallVector<Type*, 16> EltTypes(VecSize);
948  for (unsigned i = 0; i != VecSize; ++i)
949    EltTypes[i] = V[i]->getType();
950
951  return StructType::get(Context, EltTypes, Packed);
952}
953
954
955StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
956                                               bool Packed) {
957  assert(!V.empty() &&
958         "ConstantStruct::getTypeForElements cannot be called on empty list");
959  return getTypeForElements(V[0]->getContext(), V, Packed);
960}
961
962
963ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
964  : Constant(T, ConstantStructVal,
965             OperandTraits<ConstantStruct>::op_end(this) - V.size(),
966             V.size()) {
967  assert(V.size() == T->getNumElements() &&
968         "Invalid initializer vector for constant structure");
969  for (unsigned i = 0, e = V.size(); i != e; ++i)
970    assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) &&
971           "Initializer for struct element doesn't match struct element type!");
972  std::copy(V.begin(), V.end(), op_begin());
973}
974
975// ConstantStruct accessors.
976Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
977  assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
978         "Incorrect # elements specified to ConstantStruct::get");
979
980  // Create a ConstantAggregateZero value if all elements are zeros.
981  bool isZero = true;
982  bool isUndef = false;
983
984  if (!V.empty()) {
985    isUndef = isa<UndefValue>(V[0]);
986    isZero = V[0]->isNullValue();
987    if (isUndef || isZero) {
988      for (unsigned i = 0, e = V.size(); i != e; ++i) {
989        if (!V[i]->isNullValue())
990          isZero = false;
991        if (!isa<UndefValue>(V[i]))
992          isUndef = false;
993      }
994    }
995  }
996  if (isZero)
997    return ConstantAggregateZero::get(ST);
998  if (isUndef)
999    return UndefValue::get(ST);
1000
1001  return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
1002}
1003
1004Constant *ConstantStruct::get(StructType *T, ...) {
1005  va_list ap;
1006  SmallVector<Constant*, 8> Values;
1007  va_start(ap, T);
1008  while (Constant *Val = va_arg(ap, llvm::Constant*))
1009    Values.push_back(Val);
1010  va_end(ap);
1011  return get(T, Values);
1012}
1013
1014ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
1015  : Constant(T, ConstantVectorVal,
1016             OperandTraits<ConstantVector>::op_end(this) - V.size(),
1017             V.size()) {
1018  for (size_t i = 0, e = V.size(); i != e; i++)
1019    assert(V[i]->getType() == T->getElementType() &&
1020           "Initializer for vector element doesn't match vector element type!");
1021  std::copy(V.begin(), V.end(), op_begin());
1022}
1023
1024// ConstantVector accessors.
1025Constant *ConstantVector::get(ArrayRef<Constant*> V) {
1026  if (Constant *C = getImpl(V))
1027    return C;
1028  VectorType *Ty = VectorType::get(V.front()->getType(), V.size());
1029  return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V);
1030}
1031Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) {
1032  assert(!V.empty() && "Vectors can't be empty");
1033  VectorType *T = VectorType::get(V.front()->getType(), V.size());
1034
1035  // If this is an all-undef or all-zero vector, return a
1036  // ConstantAggregateZero or UndefValue.
1037  Constant *C = V[0];
1038  bool isZero = C->isNullValue();
1039  bool isUndef = isa<UndefValue>(C);
1040
1041  if (isZero || isUndef) {
1042    for (unsigned i = 1, e = V.size(); i != e; ++i)
1043      if (V[i] != C) {
1044        isZero = isUndef = false;
1045        break;
1046      }
1047  }
1048
1049  if (isZero)
1050    return ConstantAggregateZero::get(T);
1051  if (isUndef)
1052    return UndefValue::get(T);
1053
1054  // Check to see if all of the elements are ConstantFP or ConstantInt and if
1055  // the element type is compatible with ConstantDataVector.  If so, use it.
1056  if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
1057    // We speculatively build the elements here even if it turns out that there
1058    // is a constantexpr or something else weird in the array, since it is so
1059    // uncommon for that to happen.
1060    if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
1061      if (CI->getType()->isIntegerTy(8)) {
1062        SmallVector<uint8_t, 16> Elts;
1063        for (unsigned i = 0, e = V.size(); i != e; ++i)
1064          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
1065            Elts.push_back(CI->getZExtValue());
1066          else
1067            break;
1068        if (Elts.size() == V.size())
1069          return ConstantDataVector::get(C->getContext(), Elts);
1070      } else if (CI->getType()->isIntegerTy(16)) {
1071        SmallVector<uint16_t, 16> Elts;
1072        for (unsigned i = 0, e = V.size(); i != e; ++i)
1073          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
1074            Elts.push_back(CI->getZExtValue());
1075          else
1076            break;
1077        if (Elts.size() == V.size())
1078          return ConstantDataVector::get(C->getContext(), Elts);
1079      } else if (CI->getType()->isIntegerTy(32)) {
1080        SmallVector<uint32_t, 16> Elts;
1081        for (unsigned i = 0, e = V.size(); i != e; ++i)
1082          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
1083            Elts.push_back(CI->getZExtValue());
1084          else
1085            break;
1086        if (Elts.size() == V.size())
1087          return ConstantDataVector::get(C->getContext(), Elts);
1088      } else if (CI->getType()->isIntegerTy(64)) {
1089        SmallVector<uint64_t, 16> Elts;
1090        for (unsigned i = 0, e = V.size(); i != e; ++i)
1091          if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
1092            Elts.push_back(CI->getZExtValue());
1093          else
1094            break;
1095        if (Elts.size() == V.size())
1096          return ConstantDataVector::get(C->getContext(), Elts);
1097      }
1098    }
1099
1100    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1101      if (CFP->getType()->isFloatTy()) {
1102        SmallVector<uint32_t, 16> Elts;
1103        for (unsigned i = 0, e = V.size(); i != e; ++i)
1104          if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
1105            Elts.push_back(
1106                CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
1107          else
1108            break;
1109        if (Elts.size() == V.size())
1110          return ConstantDataVector::getFP(C->getContext(), Elts);
1111      } else if (CFP->getType()->isDoubleTy()) {
1112        SmallVector<uint64_t, 16> Elts;
1113        for (unsigned i = 0, e = V.size(); i != e; ++i)
1114          if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
1115            Elts.push_back(
1116                CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
1117          else
1118            break;
1119        if (Elts.size() == V.size())
1120          return ConstantDataVector::getFP(C->getContext(), Elts);
1121      }
1122    }
1123  }
1124
1125  // Otherwise, the element type isn't compatible with ConstantDataVector, or
1126  // the operand list constants a ConstantExpr or something else strange.
1127  return nullptr;
1128}
1129
1130Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
1131  // If this splat is compatible with ConstantDataVector, use it instead of
1132  // ConstantVector.
1133  if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1134      ConstantDataSequential::isElementTypeCompatible(V->getType()))
1135    return ConstantDataVector::getSplat(NumElts, V);
1136
1137  SmallVector<Constant*, 32> Elts(NumElts, V);
1138  return get(Elts);
1139}
1140
1141
1142// Utility function for determining if a ConstantExpr is a CastOp or not. This
1143// can't be inline because we don't want to #include Instruction.h into
1144// Constant.h
1145bool ConstantExpr::isCast() const {
1146  return Instruction::isCast(getOpcode());
1147}
1148
1149bool ConstantExpr::isCompare() const {
1150  return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
1151}
1152
1153bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
1154  if (getOpcode() != Instruction::GetElementPtr) return false;
1155
1156  gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
1157  User::const_op_iterator OI = std::next(this->op_begin());
1158
1159  // Skip the first index, as it has no static limit.
1160  ++GEPI;
1161  ++OI;
1162
1163  // The remaining indices must be compile-time known integers within the
1164  // bounds of the corresponding notional static array types.
1165  for (; GEPI != E; ++GEPI, ++OI) {
1166    ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
1167    if (!CI) return false;
1168    if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
1169      if (CI->getValue().getActiveBits() > 64 ||
1170          CI->getZExtValue() >= ATy->getNumElements())
1171        return false;
1172  }
1173
1174  // All the indices checked out.
1175  return true;
1176}
1177
1178bool ConstantExpr::hasIndices() const {
1179  return getOpcode() == Instruction::ExtractValue ||
1180         getOpcode() == Instruction::InsertValue;
1181}
1182
1183ArrayRef<unsigned> ConstantExpr::getIndices() const {
1184  if (const ExtractValueConstantExpr *EVCE =
1185        dyn_cast<ExtractValueConstantExpr>(this))
1186    return EVCE->Indices;
1187
1188  return cast<InsertValueConstantExpr>(this)->Indices;
1189}
1190
1191unsigned ConstantExpr::getPredicate() const {
1192  assert(isCompare());
1193  return ((const CompareConstantExpr*)this)->predicate;
1194}
1195
1196/// getWithOperandReplaced - Return a constant expression identical to this
1197/// one, but with the specified operand set to the specified value.
1198Constant *
1199ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
1200  assert(Op->getType() == getOperand(OpNo)->getType() &&
1201         "Replacing operand with value of different type!");
1202  if (getOperand(OpNo) == Op)
1203    return const_cast<ConstantExpr*>(this);
1204
1205  SmallVector<Constant*, 8> NewOps;
1206  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1207    NewOps.push_back(i == OpNo ? Op : getOperand(i));
1208
1209  return getWithOperands(NewOps);
1210}
1211
1212/// getWithOperands - This returns the current constant expression with the
1213/// operands replaced with the specified values.  The specified array must
1214/// have the same number of operands as our current one.
1215Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
1216                                        bool OnlyIfReduced) const {
1217  assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1218
1219  // If no operands changed return self.
1220  if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin()))
1221    return const_cast<ConstantExpr*>(this);
1222
1223  Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr;
1224  switch (getOpcode()) {
1225  case Instruction::Trunc:
1226  case Instruction::ZExt:
1227  case Instruction::SExt:
1228  case Instruction::FPTrunc:
1229  case Instruction::FPExt:
1230  case Instruction::UIToFP:
1231  case Instruction::SIToFP:
1232  case Instruction::FPToUI:
1233  case Instruction::FPToSI:
1234  case Instruction::PtrToInt:
1235  case Instruction::IntToPtr:
1236  case Instruction::BitCast:
1237  case Instruction::AddrSpaceCast:
1238    return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced);
1239  case Instruction::Select:
1240    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy);
1241  case Instruction::InsertElement:
1242    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2],
1243                                          OnlyIfReducedTy);
1244  case Instruction::ExtractElement:
1245    return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy);
1246  case Instruction::InsertValue:
1247    return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(),
1248                                        OnlyIfReducedTy);
1249  case Instruction::ExtractValue:
1250    return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy);
1251  case Instruction::ShuffleVector:
1252    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2],
1253                                          OnlyIfReducedTy);
1254  case Instruction::GetElementPtr:
1255    return ConstantExpr::getGetElementPtr(nullptr, Ops[0], Ops.slice(1),
1256                                          cast<GEPOperator>(this)->isInBounds(),
1257                                          OnlyIfReducedTy);
1258  case Instruction::ICmp:
1259  case Instruction::FCmp:
1260    return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1],
1261                                    OnlyIfReducedTy);
1262  default:
1263    assert(getNumOperands() == 2 && "Must be binary operator?");
1264    return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData,
1265                             OnlyIfReducedTy);
1266  }
1267}
1268
1269
1270//===----------------------------------------------------------------------===//
1271//                      isValueValidForType implementations
1272
1273bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1274  unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1275  if (Ty->isIntegerTy(1))
1276    return Val == 0 || Val == 1;
1277  if (NumBits >= 64)
1278    return true; // always true, has to fit in largest type
1279  uint64_t Max = (1ll << NumBits) - 1;
1280  return Val <= Max;
1281}
1282
1283bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1284  unsigned NumBits = Ty->getIntegerBitWidth();
1285  if (Ty->isIntegerTy(1))
1286    return Val == 0 || Val == 1 || Val == -1;
1287  if (NumBits >= 64)
1288    return true; // always true, has to fit in largest type
1289  int64_t Min = -(1ll << (NumBits-1));
1290  int64_t Max = (1ll << (NumBits-1)) - 1;
1291  return (Val >= Min && Val <= Max);
1292}
1293
1294bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1295  // convert modifies in place, so make a copy.
1296  APFloat Val2 = APFloat(Val);
1297  bool losesInfo;
1298  switch (Ty->getTypeID()) {
1299  default:
1300    return false;         // These can't be represented as floating point!
1301
1302  // FIXME rounding mode needs to be more flexible
1303  case Type::HalfTyID: {
1304    if (&Val2.getSemantics() == &APFloat::IEEEhalf)
1305      return true;
1306    Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo);
1307    return !losesInfo;
1308  }
1309  case Type::FloatTyID: {
1310    if (&Val2.getSemantics() == &APFloat::IEEEsingle)
1311      return true;
1312    Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
1313    return !losesInfo;
1314  }
1315  case Type::DoubleTyID: {
1316    if (&Val2.getSemantics() == &APFloat::IEEEhalf ||
1317        &Val2.getSemantics() == &APFloat::IEEEsingle ||
1318        &Val2.getSemantics() == &APFloat::IEEEdouble)
1319      return true;
1320    Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
1321    return !losesInfo;
1322  }
1323  case Type::X86_FP80TyID:
1324    return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1325           &Val2.getSemantics() == &APFloat::IEEEsingle ||
1326           &Val2.getSemantics() == &APFloat::IEEEdouble ||
1327           &Val2.getSemantics() == &APFloat::x87DoubleExtended;
1328  case Type::FP128TyID:
1329    return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1330           &Val2.getSemantics() == &APFloat::IEEEsingle ||
1331           &Val2.getSemantics() == &APFloat::IEEEdouble ||
1332           &Val2.getSemantics() == &APFloat::IEEEquad;
1333  case Type::PPC_FP128TyID:
1334    return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1335           &Val2.getSemantics() == &APFloat::IEEEsingle ||
1336           &Val2.getSemantics() == &APFloat::IEEEdouble ||
1337           &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
1338  }
1339}
1340
1341
1342//===----------------------------------------------------------------------===//
1343//                      Factory Function Implementation
1344
1345ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1346  assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1347         "Cannot create an aggregate zero of non-aggregate type!");
1348
1349  ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty];
1350  if (!Entry)
1351    Entry = new ConstantAggregateZero(Ty);
1352
1353  return Entry;
1354}
1355
1356/// destroyConstant - Remove the constant from the constant table.
1357///
1358void ConstantAggregateZero::destroyConstant() {
1359  getContext().pImpl->CAZConstants.erase(getType());
1360  destroyConstantImpl();
1361}
1362
1363/// destroyConstant - Remove the constant from the constant table...
1364///
1365void ConstantArray::destroyConstant() {
1366  getType()->getContext().pImpl->ArrayConstants.remove(this);
1367  destroyConstantImpl();
1368}
1369
1370
1371//---- ConstantStruct::get() implementation...
1372//
1373
1374// destroyConstant - Remove the constant from the constant table...
1375//
1376void ConstantStruct::destroyConstant() {
1377  getType()->getContext().pImpl->StructConstants.remove(this);
1378  destroyConstantImpl();
1379}
1380
1381// destroyConstant - Remove the constant from the constant table...
1382//
1383void ConstantVector::destroyConstant() {
1384  getType()->getContext().pImpl->VectorConstants.remove(this);
1385  destroyConstantImpl();
1386}
1387
1388/// getSplatValue - If this is a splat vector constant, meaning that all of
1389/// the elements have the same value, return that value. Otherwise return 0.
1390Constant *Constant::getSplatValue() const {
1391  assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1392  if (isa<ConstantAggregateZero>(this))
1393    return getNullValue(this->getType()->getVectorElementType());
1394  if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
1395    return CV->getSplatValue();
1396  if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
1397    return CV->getSplatValue();
1398  return nullptr;
1399}
1400
1401/// getSplatValue - If this is a splat constant, where all of the
1402/// elements have the same value, return that value. Otherwise return null.
1403Constant *ConstantVector::getSplatValue() const {
1404  // Check out first element.
1405  Constant *Elt = getOperand(0);
1406  // Then make sure all remaining elements point to the same value.
1407  for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1408    if (getOperand(I) != Elt)
1409      return nullptr;
1410  return Elt;
1411}
1412
1413/// If C is a constant integer then return its value, otherwise C must be a
1414/// vector of constant integers, all equal, and the common value is returned.
1415const APInt &Constant::getUniqueInteger() const {
1416  if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
1417    return CI->getValue();
1418  assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1419  const Constant *C = this->getAggregateElement(0U);
1420  assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
1421  return cast<ConstantInt>(C)->getValue();
1422}
1423
1424
1425//---- ConstantPointerNull::get() implementation.
1426//
1427
1428ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1429  ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty];
1430  if (!Entry)
1431    Entry = new ConstantPointerNull(Ty);
1432
1433  return Entry;
1434}
1435
1436// destroyConstant - Remove the constant from the constant table...
1437//
1438void ConstantPointerNull::destroyConstant() {
1439  getContext().pImpl->CPNConstants.erase(getType());
1440  // Free the constant and any dangling references to it.
1441  destroyConstantImpl();
1442}
1443
1444
1445//---- UndefValue::get() implementation.
1446//
1447
1448UndefValue *UndefValue::get(Type *Ty) {
1449  UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty];
1450  if (!Entry)
1451    Entry = new UndefValue(Ty);
1452
1453  return Entry;
1454}
1455
1456// destroyConstant - Remove the constant from the constant table.
1457//
1458void UndefValue::destroyConstant() {
1459  // Free the constant and any dangling references to it.
1460  getContext().pImpl->UVConstants.erase(getType());
1461  destroyConstantImpl();
1462}
1463
1464//---- BlockAddress::get() implementation.
1465//
1466
1467BlockAddress *BlockAddress::get(BasicBlock *BB) {
1468  assert(BB->getParent() && "Block must have a parent");
1469  return get(BB->getParent(), BB);
1470}
1471
1472BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1473  BlockAddress *&BA =
1474    F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1475  if (!BA)
1476    BA = new BlockAddress(F, BB);
1477
1478  assert(BA->getFunction() == F && "Basic block moved between functions");
1479  return BA;
1480}
1481
1482BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1483: Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
1484           &Op<0>(), 2) {
1485  setOperand(0, F);
1486  setOperand(1, BB);
1487  BB->AdjustBlockAddressRefCount(1);
1488}
1489
1490BlockAddress *BlockAddress::lookup(const BasicBlock *BB) {
1491  if (!BB->hasAddressTaken())
1492    return nullptr;
1493
1494  const Function *F = BB->getParent();
1495  assert(F && "Block must have a parent");
1496  BlockAddress *BA =
1497      F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB));
1498  assert(BA && "Refcount and block address map disagree!");
1499  return BA;
1500}
1501
1502// destroyConstant - Remove the constant from the constant table.
1503//
1504void BlockAddress::destroyConstant() {
1505  getFunction()->getType()->getContext().pImpl
1506    ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1507  getBasicBlock()->AdjustBlockAddressRefCount(-1);
1508  destroyConstantImpl();
1509}
1510
1511void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
1512  // This could be replacing either the Basic Block or the Function.  In either
1513  // case, we have to remove the map entry.
1514  Function *NewF = getFunction();
1515  BasicBlock *NewBB = getBasicBlock();
1516
1517  if (U == &Op<0>())
1518    NewF = cast<Function>(To->stripPointerCasts());
1519  else
1520    NewBB = cast<BasicBlock>(To);
1521
1522  // See if the 'new' entry already exists, if not, just update this in place
1523  // and return early.
1524  BlockAddress *&NewBA =
1525    getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1526  if (NewBA) {
1527    replaceUsesOfWithOnConstantImpl(NewBA);
1528    return;
1529  }
1530
1531  getBasicBlock()->AdjustBlockAddressRefCount(-1);
1532
1533  // Remove the old entry, this can't cause the map to rehash (just a
1534  // tombstone will get added).
1535  getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1536                                                          getBasicBlock()));
1537  NewBA = this;
1538  setOperand(0, NewF);
1539  setOperand(1, NewBB);
1540  getBasicBlock()->AdjustBlockAddressRefCount(1);
1541}
1542
1543//---- ConstantExpr::get() implementations.
1544//
1545
1546/// This is a utility function to handle folding of casts and lookup of the
1547/// cast in the ExprConstants map. It is used by the various get* methods below.
1548static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty,
1549                               bool OnlyIfReduced = false) {
1550  assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1551  // Fold a few common cases
1552  if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1553    return FC;
1554
1555  if (OnlyIfReduced)
1556    return nullptr;
1557
1558  LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1559
1560  // Look up the constant in the table first to ensure uniqueness.
1561  ConstantExprKeyType Key(opc, C);
1562
1563  return pImpl->ExprConstants.getOrCreate(Ty, Key);
1564}
1565
1566Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty,
1567                                bool OnlyIfReduced) {
1568  Instruction::CastOps opc = Instruction::CastOps(oc);
1569  assert(Instruction::isCast(opc) && "opcode out of range");
1570  assert(C && Ty && "Null arguments to getCast");
1571  assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1572
1573  switch (opc) {
1574  default:
1575    llvm_unreachable("Invalid cast opcode");
1576  case Instruction::Trunc:
1577    return getTrunc(C, Ty, OnlyIfReduced);
1578  case Instruction::ZExt:
1579    return getZExt(C, Ty, OnlyIfReduced);
1580  case Instruction::SExt:
1581    return getSExt(C, Ty, OnlyIfReduced);
1582  case Instruction::FPTrunc:
1583    return getFPTrunc(C, Ty, OnlyIfReduced);
1584  case Instruction::FPExt:
1585    return getFPExtend(C, Ty, OnlyIfReduced);
1586  case Instruction::UIToFP:
1587    return getUIToFP(C, Ty, OnlyIfReduced);
1588  case Instruction::SIToFP:
1589    return getSIToFP(C, Ty, OnlyIfReduced);
1590  case Instruction::FPToUI:
1591    return getFPToUI(C, Ty, OnlyIfReduced);
1592  case Instruction::FPToSI:
1593    return getFPToSI(C, Ty, OnlyIfReduced);
1594  case Instruction::PtrToInt:
1595    return getPtrToInt(C, Ty, OnlyIfReduced);
1596  case Instruction::IntToPtr:
1597    return getIntToPtr(C, Ty, OnlyIfReduced);
1598  case Instruction::BitCast:
1599    return getBitCast(C, Ty, OnlyIfReduced);
1600  case Instruction::AddrSpaceCast:
1601    return getAddrSpaceCast(C, Ty, OnlyIfReduced);
1602  }
1603}
1604
1605Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
1606  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1607    return getBitCast(C, Ty);
1608  return getZExt(C, Ty);
1609}
1610
1611Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
1612  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1613    return getBitCast(C, Ty);
1614  return getSExt(C, Ty);
1615}
1616
1617Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
1618  if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1619    return getBitCast(C, Ty);
1620  return getTrunc(C, Ty);
1621}
1622
1623Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
1624  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1625  assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
1626          "Invalid cast");
1627
1628  if (Ty->isIntOrIntVectorTy())
1629    return getPtrToInt(S, Ty);
1630
1631  unsigned SrcAS = S->getType()->getPointerAddressSpace();
1632  if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
1633    return getAddrSpaceCast(S, Ty);
1634
1635  return getBitCast(S, Ty);
1636}
1637
1638Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S,
1639                                                         Type *Ty) {
1640  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1641  assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
1642
1643  if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
1644    return getAddrSpaceCast(S, Ty);
1645
1646  return getBitCast(S, Ty);
1647}
1648
1649Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty,
1650                                       bool isSigned) {
1651  assert(C->getType()->isIntOrIntVectorTy() &&
1652         Ty->isIntOrIntVectorTy() && "Invalid cast");
1653  unsigned SrcBits = C->getType()->getScalarSizeInBits();
1654  unsigned DstBits = Ty->getScalarSizeInBits();
1655  Instruction::CastOps opcode =
1656    (SrcBits == DstBits ? Instruction::BitCast :
1657     (SrcBits > DstBits ? Instruction::Trunc :
1658      (isSigned ? Instruction::SExt : Instruction::ZExt)));
1659  return getCast(opcode, C, Ty);
1660}
1661
1662Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
1663  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1664         "Invalid cast");
1665  unsigned SrcBits = C->getType()->getScalarSizeInBits();
1666  unsigned DstBits = Ty->getScalarSizeInBits();
1667  if (SrcBits == DstBits)
1668    return C; // Avoid a useless cast
1669  Instruction::CastOps opcode =
1670    (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1671  return getCast(opcode, C, Ty);
1672}
1673
1674Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
1675#ifndef NDEBUG
1676  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1677  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1678#endif
1679  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1680  assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1681  assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
1682  assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1683         "SrcTy must be larger than DestTy for Trunc!");
1684
1685  return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced);
1686}
1687
1688Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
1689#ifndef NDEBUG
1690  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1691  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1692#endif
1693  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1694  assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1695  assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
1696  assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1697         "SrcTy must be smaller than DestTy for SExt!");
1698
1699  return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced);
1700}
1701
1702Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
1703#ifndef NDEBUG
1704  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1705  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1706#endif
1707  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1708  assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1709  assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
1710  assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1711         "SrcTy must be smaller than DestTy for ZExt!");
1712
1713  return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced);
1714}
1715
1716Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
1717#ifndef NDEBUG
1718  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1719  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1720#endif
1721  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1722  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1723         C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1724         "This is an illegal floating point truncation!");
1725  return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced);
1726}
1727
1728Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) {
1729#ifndef NDEBUG
1730  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1731  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1732#endif
1733  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1734  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1735         C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1736         "This is an illegal floating point extension!");
1737  return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced);
1738}
1739
1740Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
1741#ifndef NDEBUG
1742  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1743  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1744#endif
1745  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1746  assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1747         "This is an illegal uint to floating point cast!");
1748  return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced);
1749}
1750
1751Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
1752#ifndef NDEBUG
1753  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1754  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1755#endif
1756  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1757  assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1758         "This is an illegal sint to floating point cast!");
1759  return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced);
1760}
1761
1762Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) {
1763#ifndef NDEBUG
1764  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1765  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1766#endif
1767  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1768  assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1769         "This is an illegal floating point to uint cast!");
1770  return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced);
1771}
1772
1773Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) {
1774#ifndef NDEBUG
1775  bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1776  bool toVec = Ty->getTypeID() == Type::VectorTyID;
1777#endif
1778  assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1779  assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1780         "This is an illegal floating point to sint cast!");
1781  return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced);
1782}
1783
1784Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy,
1785                                    bool OnlyIfReduced) {
1786  assert(C->getType()->getScalarType()->isPointerTy() &&
1787         "PtrToInt source must be pointer or pointer vector");
1788  assert(DstTy->getScalarType()->isIntegerTy() &&
1789         "PtrToInt destination must be integer or integer vector");
1790  assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1791  if (isa<VectorType>(C->getType()))
1792    assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1793           "Invalid cast between a different number of vector elements");
1794  return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced);
1795}
1796
1797Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy,
1798                                    bool OnlyIfReduced) {
1799  assert(C->getType()->getScalarType()->isIntegerTy() &&
1800         "IntToPtr source must be integer or integer vector");
1801  assert(DstTy->getScalarType()->isPointerTy() &&
1802         "IntToPtr destination must be a pointer or pointer vector");
1803  assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1804  if (isa<VectorType>(C->getType()))
1805    assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1806           "Invalid cast between a different number of vector elements");
1807  return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced);
1808}
1809
1810Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy,
1811                                   bool OnlyIfReduced) {
1812  assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
1813         "Invalid constantexpr bitcast!");
1814
1815  // It is common to ask for a bitcast of a value to its own type, handle this
1816  // speedily.
1817  if (C->getType() == DstTy) return C;
1818
1819  return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced);
1820}
1821
1822Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy,
1823                                         bool OnlyIfReduced) {
1824  assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) &&
1825         "Invalid constantexpr addrspacecast!");
1826
1827  // Canonicalize addrspacecasts between different pointer types by first
1828  // bitcasting the pointer type and then converting the address space.
1829  PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType());
1830  PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType());
1831  Type *DstElemTy = DstScalarTy->getElementType();
1832  if (SrcScalarTy->getElementType() != DstElemTy) {
1833    Type *MidTy = PointerType::get(DstElemTy, SrcScalarTy->getAddressSpace());
1834    if (VectorType *VT = dyn_cast<VectorType>(DstTy)) {
1835      // Handle vectors of pointers.
1836      MidTy = VectorType::get(MidTy, VT->getNumElements());
1837    }
1838    C = getBitCast(C, MidTy);
1839  }
1840  return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced);
1841}
1842
1843Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
1844                            unsigned Flags, Type *OnlyIfReducedTy) {
1845  // Check the operands for consistency first.
1846  assert(Opcode >= Instruction::BinaryOpsBegin &&
1847         Opcode <  Instruction::BinaryOpsEnd   &&
1848         "Invalid opcode in binary constant expression");
1849  assert(C1->getType() == C2->getType() &&
1850         "Operand types in binary constant expression should match");
1851
1852#ifndef NDEBUG
1853  switch (Opcode) {
1854  case Instruction::Add:
1855  case Instruction::Sub:
1856  case Instruction::Mul:
1857    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1858    assert(C1->getType()->isIntOrIntVectorTy() &&
1859           "Tried to create an integer operation on a non-integer type!");
1860    break;
1861  case Instruction::FAdd:
1862  case Instruction::FSub:
1863  case Instruction::FMul:
1864    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1865    assert(C1->getType()->isFPOrFPVectorTy() &&
1866           "Tried to create a floating-point operation on a "
1867           "non-floating-point type!");
1868    break;
1869  case Instruction::UDiv:
1870  case Instruction::SDiv:
1871    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1872    assert(C1->getType()->isIntOrIntVectorTy() &&
1873           "Tried to create an arithmetic operation on a non-arithmetic type!");
1874    break;
1875  case Instruction::FDiv:
1876    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1877    assert(C1->getType()->isFPOrFPVectorTy() &&
1878           "Tried to create an arithmetic operation on a non-arithmetic type!");
1879    break;
1880  case Instruction::URem:
1881  case Instruction::SRem:
1882    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1883    assert(C1->getType()->isIntOrIntVectorTy() &&
1884           "Tried to create an arithmetic operation on a non-arithmetic type!");
1885    break;
1886  case Instruction::FRem:
1887    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1888    assert(C1->getType()->isFPOrFPVectorTy() &&
1889           "Tried to create an arithmetic operation on a non-arithmetic type!");
1890    break;
1891  case Instruction::And:
1892  case Instruction::Or:
1893  case Instruction::Xor:
1894    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1895    assert(C1->getType()->isIntOrIntVectorTy() &&
1896           "Tried to create a logical operation on a non-integral type!");
1897    break;
1898  case Instruction::Shl:
1899  case Instruction::LShr:
1900  case Instruction::AShr:
1901    assert(C1->getType() == C2->getType() && "Op types should be identical!");
1902    assert(C1->getType()->isIntOrIntVectorTy() &&
1903           "Tried to create a shift operation on a non-integer type!");
1904    break;
1905  default:
1906    break;
1907  }
1908#endif
1909
1910  if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
1911    return FC;          // Fold a few common cases.
1912
1913  if (OnlyIfReducedTy == C1->getType())
1914    return nullptr;
1915
1916  Constant *ArgVec[] = { C1, C2 };
1917  ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
1918
1919  LLVMContextImpl *pImpl = C1->getContext().pImpl;
1920  return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
1921}
1922
1923Constant *ConstantExpr::getSizeOf(Type* Ty) {
1924  // sizeof is implemented as: (i64) gep (Ty*)null, 1
1925  // Note that a non-inbounds gep is used, as null isn't within any object.
1926  Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1927  Constant *GEP = getGetElementPtr(
1928      Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1929  return getPtrToInt(GEP,
1930                     Type::getInt64Ty(Ty->getContext()));
1931}
1932
1933Constant *ConstantExpr::getAlignOf(Type* Ty) {
1934  // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
1935  // Note that a non-inbounds gep is used, as null isn't within any object.
1936  Type *AligningTy =
1937    StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, nullptr);
1938  Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0));
1939  Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
1940  Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1941  Constant *Indices[2] = { Zero, One };
1942  Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices);
1943  return getPtrToInt(GEP,
1944                     Type::getInt64Ty(Ty->getContext()));
1945}
1946
1947Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
1948  return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
1949                                           FieldNo));
1950}
1951
1952Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
1953  // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1954  // Note that a non-inbounds gep is used, as null isn't within any object.
1955  Constant *GEPIdx[] = {
1956    ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
1957    FieldNo
1958  };
1959  Constant *GEP = getGetElementPtr(
1960      Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1961  return getPtrToInt(GEP,
1962                     Type::getInt64Ty(Ty->getContext()));
1963}
1964
1965Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1,
1966                                   Constant *C2, bool OnlyIfReduced) {
1967  assert(C1->getType() == C2->getType() && "Op types should be identical!");
1968
1969  switch (Predicate) {
1970  default: llvm_unreachable("Invalid CmpInst predicate");
1971  case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
1972  case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
1973  case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
1974  case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
1975  case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
1976  case CmpInst::FCMP_TRUE:
1977    return getFCmp(Predicate, C1, C2, OnlyIfReduced);
1978
1979  case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
1980  case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
1981  case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
1982  case CmpInst::ICMP_SLE:
1983    return getICmp(Predicate, C1, C2, OnlyIfReduced);
1984  }
1985}
1986
1987Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2,
1988                                  Type *OnlyIfReducedTy) {
1989  assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
1990
1991  if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
1992    return SC;        // Fold common cases
1993
1994  if (OnlyIfReducedTy == V1->getType())
1995    return nullptr;
1996
1997  Constant *ArgVec[] = { C, V1, V2 };
1998  ConstantExprKeyType Key(Instruction::Select, ArgVec);
1999
2000  LLVMContextImpl *pImpl = C->getContext().pImpl;
2001  return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
2002}
2003
2004Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C,
2005                                         ArrayRef<Value *> Idxs, bool InBounds,
2006                                         Type *OnlyIfReducedTy) {
2007  if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs))
2008    return FC;          // Fold a few common cases.
2009
2010  if (!Ty)
2011    Ty = cast<PointerType>(C->getType()->getScalarType())->getElementType();
2012  else
2013    assert(Ty ==
2014           cast<PointerType>(C->getType()->getScalarType())->getElementType());
2015  // Get the result type of the getelementptr!
2016  Type *DestTy = GetElementPtrInst::getIndexedType(Ty, Idxs);
2017  assert(DestTy && "GEP indices invalid!");
2018  unsigned AS = C->getType()->getPointerAddressSpace();
2019  Type *ReqTy = DestTy->getPointerTo(AS);
2020  if (VectorType *VecTy = dyn_cast<VectorType>(C->getType()))
2021    ReqTy = VectorType::get(ReqTy, VecTy->getNumElements());
2022
2023  if (OnlyIfReducedTy == ReqTy)
2024    return nullptr;
2025
2026  // Look up the constant in the table first to ensure uniqueness
2027  std::vector<Constant*> ArgVec;
2028  ArgVec.reserve(1 + Idxs.size());
2029  ArgVec.push_back(C);
2030  for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
2031    assert(Idxs[i]->getType()->isVectorTy() == ReqTy->isVectorTy() &&
2032           "getelementptr index type missmatch");
2033    assert((!Idxs[i]->getType()->isVectorTy() ||
2034            ReqTy->getVectorNumElements() ==
2035            Idxs[i]->getType()->getVectorNumElements()) &&
2036           "getelementptr index type missmatch");
2037    ArgVec.push_back(cast<Constant>(Idxs[i]));
2038  }
2039  const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
2040                                InBounds ? GEPOperator::IsInBounds : 0);
2041
2042  LLVMContextImpl *pImpl = C->getContext().pImpl;
2043  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2044}
2045
2046Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS,
2047                                Constant *RHS, bool OnlyIfReduced) {
2048  assert(LHS->getType() == RHS->getType());
2049  assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
2050         pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
2051
2052  if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2053    return FC;          // Fold a few common cases...
2054
2055  if (OnlyIfReduced)
2056    return nullptr;
2057
2058  // Look up the constant in the table first to ensure uniqueness
2059  Constant *ArgVec[] = { LHS, RHS };
2060  // Get the key type with both the opcode and predicate
2061  const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred);
2062
2063  Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2064  if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2065    ResultTy = VectorType::get(ResultTy, VT->getNumElements());
2066
2067  LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2068  return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2069}
2070
2071Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS,
2072                                Constant *RHS, bool OnlyIfReduced) {
2073  assert(LHS->getType() == RHS->getType());
2074  assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
2075
2076  if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2077    return FC;          // Fold a few common cases...
2078
2079  if (OnlyIfReduced)
2080    return nullptr;
2081
2082  // Look up the constant in the table first to ensure uniqueness
2083  Constant *ArgVec[] = { LHS, RHS };
2084  // Get the key type with both the opcode and predicate
2085  const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred);
2086
2087  Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2088  if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2089    ResultTy = VectorType::get(ResultTy, VT->getNumElements());
2090
2091  LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2092  return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2093}
2094
2095Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx,
2096                                          Type *OnlyIfReducedTy) {
2097  assert(Val->getType()->isVectorTy() &&
2098         "Tried to create extractelement operation on non-vector type!");
2099  assert(Idx->getType()->isIntegerTy() &&
2100         "Extractelement index must be an integer type!");
2101
2102  if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
2103    return FC;          // Fold a few common cases.
2104
2105  Type *ReqTy = Val->getType()->getVectorElementType();
2106  if (OnlyIfReducedTy == ReqTy)
2107    return nullptr;
2108
2109  // Look up the constant in the table first to ensure uniqueness
2110  Constant *ArgVec[] = { Val, Idx };
2111  const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec);
2112
2113  LLVMContextImpl *pImpl = Val->getContext().pImpl;
2114  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2115}
2116
2117Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
2118                                         Constant *Idx, Type *OnlyIfReducedTy) {
2119  assert(Val->getType()->isVectorTy() &&
2120         "Tried to create insertelement operation on non-vector type!");
2121  assert(Elt->getType() == Val->getType()->getVectorElementType() &&
2122         "Insertelement types must match!");
2123  assert(Idx->getType()->isIntegerTy() &&
2124         "Insertelement index must be i32 type!");
2125
2126  if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
2127    return FC;          // Fold a few common cases.
2128
2129  if (OnlyIfReducedTy == Val->getType())
2130    return nullptr;
2131
2132  // Look up the constant in the table first to ensure uniqueness
2133  Constant *ArgVec[] = { Val, Elt, Idx };
2134  const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec);
2135
2136  LLVMContextImpl *pImpl = Val->getContext().pImpl;
2137  return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
2138}
2139
2140Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
2141                                         Constant *Mask, Type *OnlyIfReducedTy) {
2142  assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
2143         "Invalid shuffle vector constant expr operands!");
2144
2145  if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
2146    return FC;          // Fold a few common cases.
2147
2148  unsigned NElts = Mask->getType()->getVectorNumElements();
2149  Type *EltTy = V1->getType()->getVectorElementType();
2150  Type *ShufTy = VectorType::get(EltTy, NElts);
2151
2152  if (OnlyIfReducedTy == ShufTy)
2153    return nullptr;
2154
2155  // Look up the constant in the table first to ensure uniqueness
2156  Constant *ArgVec[] = { V1, V2, Mask };
2157  const ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec);
2158
2159  LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
2160  return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
2161}
2162
2163Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
2164                                       ArrayRef<unsigned> Idxs,
2165                                       Type *OnlyIfReducedTy) {
2166  assert(Agg->getType()->isFirstClassType() &&
2167         "Non-first-class type for constant insertvalue expression");
2168
2169  assert(ExtractValueInst::getIndexedType(Agg->getType(),
2170                                          Idxs) == Val->getType() &&
2171         "insertvalue indices invalid!");
2172  Type *ReqTy = Val->getType();
2173
2174  if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
2175    return FC;
2176
2177  if (OnlyIfReducedTy == ReqTy)
2178    return nullptr;
2179
2180  Constant *ArgVec[] = { Agg, Val };
2181  const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
2182
2183  LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2184  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2185}
2186
2187Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
2188                                        Type *OnlyIfReducedTy) {
2189  assert(Agg->getType()->isFirstClassType() &&
2190         "Tried to create extractelement operation on non-first-class type!");
2191
2192  Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
2193  (void)ReqTy;
2194  assert(ReqTy && "extractvalue indices invalid!");
2195
2196  assert(Agg->getType()->isFirstClassType() &&
2197         "Non-first-class type for constant extractvalue expression");
2198  if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
2199    return FC;
2200
2201  if (OnlyIfReducedTy == ReqTy)
2202    return nullptr;
2203
2204  Constant *ArgVec[] = { Agg };
2205  const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
2206
2207  LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2208  return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2209}
2210
2211Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
2212  assert(C->getType()->isIntOrIntVectorTy() &&
2213         "Cannot NEG a nonintegral value!");
2214  return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
2215                C, HasNUW, HasNSW);
2216}
2217
2218Constant *ConstantExpr::getFNeg(Constant *C) {
2219  assert(C->getType()->isFPOrFPVectorTy() &&
2220         "Cannot FNEG a non-floating-point value!");
2221  return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
2222}
2223
2224Constant *ConstantExpr::getNot(Constant *C) {
2225  assert(C->getType()->isIntOrIntVectorTy() &&
2226         "Cannot NOT a nonintegral value!");
2227  return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
2228}
2229
2230Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
2231                               bool HasNUW, bool HasNSW) {
2232  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2233                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2234  return get(Instruction::Add, C1, C2, Flags);
2235}
2236
2237Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
2238  return get(Instruction::FAdd, C1, C2);
2239}
2240
2241Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
2242                               bool HasNUW, bool HasNSW) {
2243  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2244                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2245  return get(Instruction::Sub, C1, C2, Flags);
2246}
2247
2248Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
2249  return get(Instruction::FSub, C1, C2);
2250}
2251
2252Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
2253                               bool HasNUW, bool HasNSW) {
2254  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2255                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2256  return get(Instruction::Mul, C1, C2, Flags);
2257}
2258
2259Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
2260  return get(Instruction::FMul, C1, C2);
2261}
2262
2263Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
2264  return get(Instruction::UDiv, C1, C2,
2265             isExact ? PossiblyExactOperator::IsExact : 0);
2266}
2267
2268Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
2269  return get(Instruction::SDiv, C1, C2,
2270             isExact ? PossiblyExactOperator::IsExact : 0);
2271}
2272
2273Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
2274  return get(Instruction::FDiv, C1, C2);
2275}
2276
2277Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
2278  return get(Instruction::URem, C1, C2);
2279}
2280
2281Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
2282  return get(Instruction::SRem, C1, C2);
2283}
2284
2285Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
2286  return get(Instruction::FRem, C1, C2);
2287}
2288
2289Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
2290  return get(Instruction::And, C1, C2);
2291}
2292
2293Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
2294  return get(Instruction::Or, C1, C2);
2295}
2296
2297Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
2298  return get(Instruction::Xor, C1, C2);
2299}
2300
2301Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
2302                               bool HasNUW, bool HasNSW) {
2303  unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2304                   (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2305  return get(Instruction::Shl, C1, C2, Flags);
2306}
2307
2308Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2309  return get(Instruction::LShr, C1, C2,
2310             isExact ? PossiblyExactOperator::IsExact : 0);
2311}
2312
2313Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2314  return get(Instruction::AShr, C1, C2,
2315             isExact ? PossiblyExactOperator::IsExact : 0);
2316}
2317
2318/// getBinOpIdentity - Return the identity for the given binary operation,
2319/// i.e. a constant C such that X op C = X and C op X = X for every X.  It
2320/// returns null if the operator doesn't have an identity.
2321Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) {
2322  switch (Opcode) {
2323  default:
2324    // Doesn't have an identity.
2325    return nullptr;
2326
2327  case Instruction::Add:
2328  case Instruction::Or:
2329  case Instruction::Xor:
2330    return Constant::getNullValue(Ty);
2331
2332  case Instruction::Mul:
2333    return ConstantInt::get(Ty, 1);
2334
2335  case Instruction::And:
2336    return Constant::getAllOnesValue(Ty);
2337  }
2338}
2339
2340/// getBinOpAbsorber - Return the absorbing element for the given binary
2341/// operation, i.e. a constant C such that X op C = C and C op X = C for
2342/// every X.  For example, this returns zero for integer multiplication.
2343/// It returns null if the operator doesn't have an absorbing element.
2344Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2345  switch (Opcode) {
2346  default:
2347    // Doesn't have an absorber.
2348    return nullptr;
2349
2350  case Instruction::Or:
2351    return Constant::getAllOnesValue(Ty);
2352
2353  case Instruction::And:
2354  case Instruction::Mul:
2355    return Constant::getNullValue(Ty);
2356  }
2357}
2358
2359// destroyConstant - Remove the constant from the constant table...
2360//
2361void ConstantExpr::destroyConstant() {
2362  getType()->getContext().pImpl->ExprConstants.remove(this);
2363  destroyConstantImpl();
2364}
2365
2366const char *ConstantExpr::getOpcodeName() const {
2367  return Instruction::getOpcodeName(getOpcode());
2368}
2369
2370
2371
2372GetElementPtrConstantExpr::
2373GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList,
2374                          Type *DestTy)
2375  : ConstantExpr(DestTy, Instruction::GetElementPtr,
2376                 OperandTraits<GetElementPtrConstantExpr>::op_end(this)
2377                 - (IdxList.size()+1), IdxList.size()+1) {
2378  OperandList[0] = C;
2379  for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2380    OperandList[i+1] = IdxList[i];
2381}
2382
2383//===----------------------------------------------------------------------===//
2384//                       ConstantData* implementations
2385
2386void ConstantDataArray::anchor() {}
2387void ConstantDataVector::anchor() {}
2388
2389/// getElementType - Return the element type of the array/vector.
2390Type *ConstantDataSequential::getElementType() const {
2391  return getType()->getElementType();
2392}
2393
2394StringRef ConstantDataSequential::getRawDataValues() const {
2395  return StringRef(DataElements, getNumElements()*getElementByteSize());
2396}
2397
2398/// isElementTypeCompatible - Return true if a ConstantDataSequential can be
2399/// formed with a vector or array of the specified element type.
2400/// ConstantDataArray only works with normal float and int types that are
2401/// stored densely in memory, not with things like i42 or x86_f80.
2402bool ConstantDataSequential::isElementTypeCompatible(const Type *Ty) {
2403  if (Ty->isFloatTy() || Ty->isDoubleTy()) return true;
2404  if (const IntegerType *IT = dyn_cast<IntegerType>(Ty)) {
2405    switch (IT->getBitWidth()) {
2406    case 8:
2407    case 16:
2408    case 32:
2409    case 64:
2410      return true;
2411    default: break;
2412    }
2413  }
2414  return false;
2415}
2416
2417/// getNumElements - Return the number of elements in the array or vector.
2418unsigned ConstantDataSequential::getNumElements() const {
2419  if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2420    return AT->getNumElements();
2421  return getType()->getVectorNumElements();
2422}
2423
2424
2425/// getElementByteSize - Return the size in bytes of the elements in the data.
2426uint64_t ConstantDataSequential::getElementByteSize() const {
2427  return getElementType()->getPrimitiveSizeInBits()/8;
2428}
2429
2430/// getElementPointer - Return the start of the specified element.
2431const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2432  assert(Elt < getNumElements() && "Invalid Elt");
2433  return DataElements+Elt*getElementByteSize();
2434}
2435
2436
2437/// isAllZeros - return true if the array is empty or all zeros.
2438static bool isAllZeros(StringRef Arr) {
2439  for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I)
2440    if (*I != 0)
2441      return false;
2442  return true;
2443}
2444
2445/// getImpl - This is the underlying implementation of all of the
2446/// ConstantDataSequential::get methods.  They all thunk down to here, providing
2447/// the correct element type.  We take the bytes in as a StringRef because
2448/// we *want* an underlying "char*" to avoid TBAA type punning violations.
2449Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2450  assert(isElementTypeCompatible(Ty->getSequentialElementType()));
2451  // If the elements are all zero or there are no elements, return a CAZ, which
2452  // is more dense and canonical.
2453  if (isAllZeros(Elements))
2454    return ConstantAggregateZero::get(Ty);
2455
2456  // Do a lookup to see if we have already formed one of these.
2457  auto &Slot =
2458      *Ty->getContext()
2459           .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr))
2460           .first;
2461
2462  // The bucket can point to a linked list of different CDS's that have the same
2463  // body but different types.  For example, 0,0,0,1 could be a 4 element array
2464  // of i8, or a 1-element array of i32.  They'll both end up in the same
2465  /// StringMap bucket, linked up by their Next pointers.  Walk the list.
2466  ConstantDataSequential **Entry = &Slot.second;
2467  for (ConstantDataSequential *Node = *Entry; Node;
2468       Entry = &Node->Next, Node = *Entry)
2469    if (Node->getType() == Ty)
2470      return Node;
2471
2472  // Okay, we didn't get a hit.  Create a node of the right class, link it in,
2473  // and return it.
2474  if (isa<ArrayType>(Ty))
2475    return *Entry = new ConstantDataArray(Ty, Slot.first().data());
2476
2477  assert(isa<VectorType>(Ty));
2478  return *Entry = new ConstantDataVector(Ty, Slot.first().data());
2479}
2480
2481void ConstantDataSequential::destroyConstant() {
2482  // Remove the constant from the StringMap.
2483  StringMap<ConstantDataSequential*> &CDSConstants =
2484    getType()->getContext().pImpl->CDSConstants;
2485
2486  StringMap<ConstantDataSequential*>::iterator Slot =
2487    CDSConstants.find(getRawDataValues());
2488
2489  assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
2490
2491  ConstantDataSequential **Entry = &Slot->getValue();
2492
2493  // Remove the entry from the hash table.
2494  if (!(*Entry)->Next) {
2495    // If there is only one value in the bucket (common case) it must be this
2496    // entry, and removing the entry should remove the bucket completely.
2497    assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
2498    getContext().pImpl->CDSConstants.erase(Slot);
2499  } else {
2500    // Otherwise, there are multiple entries linked off the bucket, unlink the
2501    // node we care about but keep the bucket around.
2502    for (ConstantDataSequential *Node = *Entry; ;
2503         Entry = &Node->Next, Node = *Entry) {
2504      assert(Node && "Didn't find entry in its uniquing hash table!");
2505      // If we found our entry, unlink it from the list and we're done.
2506      if (Node == this) {
2507        *Entry = Node->Next;
2508        break;
2509      }
2510    }
2511  }
2512
2513  // If we were part of a list, make sure that we don't delete the list that is
2514  // still owned by the uniquing map.
2515  Next = nullptr;
2516
2517  // Finally, actually delete it.
2518  destroyConstantImpl();
2519}
2520
2521/// get() constructors - Return a constant with array type with an element
2522/// count and element type matching the ArrayRef passed in.  Note that this
2523/// can return a ConstantAggregateZero object.
2524Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) {
2525  Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size());
2526  const char *Data = reinterpret_cast<const char *>(Elts.data());
2527  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2528}
2529Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2530  Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size());
2531  const char *Data = reinterpret_cast<const char *>(Elts.data());
2532  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2533}
2534Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2535  Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size());
2536  const char *Data = reinterpret_cast<const char *>(Elts.data());
2537  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2538}
2539Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2540  Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size());
2541  const char *Data = reinterpret_cast<const char *>(Elts.data());
2542  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2543}
2544Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) {
2545  Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2546  const char *Data = reinterpret_cast<const char *>(Elts.data());
2547  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2548}
2549Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) {
2550  Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2551  const char *Data = reinterpret_cast<const char *>(Elts.data());
2552  return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
2553}
2554
2555/// getFP() constructors - Return a constant with array type with an element
2556/// count and element type of float with precision matching the number of
2557/// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
2558/// double for 64bits) Note that this can return a ConstantAggregateZero
2559/// object.
2560Constant *ConstantDataArray::getFP(LLVMContext &Context,
2561                                   ArrayRef<uint16_t> Elts) {
2562  Type *Ty = VectorType::get(Type::getHalfTy(Context), Elts.size());
2563  const char *Data = reinterpret_cast<const char *>(Elts.data());
2564  return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 2), Ty);
2565}
2566Constant *ConstantDataArray::getFP(LLVMContext &Context,
2567                                   ArrayRef<uint32_t> Elts) {
2568  Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2569  const char *Data = reinterpret_cast<const char *>(Elts.data());
2570  return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 4), Ty);
2571}
2572Constant *ConstantDataArray::getFP(LLVMContext &Context,
2573                                   ArrayRef<uint64_t> Elts) {
2574  Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2575  const char *Data = reinterpret_cast<const char *>(Elts.data());
2576  return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
2577}
2578
2579/// getString - This method constructs a CDS and initializes it with a text
2580/// string. The default behavior (AddNull==true) causes a null terminator to
2581/// be placed at the end of the array (increasing the length of the string by
2582/// one more than the StringRef would normally indicate.  Pass AddNull=false
2583/// to disable this behavior.
2584Constant *ConstantDataArray::getString(LLVMContext &Context,
2585                                       StringRef Str, bool AddNull) {
2586  if (!AddNull) {
2587    const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data());
2588    return get(Context, makeArrayRef(const_cast<uint8_t *>(Data),
2589               Str.size()));
2590  }
2591
2592  SmallVector<uint8_t, 64> ElementVals;
2593  ElementVals.append(Str.begin(), Str.end());
2594  ElementVals.push_back(0);
2595  return get(Context, ElementVals);
2596}
2597
2598/// get() constructors - Return a constant with vector type with an element
2599/// count and element type matching the ArrayRef passed in.  Note that this
2600/// can return a ConstantAggregateZero object.
2601Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
2602  Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
2603  const char *Data = reinterpret_cast<const char *>(Elts.data());
2604  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2605}
2606Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2607  Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
2608  const char *Data = reinterpret_cast<const char *>(Elts.data());
2609  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2610}
2611Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2612  Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
2613  const char *Data = reinterpret_cast<const char *>(Elts.data());
2614  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2615}
2616Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2617  Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
2618  const char *Data = reinterpret_cast<const char *>(Elts.data());
2619  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2620}
2621Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
2622  Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2623  const char *Data = reinterpret_cast<const char *>(Elts.data());
2624  return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2625}
2626Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
2627  Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2628  const char *Data = reinterpret_cast<const char *>(Elts.data());
2629  return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
2630}
2631
2632/// getFP() constructors - Return a constant with vector type with an element
2633/// count and element type of float with the precision matching the number of
2634/// bits in the ArrayRef passed in.  (i.e. half for 16bits, float for 32bits,
2635/// double for 64bits) Note that this can return a ConstantAggregateZero
2636/// object.
2637Constant *ConstantDataVector::getFP(LLVMContext &Context,
2638                                    ArrayRef<uint16_t> Elts) {
2639  Type *Ty = VectorType::get(Type::getHalfTy(Context), Elts.size());
2640  const char *Data = reinterpret_cast<const char *>(Elts.data());
2641  return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 2), Ty);
2642}
2643Constant *ConstantDataVector::getFP(LLVMContext &Context,
2644                                    ArrayRef<uint32_t> Elts) {
2645  Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2646  const char *Data = reinterpret_cast<const char *>(Elts.data());
2647  return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 4), Ty);
2648}
2649Constant *ConstantDataVector::getFP(LLVMContext &Context,
2650                                    ArrayRef<uint64_t> Elts) {
2651  Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2652  const char *Data = reinterpret_cast<const char *>(Elts.data());
2653  return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
2654}
2655
2656Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
2657  assert(isElementTypeCompatible(V->getType()) &&
2658         "Element type not compatible with ConstantData");
2659  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2660    if (CI->getType()->isIntegerTy(8)) {
2661      SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
2662      return get(V->getContext(), Elts);
2663    }
2664    if (CI->getType()->isIntegerTy(16)) {
2665      SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
2666      return get(V->getContext(), Elts);
2667    }
2668    if (CI->getType()->isIntegerTy(32)) {
2669      SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
2670      return get(V->getContext(), Elts);
2671    }
2672    assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
2673    SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
2674    return get(V->getContext(), Elts);
2675  }
2676
2677  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2678    if (CFP->getType()->isFloatTy()) {
2679      SmallVector<uint32_t, 16> Elts(
2680          NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2681      return getFP(V->getContext(), Elts);
2682    }
2683    if (CFP->getType()->isDoubleTy()) {
2684      SmallVector<uint64_t, 16> Elts(
2685          NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2686      return getFP(V->getContext(), Elts);
2687    }
2688  }
2689  return ConstantVector::getSplat(NumElts, V);
2690}
2691
2692
2693/// getElementAsInteger - If this is a sequential container of integers (of
2694/// any size), return the specified element in the low bits of a uint64_t.
2695uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
2696  assert(isa<IntegerType>(getElementType()) &&
2697         "Accessor can only be used when element is an integer");
2698  const char *EltPtr = getElementPointer(Elt);
2699
2700  // The data is stored in host byte order, make sure to cast back to the right
2701  // type to load with the right endianness.
2702  switch (getElementType()->getIntegerBitWidth()) {
2703  default: llvm_unreachable("Invalid bitwidth for CDS");
2704  case 8:
2705    return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr));
2706  case 16:
2707    return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr));
2708  case 32:
2709    return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr));
2710  case 64:
2711    return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr));
2712  }
2713}
2714
2715/// getElementAsAPFloat - If this is a sequential container of floating point
2716/// type, return the specified element as an APFloat.
2717APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
2718  const char *EltPtr = getElementPointer(Elt);
2719
2720  switch (getElementType()->getTypeID()) {
2721  default:
2722    llvm_unreachable("Accessor can only be used when element is float/double!");
2723  case Type::FloatTyID: {
2724    auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
2725    return APFloat(APFloat::IEEEsingle, APInt(32, EltVal));
2726  }
2727  case Type::DoubleTyID: {
2728    auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
2729    return APFloat(APFloat::IEEEdouble, APInt(64, EltVal));
2730  }
2731  }
2732}
2733
2734/// getElementAsFloat - If this is an sequential container of floats, return
2735/// the specified element as a float.
2736float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
2737  assert(getElementType()->isFloatTy() &&
2738         "Accessor can only be used when element is a 'float'");
2739  const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt));
2740  return *const_cast<float *>(EltPtr);
2741}
2742
2743/// getElementAsDouble - If this is an sequential container of doubles, return
2744/// the specified element as a float.
2745double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
2746  assert(getElementType()->isDoubleTy() &&
2747         "Accessor can only be used when element is a 'float'");
2748  const double *EltPtr =
2749      reinterpret_cast<const double *>(getElementPointer(Elt));
2750  return *const_cast<double *>(EltPtr);
2751}
2752
2753/// getElementAsConstant - Return a Constant for a specified index's element.
2754/// Note that this has to compute a new constant to return, so it isn't as
2755/// efficient as getElementAsInteger/Float/Double.
2756Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
2757  if (getElementType()->isFloatTy() || getElementType()->isDoubleTy())
2758    return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
2759
2760  return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
2761}
2762
2763/// isString - This method returns true if this is an array of i8.
2764bool ConstantDataSequential::isString() const {
2765  return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8);
2766}
2767
2768/// isCString - This method returns true if the array "isString", ends with a
2769/// nul byte, and does not contains any other nul bytes.
2770bool ConstantDataSequential::isCString() const {
2771  if (!isString())
2772    return false;
2773
2774  StringRef Str = getAsString();
2775
2776  // The last value must be nul.
2777  if (Str.back() != 0) return false;
2778
2779  // Other elements must be non-nul.
2780  return Str.drop_back().find(0) == StringRef::npos;
2781}
2782
2783/// getSplatValue - If this is a splat constant, meaning that all of the
2784/// elements have the same value, return that value. Otherwise return nullptr.
2785Constant *ConstantDataVector::getSplatValue() const {
2786  const char *Base = getRawDataValues().data();
2787
2788  // Compare elements 1+ to the 0'th element.
2789  unsigned EltSize = getElementByteSize();
2790  for (unsigned i = 1, e = getNumElements(); i != e; ++i)
2791    if (memcmp(Base, Base+i*EltSize, EltSize))
2792      return nullptr;
2793
2794  // If they're all the same, return the 0th one as a representative.
2795  return getElementAsConstant(0);
2796}
2797
2798//===----------------------------------------------------------------------===//
2799//                replaceUsesOfWithOnConstant implementations
2800
2801/// replaceUsesOfWithOnConstant - Update this constant array to change uses of
2802/// 'From' to be uses of 'To'.  This must update the uniquing data structures
2803/// etc.
2804///
2805/// Note that we intentionally replace all uses of From with To here.  Consider
2806/// a large array that uses 'From' 1000 times.  By handling this case all here,
2807/// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
2808/// single invocation handles all 1000 uses.  Handling them one at a time would
2809/// work, but would be really slow because it would have to unique each updated
2810/// array instance.
2811///
2812void Constant::replaceUsesOfWithOnConstantImpl(Constant *Replacement) {
2813  // I do need to replace this with an existing value.
2814  assert(Replacement != this && "I didn't contain From!");
2815
2816  // Everyone using this now uses the replacement.
2817  replaceAllUsesWith(Replacement);
2818
2819  // Delete the old constant!
2820  destroyConstant();
2821}
2822
2823void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
2824                                                Use *U) {
2825  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2826  Constant *ToC = cast<Constant>(To);
2827
2828  SmallVector<Constant*, 8> Values;
2829  Values.reserve(getNumOperands());  // Build replacement array.
2830
2831  // Fill values with the modified operands of the constant array.  Also,
2832  // compute whether this turns into an all-zeros array.
2833  unsigned NumUpdated = 0;
2834
2835  // Keep track of whether all the values in the array are "ToC".
2836  bool AllSame = true;
2837  for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2838    Constant *Val = cast<Constant>(O->get());
2839    if (Val == From) {
2840      Val = ToC;
2841      ++NumUpdated;
2842    }
2843    Values.push_back(Val);
2844    AllSame &= Val == ToC;
2845  }
2846
2847  if (AllSame && ToC->isNullValue()) {
2848    replaceUsesOfWithOnConstantImpl(ConstantAggregateZero::get(getType()));
2849    return;
2850  }
2851  if (AllSame && isa<UndefValue>(ToC)) {
2852    replaceUsesOfWithOnConstantImpl(UndefValue::get(getType()));
2853    return;
2854  }
2855
2856  // Check for any other type of constant-folding.
2857  if (Constant *C = getImpl(getType(), Values)) {
2858    replaceUsesOfWithOnConstantImpl(C);
2859    return;
2860  }
2861
2862  // Update to the new value.
2863  if (Constant *C = getContext().pImpl->ArrayConstants.replaceOperandsInPlace(
2864          Values, this, From, ToC, NumUpdated, U - OperandList))
2865    replaceUsesOfWithOnConstantImpl(C);
2866}
2867
2868void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
2869                                                 Use *U) {
2870  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2871  Constant *ToC = cast<Constant>(To);
2872
2873  unsigned OperandToUpdate = U-OperandList;
2874  assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
2875
2876  SmallVector<Constant*, 8> Values;
2877  Values.reserve(getNumOperands());  // Build replacement struct.
2878
2879  // Fill values with the modified operands of the constant struct.  Also,
2880  // compute whether this turns into an all-zeros struct.
2881  bool isAllZeros = false;
2882  bool isAllUndef = false;
2883  if (ToC->isNullValue()) {
2884    isAllZeros = true;
2885    for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2886      Constant *Val = cast<Constant>(O->get());
2887      Values.push_back(Val);
2888      if (isAllZeros) isAllZeros = Val->isNullValue();
2889    }
2890  } else if (isa<UndefValue>(ToC)) {
2891    isAllUndef = true;
2892    for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2893      Constant *Val = cast<Constant>(O->get());
2894      Values.push_back(Val);
2895      if (isAllUndef) isAllUndef = isa<UndefValue>(Val);
2896    }
2897  } else {
2898    for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
2899      Values.push_back(cast<Constant>(O->get()));
2900  }
2901  Values[OperandToUpdate] = ToC;
2902
2903  if (isAllZeros) {
2904    replaceUsesOfWithOnConstantImpl(ConstantAggregateZero::get(getType()));
2905    return;
2906  }
2907  if (isAllUndef) {
2908    replaceUsesOfWithOnConstantImpl(UndefValue::get(getType()));
2909    return;
2910  }
2911
2912  // Update to the new value.
2913  if (Constant *C = getContext().pImpl->StructConstants.replaceOperandsInPlace(
2914          Values, this, From, ToC))
2915    replaceUsesOfWithOnConstantImpl(C);
2916}
2917
2918void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
2919                                                 Use *U) {
2920  assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2921  Constant *ToC = cast<Constant>(To);
2922
2923  SmallVector<Constant*, 8> Values;
2924  Values.reserve(getNumOperands());  // Build replacement array...
2925  unsigned NumUpdated = 0;
2926  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2927    Constant *Val = getOperand(i);
2928    if (Val == From) {
2929      ++NumUpdated;
2930      Val = ToC;
2931    }
2932    Values.push_back(Val);
2933  }
2934
2935  if (Constant *C = getImpl(Values)) {
2936    replaceUsesOfWithOnConstantImpl(C);
2937    return;
2938  }
2939
2940  // Update to the new value.
2941  if (Constant *C = getContext().pImpl->VectorConstants.replaceOperandsInPlace(
2942          Values, this, From, ToC, NumUpdated, U - OperandList))
2943    replaceUsesOfWithOnConstantImpl(C);
2944}
2945
2946void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
2947                                               Use *U) {
2948  assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
2949  Constant *To = cast<Constant>(ToV);
2950
2951  SmallVector<Constant*, 8> NewOps;
2952  unsigned NumUpdated = 0;
2953  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2954    Constant *Op = getOperand(i);
2955    if (Op == From) {
2956      ++NumUpdated;
2957      Op = To;
2958    }
2959    NewOps.push_back(Op);
2960  }
2961  assert(NumUpdated && "I didn't contain From!");
2962
2963  if (Constant *C = getWithOperands(NewOps, getType(), true)) {
2964    replaceUsesOfWithOnConstantImpl(C);
2965    return;
2966  }
2967
2968  // Update to the new value.
2969  if (Constant *C = getContext().pImpl->ExprConstants.replaceOperandsInPlace(
2970          NewOps, this, From, To, NumUpdated, U - OperandList))
2971    replaceUsesOfWithOnConstantImpl(C);
2972}
2973
2974Instruction *ConstantExpr::getAsInstruction() {
2975  SmallVector<Value *, 4> ValueOperands(op_begin(), op_end());
2976  ArrayRef<Value*> Ops(ValueOperands);
2977
2978  switch (getOpcode()) {
2979  case Instruction::Trunc:
2980  case Instruction::ZExt:
2981  case Instruction::SExt:
2982  case Instruction::FPTrunc:
2983  case Instruction::FPExt:
2984  case Instruction::UIToFP:
2985  case Instruction::SIToFP:
2986  case Instruction::FPToUI:
2987  case Instruction::FPToSI:
2988  case Instruction::PtrToInt:
2989  case Instruction::IntToPtr:
2990  case Instruction::BitCast:
2991  case Instruction::AddrSpaceCast:
2992    return CastInst::Create((Instruction::CastOps)getOpcode(),
2993                            Ops[0], getType());
2994  case Instruction::Select:
2995    return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
2996  case Instruction::InsertElement:
2997    return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
2998  case Instruction::ExtractElement:
2999    return ExtractElementInst::Create(Ops[0], Ops[1]);
3000  case Instruction::InsertValue:
3001    return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
3002  case Instruction::ExtractValue:
3003    return ExtractValueInst::Create(Ops[0], getIndices());
3004  case Instruction::ShuffleVector:
3005    return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]);
3006
3007  case Instruction::GetElementPtr: {
3008    const auto *GO = cast<GEPOperator>(this);
3009    if (GO->isInBounds())
3010      return GetElementPtrInst::CreateInBounds(GO->getSourceElementType(),
3011                                               Ops[0], Ops.slice(1));
3012    return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0],
3013                                     Ops.slice(1));
3014  }
3015  case Instruction::ICmp:
3016  case Instruction::FCmp:
3017    return CmpInst::Create((Instruction::OtherOps)getOpcode(),
3018                           getPredicate(), Ops[0], Ops[1]);
3019
3020  default:
3021    assert(getNumOperands() == 2 && "Must be binary operator?");
3022    BinaryOperator *BO =
3023      BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
3024                             Ops[0], Ops[1]);
3025    if (isa<OverflowingBinaryOperator>(BO)) {
3026      BO->setHasNoUnsignedWrap(SubclassOptionalData &
3027                               OverflowingBinaryOperator::NoUnsignedWrap);
3028      BO->setHasNoSignedWrap(SubclassOptionalData &
3029                             OverflowingBinaryOperator::NoSignedWrap);
3030    }
3031    if (isa<PossiblyExactOperator>(BO))
3032      BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
3033    return BO;
3034  }
3035}
3036