1//===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the PowerPC implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCInstrInfo.h"
15#include "MCTargetDesc/PPCPredicates.h"
16#include "PPC.h"
17#include "PPCHazardRecognizers.h"
18#include "PPCInstrBuilder.h"
19#include "PPCMachineFunctionInfo.h"
20#include "PPCTargetMachine.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/LiveIntervalAnalysis.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunctionPass.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineMemOperand.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/CodeGen/PseudoSourceValue.h"
30#include "llvm/CodeGen/ScheduleDAG.h"
31#include "llvm/CodeGen/SlotIndexes.h"
32#include "llvm/CodeGen/StackMaps.h"
33#include "llvm/MC/MCAsmInfo.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/TargetRegistry.h"
38#include "llvm/Support/raw_ostream.h"
39
40using namespace llvm;
41
42#define DEBUG_TYPE "ppc-instr-info"
43
44#define GET_INSTRMAP_INFO
45#define GET_INSTRINFO_CTOR_DTOR
46#include "PPCGenInstrInfo.inc"
47
48static cl::
49opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
50            cl::desc("Disable analysis for CTR loops"));
51
52static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
53cl::desc("Disable compare instruction optimization"), cl::Hidden);
54
55static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
56cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
57cl::Hidden);
58
59// Pin the vtable to this file.
60void PPCInstrInfo::anchor() {}
61
62PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
63    : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP),
64      Subtarget(STI), RI(STI.getTargetMachine()) {}
65
66/// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
67/// this target when scheduling the DAG.
68ScheduleHazardRecognizer *
69PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
70                                           const ScheduleDAG *DAG) const {
71  unsigned Directive =
72      static_cast<const PPCSubtarget *>(STI)->getDarwinDirective();
73  if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
74      Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
75    const InstrItineraryData *II =
76        static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
77    return new ScoreboardHazardRecognizer(II, DAG);
78  }
79
80  return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
81}
82
83/// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
84/// to use for this target when scheduling the DAG.
85ScheduleHazardRecognizer *
86PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
87                                                 const ScheduleDAG *DAG) const {
88  unsigned Directive =
89      DAG->MF.getSubtarget<PPCSubtarget>().getDarwinDirective();
90
91  if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
92    return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
93
94  // Most subtargets use a PPC970 recognizer.
95  if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
96      Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
97    assert(DAG->TII && "No InstrInfo?");
98
99    return new PPCHazardRecognizer970(*DAG);
100  }
101
102  return new ScoreboardHazardRecognizer(II, DAG);
103}
104
105
106int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
107                                    const MachineInstr *DefMI, unsigned DefIdx,
108                                    const MachineInstr *UseMI,
109                                    unsigned UseIdx) const {
110  int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
111                                                   UseMI, UseIdx);
112
113  const MachineOperand &DefMO = DefMI->getOperand(DefIdx);
114  unsigned Reg = DefMO.getReg();
115
116  bool IsRegCR;
117  if (TargetRegisterInfo::isVirtualRegister(Reg)) {
118    const MachineRegisterInfo *MRI =
119      &DefMI->getParent()->getParent()->getRegInfo();
120    IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
121              MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
122  } else {
123    IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
124              PPC::CRBITRCRegClass.contains(Reg);
125  }
126
127  if (UseMI->isBranch() && IsRegCR) {
128    if (Latency < 0)
129      Latency = getInstrLatency(ItinData, DefMI);
130
131    // On some cores, there is an additional delay between writing to a condition
132    // register, and using it from a branch.
133    unsigned Directive = Subtarget.getDarwinDirective();
134    switch (Directive) {
135    default: break;
136    case PPC::DIR_7400:
137    case PPC::DIR_750:
138    case PPC::DIR_970:
139    case PPC::DIR_E5500:
140    case PPC::DIR_PWR4:
141    case PPC::DIR_PWR5:
142    case PPC::DIR_PWR5X:
143    case PPC::DIR_PWR6:
144    case PPC::DIR_PWR6X:
145    case PPC::DIR_PWR7:
146    case PPC::DIR_PWR8:
147      Latency += 2;
148      break;
149    }
150  }
151
152  return Latency;
153}
154
155// Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
156bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
157                                         unsigned &SrcReg, unsigned &DstReg,
158                                         unsigned &SubIdx) const {
159  switch (MI.getOpcode()) {
160  default: return false;
161  case PPC::EXTSW:
162  case PPC::EXTSW_32_64:
163    SrcReg = MI.getOperand(1).getReg();
164    DstReg = MI.getOperand(0).getReg();
165    SubIdx = PPC::sub_32;
166    return true;
167  }
168}
169
170unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
171                                           int &FrameIndex) const {
172  // Note: This list must be kept consistent with LoadRegFromStackSlot.
173  switch (MI->getOpcode()) {
174  default: break;
175  case PPC::LD:
176  case PPC::LWZ:
177  case PPC::LFS:
178  case PPC::LFD:
179  case PPC::RESTORE_CR:
180  case PPC::RESTORE_CRBIT:
181  case PPC::LVX:
182  case PPC::LXVD2X:
183  case PPC::QVLFDX:
184  case PPC::QVLFSXs:
185  case PPC::QVLFDXb:
186  case PPC::RESTORE_VRSAVE:
187    // Check for the operands added by addFrameReference (the immediate is the
188    // offset which defaults to 0).
189    if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
190        MI->getOperand(2).isFI()) {
191      FrameIndex = MI->getOperand(2).getIndex();
192      return MI->getOperand(0).getReg();
193    }
194    break;
195  }
196  return 0;
197}
198
199unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
200                                          int &FrameIndex) const {
201  // Note: This list must be kept consistent with StoreRegToStackSlot.
202  switch (MI->getOpcode()) {
203  default: break;
204  case PPC::STD:
205  case PPC::STW:
206  case PPC::STFS:
207  case PPC::STFD:
208  case PPC::SPILL_CR:
209  case PPC::SPILL_CRBIT:
210  case PPC::STVX:
211  case PPC::STXVD2X:
212  case PPC::QVSTFDX:
213  case PPC::QVSTFSXs:
214  case PPC::QVSTFDXb:
215  case PPC::SPILL_VRSAVE:
216    // Check for the operands added by addFrameReference (the immediate is the
217    // offset which defaults to 0).
218    if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
219        MI->getOperand(2).isFI()) {
220      FrameIndex = MI->getOperand(2).getIndex();
221      return MI->getOperand(0).getReg();
222    }
223    break;
224  }
225  return 0;
226}
227
228// commuteInstruction - We can commute rlwimi instructions, but only if the
229// rotate amt is zero.  We also have to munge the immediates a bit.
230MachineInstr *
231PPCInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
232  MachineFunction &MF = *MI->getParent()->getParent();
233
234  // Normal instructions can be commuted the obvious way.
235  if (MI->getOpcode() != PPC::RLWIMI &&
236      MI->getOpcode() != PPC::RLWIMIo)
237    return TargetInstrInfo::commuteInstruction(MI, NewMI);
238  // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
239  // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
240  // changing the relative order of the mask operands might change what happens
241  // to the high-bits of the mask (and, thus, the result).
242
243  // Cannot commute if it has a non-zero rotate count.
244  if (MI->getOperand(3).getImm() != 0)
245    return nullptr;
246
247  // If we have a zero rotate count, we have:
248  //   M = mask(MB,ME)
249  //   Op0 = (Op1 & ~M) | (Op2 & M)
250  // Change this to:
251  //   M = mask((ME+1)&31, (MB-1)&31)
252  //   Op0 = (Op2 & ~M) | (Op1 & M)
253
254  // Swap op1/op2
255  unsigned Reg0 = MI->getOperand(0).getReg();
256  unsigned Reg1 = MI->getOperand(1).getReg();
257  unsigned Reg2 = MI->getOperand(2).getReg();
258  unsigned SubReg1 = MI->getOperand(1).getSubReg();
259  unsigned SubReg2 = MI->getOperand(2).getSubReg();
260  bool Reg1IsKill = MI->getOperand(1).isKill();
261  bool Reg2IsKill = MI->getOperand(2).isKill();
262  bool ChangeReg0 = false;
263  // If machine instrs are no longer in two-address forms, update
264  // destination register as well.
265  if (Reg0 == Reg1) {
266    // Must be two address instruction!
267    assert(MI->getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
268           "Expecting a two-address instruction!");
269    assert(MI->getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
270    Reg2IsKill = false;
271    ChangeReg0 = true;
272  }
273
274  // Masks.
275  unsigned MB = MI->getOperand(4).getImm();
276  unsigned ME = MI->getOperand(5).getImm();
277
278  if (NewMI) {
279    // Create a new instruction.
280    unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg();
281    bool Reg0IsDead = MI->getOperand(0).isDead();
282    return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
283      .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
284      .addReg(Reg2, getKillRegState(Reg2IsKill))
285      .addReg(Reg1, getKillRegState(Reg1IsKill))
286      .addImm((ME+1) & 31)
287      .addImm((MB-1) & 31);
288  }
289
290  if (ChangeReg0) {
291    MI->getOperand(0).setReg(Reg2);
292    MI->getOperand(0).setSubReg(SubReg2);
293  }
294  MI->getOperand(2).setReg(Reg1);
295  MI->getOperand(1).setReg(Reg2);
296  MI->getOperand(2).setSubReg(SubReg1);
297  MI->getOperand(1).setSubReg(SubReg2);
298  MI->getOperand(2).setIsKill(Reg1IsKill);
299  MI->getOperand(1).setIsKill(Reg2IsKill);
300
301  // Swap the mask around.
302  MI->getOperand(4).setImm((ME+1) & 31);
303  MI->getOperand(5).setImm((MB-1) & 31);
304  return MI;
305}
306
307bool PPCInstrInfo::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
308                                         unsigned &SrcOpIdx2) const {
309  // For VSX A-Type FMA instructions, it is the first two operands that can be
310  // commuted, however, because the non-encoded tied input operand is listed
311  // first, the operands to swap are actually the second and third.
312
313  int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode());
314  if (AltOpc == -1)
315    return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
316
317  SrcOpIdx1 = 2;
318  SrcOpIdx2 = 3;
319  return true;
320}
321
322void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
323                              MachineBasicBlock::iterator MI) const {
324  // This function is used for scheduling, and the nop wanted here is the type
325  // that terminates dispatch groups on the POWER cores.
326  unsigned Directive = Subtarget.getDarwinDirective();
327  unsigned Opcode;
328  switch (Directive) {
329  default:            Opcode = PPC::NOP; break;
330  case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
331  case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
332  case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
333  }
334
335  DebugLoc DL;
336  BuildMI(MBB, MI, DL, get(Opcode));
337}
338
339/// getNoopForMachoTarget - Return the noop instruction to use for a noop.
340void PPCInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
341  NopInst.setOpcode(PPC::NOP);
342}
343
344// Branch analysis.
345// Note: If the condition register is set to CTR or CTR8 then this is a
346// BDNZ (imm == 1) or BDZ (imm == 0) branch.
347bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
348                                 MachineBasicBlock *&FBB,
349                                 SmallVectorImpl<MachineOperand> &Cond,
350                                 bool AllowModify) const {
351  bool isPPC64 = Subtarget.isPPC64();
352
353  // If the block has no terminators, it just falls into the block after it.
354  MachineBasicBlock::iterator I = MBB.end();
355  if (I == MBB.begin())
356    return false;
357  --I;
358  while (I->isDebugValue()) {
359    if (I == MBB.begin())
360      return false;
361    --I;
362  }
363  if (!isUnpredicatedTerminator(I))
364    return false;
365
366  // Get the last instruction in the block.
367  MachineInstr *LastInst = I;
368
369  // If there is only one terminator instruction, process it.
370  if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
371    if (LastInst->getOpcode() == PPC::B) {
372      if (!LastInst->getOperand(0).isMBB())
373        return true;
374      TBB = LastInst->getOperand(0).getMBB();
375      return false;
376    } else if (LastInst->getOpcode() == PPC::BCC) {
377      if (!LastInst->getOperand(2).isMBB())
378        return true;
379      // Block ends with fall-through condbranch.
380      TBB = LastInst->getOperand(2).getMBB();
381      Cond.push_back(LastInst->getOperand(0));
382      Cond.push_back(LastInst->getOperand(1));
383      return false;
384    } else if (LastInst->getOpcode() == PPC::BC) {
385      if (!LastInst->getOperand(1).isMBB())
386        return true;
387      // Block ends with fall-through condbranch.
388      TBB = LastInst->getOperand(1).getMBB();
389      Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
390      Cond.push_back(LastInst->getOperand(0));
391      return false;
392    } else if (LastInst->getOpcode() == PPC::BCn) {
393      if (!LastInst->getOperand(1).isMBB())
394        return true;
395      // Block ends with fall-through condbranch.
396      TBB = LastInst->getOperand(1).getMBB();
397      Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
398      Cond.push_back(LastInst->getOperand(0));
399      return false;
400    } else if (LastInst->getOpcode() == PPC::BDNZ8 ||
401               LastInst->getOpcode() == PPC::BDNZ) {
402      if (!LastInst->getOperand(0).isMBB())
403        return true;
404      if (DisableCTRLoopAnal)
405        return true;
406      TBB = LastInst->getOperand(0).getMBB();
407      Cond.push_back(MachineOperand::CreateImm(1));
408      Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
409                                               true));
410      return false;
411    } else if (LastInst->getOpcode() == PPC::BDZ8 ||
412               LastInst->getOpcode() == PPC::BDZ) {
413      if (!LastInst->getOperand(0).isMBB())
414        return true;
415      if (DisableCTRLoopAnal)
416        return true;
417      TBB = LastInst->getOperand(0).getMBB();
418      Cond.push_back(MachineOperand::CreateImm(0));
419      Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
420                                               true));
421      return false;
422    }
423
424    // Otherwise, don't know what this is.
425    return true;
426  }
427
428  // Get the instruction before it if it's a terminator.
429  MachineInstr *SecondLastInst = I;
430
431  // If there are three terminators, we don't know what sort of block this is.
432  if (SecondLastInst && I != MBB.begin() &&
433      isUnpredicatedTerminator(--I))
434    return true;
435
436  // If the block ends with PPC::B and PPC:BCC, handle it.
437  if (SecondLastInst->getOpcode() == PPC::BCC &&
438      LastInst->getOpcode() == PPC::B) {
439    if (!SecondLastInst->getOperand(2).isMBB() ||
440        !LastInst->getOperand(0).isMBB())
441      return true;
442    TBB =  SecondLastInst->getOperand(2).getMBB();
443    Cond.push_back(SecondLastInst->getOperand(0));
444    Cond.push_back(SecondLastInst->getOperand(1));
445    FBB = LastInst->getOperand(0).getMBB();
446    return false;
447  } else if (SecondLastInst->getOpcode() == PPC::BC &&
448      LastInst->getOpcode() == PPC::B) {
449    if (!SecondLastInst->getOperand(1).isMBB() ||
450        !LastInst->getOperand(0).isMBB())
451      return true;
452    TBB =  SecondLastInst->getOperand(1).getMBB();
453    Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
454    Cond.push_back(SecondLastInst->getOperand(0));
455    FBB = LastInst->getOperand(0).getMBB();
456    return false;
457  } else if (SecondLastInst->getOpcode() == PPC::BCn &&
458      LastInst->getOpcode() == PPC::B) {
459    if (!SecondLastInst->getOperand(1).isMBB() ||
460        !LastInst->getOperand(0).isMBB())
461      return true;
462    TBB =  SecondLastInst->getOperand(1).getMBB();
463    Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
464    Cond.push_back(SecondLastInst->getOperand(0));
465    FBB = LastInst->getOperand(0).getMBB();
466    return false;
467  } else if ((SecondLastInst->getOpcode() == PPC::BDNZ8 ||
468              SecondLastInst->getOpcode() == PPC::BDNZ) &&
469      LastInst->getOpcode() == PPC::B) {
470    if (!SecondLastInst->getOperand(0).isMBB() ||
471        !LastInst->getOperand(0).isMBB())
472      return true;
473    if (DisableCTRLoopAnal)
474      return true;
475    TBB = SecondLastInst->getOperand(0).getMBB();
476    Cond.push_back(MachineOperand::CreateImm(1));
477    Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
478                                             true));
479    FBB = LastInst->getOperand(0).getMBB();
480    return false;
481  } else if ((SecondLastInst->getOpcode() == PPC::BDZ8 ||
482              SecondLastInst->getOpcode() == PPC::BDZ) &&
483      LastInst->getOpcode() == PPC::B) {
484    if (!SecondLastInst->getOperand(0).isMBB() ||
485        !LastInst->getOperand(0).isMBB())
486      return true;
487    if (DisableCTRLoopAnal)
488      return true;
489    TBB = SecondLastInst->getOperand(0).getMBB();
490    Cond.push_back(MachineOperand::CreateImm(0));
491    Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
492                                             true));
493    FBB = LastInst->getOperand(0).getMBB();
494    return false;
495  }
496
497  // If the block ends with two PPC:Bs, handle it.  The second one is not
498  // executed, so remove it.
499  if (SecondLastInst->getOpcode() == PPC::B &&
500      LastInst->getOpcode() == PPC::B) {
501    if (!SecondLastInst->getOperand(0).isMBB())
502      return true;
503    TBB = SecondLastInst->getOperand(0).getMBB();
504    I = LastInst;
505    if (AllowModify)
506      I->eraseFromParent();
507    return false;
508  }
509
510  // Otherwise, can't handle this.
511  return true;
512}
513
514unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
515  MachineBasicBlock::iterator I = MBB.end();
516  if (I == MBB.begin()) return 0;
517  --I;
518  while (I->isDebugValue()) {
519    if (I == MBB.begin())
520      return 0;
521    --I;
522  }
523  if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
524      I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
525      I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
526      I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
527    return 0;
528
529  // Remove the branch.
530  I->eraseFromParent();
531
532  I = MBB.end();
533
534  if (I == MBB.begin()) return 1;
535  --I;
536  if (I->getOpcode() != PPC::BCC &&
537      I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
538      I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
539      I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
540    return 1;
541
542  // Remove the branch.
543  I->eraseFromParent();
544  return 2;
545}
546
547unsigned
548PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
549                           MachineBasicBlock *FBB,
550                           const SmallVectorImpl<MachineOperand> &Cond,
551                           DebugLoc DL) const {
552  // Shouldn't be a fall through.
553  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
554  assert((Cond.size() == 2 || Cond.size() == 0) &&
555         "PPC branch conditions have two components!");
556
557  bool isPPC64 = Subtarget.isPPC64();
558
559  // One-way branch.
560  if (!FBB) {
561    if (Cond.empty())   // Unconditional branch
562      BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
563    else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
564      BuildMI(&MBB, DL, get(Cond[0].getImm() ?
565                              (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
566                              (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
567    else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
568      BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
569    else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
570      BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
571    else                // Conditional branch
572      BuildMI(&MBB, DL, get(PPC::BCC))
573        .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
574    return 1;
575  }
576
577  // Two-way Conditional Branch.
578  if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
579    BuildMI(&MBB, DL, get(Cond[0].getImm() ?
580                            (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
581                            (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
582  else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
583    BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
584  else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
585    BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
586  else
587    BuildMI(&MBB, DL, get(PPC::BCC))
588      .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
589  BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
590  return 2;
591}
592
593// Select analysis.
594bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
595                const SmallVectorImpl<MachineOperand> &Cond,
596                unsigned TrueReg, unsigned FalseReg,
597                int &CondCycles, int &TrueCycles, int &FalseCycles) const {
598  if (!Subtarget.hasISEL())
599    return false;
600
601  if (Cond.size() != 2)
602    return false;
603
604  // If this is really a bdnz-like condition, then it cannot be turned into a
605  // select.
606  if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
607    return false;
608
609  // Check register classes.
610  const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
611  const TargetRegisterClass *RC =
612    RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
613  if (!RC)
614    return false;
615
616  // isel is for regular integer GPRs only.
617  if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
618      !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
619      !PPC::G8RCRegClass.hasSubClassEq(RC) &&
620      !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
621    return false;
622
623  // FIXME: These numbers are for the A2, how well they work for other cores is
624  // an open question. On the A2, the isel instruction has a 2-cycle latency
625  // but single-cycle throughput. These numbers are used in combination with
626  // the MispredictPenalty setting from the active SchedMachineModel.
627  CondCycles = 1;
628  TrueCycles = 1;
629  FalseCycles = 1;
630
631  return true;
632}
633
634void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
635                                MachineBasicBlock::iterator MI, DebugLoc dl,
636                                unsigned DestReg,
637                                const SmallVectorImpl<MachineOperand> &Cond,
638                                unsigned TrueReg, unsigned FalseReg) const {
639  assert(Cond.size() == 2 &&
640         "PPC branch conditions have two components!");
641
642  assert(Subtarget.hasISEL() &&
643         "Cannot insert select on target without ISEL support");
644
645  // Get the register classes.
646  MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
647  const TargetRegisterClass *RC =
648    RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
649  assert(RC && "TrueReg and FalseReg must have overlapping register classes");
650
651  bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
652                 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
653  assert((Is64Bit ||
654          PPC::GPRCRegClass.hasSubClassEq(RC) ||
655          PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
656         "isel is for regular integer GPRs only");
657
658  unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
659  unsigned SelectPred = Cond[0].getImm();
660
661  unsigned SubIdx;
662  bool SwapOps;
663  switch (SelectPred) {
664  default: llvm_unreachable("invalid predicate for isel");
665  case PPC::PRED_EQ: SubIdx = PPC::sub_eq; SwapOps = false; break;
666  case PPC::PRED_NE: SubIdx = PPC::sub_eq; SwapOps = true; break;
667  case PPC::PRED_LT: SubIdx = PPC::sub_lt; SwapOps = false; break;
668  case PPC::PRED_GE: SubIdx = PPC::sub_lt; SwapOps = true; break;
669  case PPC::PRED_GT: SubIdx = PPC::sub_gt; SwapOps = false; break;
670  case PPC::PRED_LE: SubIdx = PPC::sub_gt; SwapOps = true; break;
671  case PPC::PRED_UN: SubIdx = PPC::sub_un; SwapOps = false; break;
672  case PPC::PRED_NU: SubIdx = PPC::sub_un; SwapOps = true; break;
673  case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
674  case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
675  }
676
677  unsigned FirstReg =  SwapOps ? FalseReg : TrueReg,
678           SecondReg = SwapOps ? TrueReg  : FalseReg;
679
680  // The first input register of isel cannot be r0. If it is a member
681  // of a register class that can be r0, then copy it first (the
682  // register allocator should eliminate the copy).
683  if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
684      MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
685    const TargetRegisterClass *FirstRC =
686      MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
687        &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
688    unsigned OldFirstReg = FirstReg;
689    FirstReg = MRI.createVirtualRegister(FirstRC);
690    BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
691      .addReg(OldFirstReg);
692  }
693
694  BuildMI(MBB, MI, dl, get(OpCode), DestReg)
695    .addReg(FirstReg).addReg(SecondReg)
696    .addReg(Cond[1].getReg(), 0, SubIdx);
697}
698
699static unsigned getCRBitValue(unsigned CRBit) {
700  unsigned Ret = 4;
701  if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
702      CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
703      CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
704      CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
705    Ret = 3;
706  if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
707      CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
708      CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
709      CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
710    Ret = 2;
711  if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
712      CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
713      CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
714      CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
715    Ret = 1;
716  if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
717      CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
718      CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
719      CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
720    Ret = 0;
721
722  assert(Ret != 4 && "Invalid CR bit register");
723  return Ret;
724}
725
726void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
727                               MachineBasicBlock::iterator I, DebugLoc DL,
728                               unsigned DestReg, unsigned SrcReg,
729                               bool KillSrc) const {
730  // We can end up with self copies and similar things as a result of VSX copy
731  // legalization. Promote them here.
732  const TargetRegisterInfo *TRI = &getRegisterInfo();
733  if (PPC::F8RCRegClass.contains(DestReg) &&
734      PPC::VSRCRegClass.contains(SrcReg)) {
735    unsigned SuperReg =
736      TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
737
738    if (VSXSelfCopyCrash && SrcReg == SuperReg)
739      llvm_unreachable("nop VSX copy");
740
741    DestReg = SuperReg;
742  } else if (PPC::VRRCRegClass.contains(DestReg) &&
743             PPC::VSRCRegClass.contains(SrcReg)) {
744    unsigned SuperReg =
745      TRI->getMatchingSuperReg(DestReg, PPC::sub_128, &PPC::VSRCRegClass);
746
747    if (VSXSelfCopyCrash && SrcReg == SuperReg)
748      llvm_unreachable("nop VSX copy");
749
750    DestReg = SuperReg;
751  } else if (PPC::F8RCRegClass.contains(SrcReg) &&
752             PPC::VSRCRegClass.contains(DestReg)) {
753    unsigned SuperReg =
754      TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
755
756    if (VSXSelfCopyCrash && DestReg == SuperReg)
757      llvm_unreachable("nop VSX copy");
758
759    SrcReg = SuperReg;
760  } else if (PPC::VRRCRegClass.contains(SrcReg) &&
761             PPC::VSRCRegClass.contains(DestReg)) {
762    unsigned SuperReg =
763      TRI->getMatchingSuperReg(SrcReg, PPC::sub_128, &PPC::VSRCRegClass);
764
765    if (VSXSelfCopyCrash && DestReg == SuperReg)
766      llvm_unreachable("nop VSX copy");
767
768    SrcReg = SuperReg;
769  }
770
771  // Different class register copy
772  if (PPC::CRBITRCRegClass.contains(SrcReg) &&
773      PPC::GPRCRegClass.contains(DestReg)) {
774    unsigned CRReg = getCRFromCRBit(SrcReg);
775    BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg)
776       .addReg(CRReg), getKillRegState(KillSrc);
777    // Rotate the CR bit in the CR fields to be the least significant bit and
778    // then mask with 0x1 (MB = ME = 31).
779    BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
780       .addReg(DestReg, RegState::Kill)
781       .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
782       .addImm(31)
783       .addImm(31);
784    return;
785  } else if (PPC::CRRCRegClass.contains(SrcReg) &&
786      PPC::G8RCRegClass.contains(DestReg)) {
787    BuildMI(MBB, I, DL, get(PPC::MFOCRF8), DestReg)
788       .addReg(SrcReg), getKillRegState(KillSrc);
789    return;
790  } else if (PPC::CRRCRegClass.contains(SrcReg) &&
791      PPC::GPRCRegClass.contains(DestReg)) {
792    BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg)
793       .addReg(SrcReg), getKillRegState(KillSrc);
794    return;
795   }
796
797  unsigned Opc;
798  if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
799    Opc = PPC::OR;
800  else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
801    Opc = PPC::OR8;
802  else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
803    Opc = PPC::FMR;
804  else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
805    Opc = PPC::MCRF;
806  else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
807    Opc = PPC::VOR;
808  else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
809    // There are two different ways this can be done:
810    //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
811    //      issue in VSU pipeline 0.
812    //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
813    //      can go to either pipeline.
814    // We'll always use xxlor here, because in practically all cases where
815    // copies are generated, they are close enough to some use that the
816    // lower-latency form is preferable.
817    Opc = PPC::XXLOR;
818  else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg))
819    Opc = PPC::XXLORf;
820  else if (PPC::QFRCRegClass.contains(DestReg, SrcReg))
821    Opc = PPC::QVFMR;
822  else if (PPC::QSRCRegClass.contains(DestReg, SrcReg))
823    Opc = PPC::QVFMRs;
824  else if (PPC::QBRCRegClass.contains(DestReg, SrcReg))
825    Opc = PPC::QVFMRb;
826  else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
827    Opc = PPC::CROR;
828  else
829    llvm_unreachable("Impossible reg-to-reg copy");
830
831  const MCInstrDesc &MCID = get(Opc);
832  if (MCID.getNumOperands() == 3)
833    BuildMI(MBB, I, DL, MCID, DestReg)
834      .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
835  else
836    BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
837}
838
839// This function returns true if a CR spill is necessary and false otherwise.
840bool
841PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF,
842                                  unsigned SrcReg, bool isKill,
843                                  int FrameIdx,
844                                  const TargetRegisterClass *RC,
845                                  SmallVectorImpl<MachineInstr*> &NewMIs,
846                                  bool &NonRI, bool &SpillsVRS) const{
847  // Note: If additional store instructions are added here,
848  // update isStoreToStackSlot.
849
850  DebugLoc DL;
851  if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
852      PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
853    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW))
854                                       .addReg(SrcReg,
855                                               getKillRegState(isKill)),
856                                       FrameIdx));
857  } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
858             PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
859    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD))
860                                       .addReg(SrcReg,
861                                               getKillRegState(isKill)),
862                                       FrameIdx));
863  } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
864    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD))
865                                       .addReg(SrcReg,
866                                               getKillRegState(isKill)),
867                                       FrameIdx));
868  } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
869    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS))
870                                       .addReg(SrcReg,
871                                               getKillRegState(isKill)),
872                                       FrameIdx));
873  } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
874    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR))
875                                       .addReg(SrcReg,
876                                               getKillRegState(isKill)),
877                                       FrameIdx));
878    return true;
879  } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
880    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT))
881                                       .addReg(SrcReg,
882                                               getKillRegState(isKill)),
883                                       FrameIdx));
884    return true;
885  } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
886    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX))
887                                       .addReg(SrcReg,
888                                               getKillRegState(isKill)),
889                                       FrameIdx));
890    NonRI = true;
891  } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
892    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXVD2X))
893                                       .addReg(SrcReg,
894                                               getKillRegState(isKill)),
895                                       FrameIdx));
896    NonRI = true;
897  } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
898    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSDX))
899                                       .addReg(SrcReg,
900                                               getKillRegState(isKill)),
901                                       FrameIdx));
902    NonRI = true;
903  } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
904    assert(Subtarget.isDarwin() &&
905           "VRSAVE only needs spill/restore on Darwin");
906    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE))
907                                       .addReg(SrcReg,
908                                               getKillRegState(isKill)),
909                                       FrameIdx));
910    SpillsVRS = true;
911  } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
912    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDX))
913                                       .addReg(SrcReg,
914                                               getKillRegState(isKill)),
915                                       FrameIdx));
916    NonRI = true;
917  } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
918    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFSXs))
919                                       .addReg(SrcReg,
920                                               getKillRegState(isKill)),
921                                       FrameIdx));
922    NonRI = true;
923  } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
924    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVSTFDXb))
925                                       .addReg(SrcReg,
926                                               getKillRegState(isKill)),
927                                       FrameIdx));
928    NonRI = true;
929  } else {
930    llvm_unreachable("Unknown regclass!");
931  }
932
933  return false;
934}
935
936void
937PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
938                                  MachineBasicBlock::iterator MI,
939                                  unsigned SrcReg, bool isKill, int FrameIdx,
940                                  const TargetRegisterClass *RC,
941                                  const TargetRegisterInfo *TRI) const {
942  MachineFunction &MF = *MBB.getParent();
943  SmallVector<MachineInstr*, 4> NewMIs;
944
945  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
946  FuncInfo->setHasSpills();
947
948  bool NonRI = false, SpillsVRS = false;
949  if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs,
950                          NonRI, SpillsVRS))
951    FuncInfo->setSpillsCR();
952
953  if (SpillsVRS)
954    FuncInfo->setSpillsVRSAVE();
955
956  if (NonRI)
957    FuncInfo->setHasNonRISpills();
958
959  for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
960    MBB.insert(MI, NewMIs[i]);
961
962  const MachineFrameInfo &MFI = *MF.getFrameInfo();
963  MachineMemOperand *MMO =
964    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
965                            MachineMemOperand::MOStore,
966                            MFI.getObjectSize(FrameIdx),
967                            MFI.getObjectAlignment(FrameIdx));
968  NewMIs.back()->addMemOperand(MF, MMO);
969}
970
971bool
972PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL,
973                                   unsigned DestReg, int FrameIdx,
974                                   const TargetRegisterClass *RC,
975                                   SmallVectorImpl<MachineInstr*> &NewMIs,
976                                   bool &NonRI, bool &SpillsVRS) const{
977  // Note: If additional load instructions are added here,
978  // update isLoadFromStackSlot.
979
980  if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
981      PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
982    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ),
983                                               DestReg), FrameIdx));
984  } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
985             PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
986    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg),
987                                       FrameIdx));
988  } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
989    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg),
990                                       FrameIdx));
991  } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
992    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg),
993                                       FrameIdx));
994  } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
995    NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
996                                               get(PPC::RESTORE_CR), DestReg),
997                                       FrameIdx));
998    return true;
999  } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1000    NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
1001                                               get(PPC::RESTORE_CRBIT), DestReg),
1002                                       FrameIdx));
1003    return true;
1004  } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1005    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg),
1006                                       FrameIdx));
1007    NonRI = true;
1008  } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1009    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXVD2X), DestReg),
1010                                       FrameIdx));
1011    NonRI = true;
1012  } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1013    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSDX), DestReg),
1014                                       FrameIdx));
1015    NonRI = true;
1016  } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
1017    assert(Subtarget.isDarwin() &&
1018           "VRSAVE only needs spill/restore on Darwin");
1019    NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
1020                                               get(PPC::RESTORE_VRSAVE),
1021                                               DestReg),
1022                                       FrameIdx));
1023    SpillsVRS = true;
1024  } else if (PPC::QFRCRegClass.hasSubClassEq(RC)) {
1025    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDX), DestReg),
1026                                       FrameIdx));
1027    NonRI = true;
1028  } else if (PPC::QSRCRegClass.hasSubClassEq(RC)) {
1029    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFSXs), DestReg),
1030                                       FrameIdx));
1031    NonRI = true;
1032  } else if (PPC::QBRCRegClass.hasSubClassEq(RC)) {
1033    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::QVLFDXb), DestReg),
1034                                       FrameIdx));
1035    NonRI = true;
1036  } else {
1037    llvm_unreachable("Unknown regclass!");
1038  }
1039
1040  return false;
1041}
1042
1043void
1044PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1045                                   MachineBasicBlock::iterator MI,
1046                                   unsigned DestReg, int FrameIdx,
1047                                   const TargetRegisterClass *RC,
1048                                   const TargetRegisterInfo *TRI) const {
1049  MachineFunction &MF = *MBB.getParent();
1050  SmallVector<MachineInstr*, 4> NewMIs;
1051  DebugLoc DL;
1052  if (MI != MBB.end()) DL = MI->getDebugLoc();
1053
1054  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1055  FuncInfo->setHasSpills();
1056
1057  bool NonRI = false, SpillsVRS = false;
1058  if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs,
1059                           NonRI, SpillsVRS))
1060    FuncInfo->setSpillsCR();
1061
1062  if (SpillsVRS)
1063    FuncInfo->setSpillsVRSAVE();
1064
1065  if (NonRI)
1066    FuncInfo->setHasNonRISpills();
1067
1068  for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1069    MBB.insert(MI, NewMIs[i]);
1070
1071  const MachineFrameInfo &MFI = *MF.getFrameInfo();
1072  MachineMemOperand *MMO =
1073    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
1074                            MachineMemOperand::MOLoad,
1075                            MFI.getObjectSize(FrameIdx),
1076                            MFI.getObjectAlignment(FrameIdx));
1077  NewMIs.back()->addMemOperand(MF, MMO);
1078}
1079
1080bool PPCInstrInfo::
1081ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1082  assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
1083  if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
1084    Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
1085  else
1086    // Leave the CR# the same, but invert the condition.
1087    Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
1088  return false;
1089}
1090
1091bool PPCInstrInfo::FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
1092                             unsigned Reg, MachineRegisterInfo *MRI) const {
1093  // For some instructions, it is legal to fold ZERO into the RA register field.
1094  // A zero immediate should always be loaded with a single li.
1095  unsigned DefOpc = DefMI->getOpcode();
1096  if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
1097    return false;
1098  if (!DefMI->getOperand(1).isImm())
1099    return false;
1100  if (DefMI->getOperand(1).getImm() != 0)
1101    return false;
1102
1103  // Note that we cannot here invert the arguments of an isel in order to fold
1104  // a ZERO into what is presented as the second argument. All we have here
1105  // is the condition bit, and that might come from a CR-logical bit operation.
1106
1107  const MCInstrDesc &UseMCID = UseMI->getDesc();
1108
1109  // Only fold into real machine instructions.
1110  if (UseMCID.isPseudo())
1111    return false;
1112
1113  unsigned UseIdx;
1114  for (UseIdx = 0; UseIdx < UseMI->getNumOperands(); ++UseIdx)
1115    if (UseMI->getOperand(UseIdx).isReg() &&
1116        UseMI->getOperand(UseIdx).getReg() == Reg)
1117      break;
1118
1119  assert(UseIdx < UseMI->getNumOperands() && "Cannot find Reg in UseMI");
1120  assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
1121
1122  const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
1123
1124  // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1125  // register (which might also be specified as a pointer class kind).
1126  if (UseInfo->isLookupPtrRegClass()) {
1127    if (UseInfo->RegClass /* Kind */ != 1)
1128      return false;
1129  } else {
1130    if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
1131        UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
1132      return false;
1133  }
1134
1135  // Make sure this is not tied to an output register (or otherwise
1136  // constrained). This is true for ST?UX registers, for example, which
1137  // are tied to their output registers.
1138  if (UseInfo->Constraints != 0)
1139    return false;
1140
1141  unsigned ZeroReg;
1142  if (UseInfo->isLookupPtrRegClass()) {
1143    bool isPPC64 = Subtarget.isPPC64();
1144    ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
1145  } else {
1146    ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
1147              PPC::ZERO8 : PPC::ZERO;
1148  }
1149
1150  bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
1151  UseMI->getOperand(UseIdx).setReg(ZeroReg);
1152
1153  if (DeleteDef)
1154    DefMI->eraseFromParent();
1155
1156  return true;
1157}
1158
1159static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
1160  for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1161       I != IE; ++I)
1162    if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
1163      return true;
1164  return false;
1165}
1166
1167// We should make sure that, if we're going to predicate both sides of a
1168// condition (a diamond), that both sides don't define the counter register. We
1169// can predicate counter-decrement-based branches, but while that predicates
1170// the branching, it does not predicate the counter decrement. If we tried to
1171// merge the triangle into one predicated block, we'd decrement the counter
1172// twice.
1173bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
1174                     unsigned NumT, unsigned ExtraT,
1175                     MachineBasicBlock &FMBB,
1176                     unsigned NumF, unsigned ExtraF,
1177                     const BranchProbability &Probability) const {
1178  return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
1179}
1180
1181
1182bool PPCInstrInfo::isPredicated(const MachineInstr *MI) const {
1183  // The predicated branches are identified by their type, not really by the
1184  // explicit presence of a predicate. Furthermore, some of them can be
1185  // predicated more than once. Because if conversion won't try to predicate
1186  // any instruction which already claims to be predicated (by returning true
1187  // here), always return false. In doing so, we let isPredicable() be the
1188  // final word on whether not the instruction can be (further) predicated.
1189
1190  return false;
1191}
1192
1193bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
1194  if (!MI->isTerminator())
1195    return false;
1196
1197  // Conditional branch is a special case.
1198  if (MI->isBranch() && !MI->isBarrier())
1199    return true;
1200
1201  return !isPredicated(MI);
1202}
1203
1204bool PPCInstrInfo::PredicateInstruction(
1205                     MachineInstr *MI,
1206                     const SmallVectorImpl<MachineOperand> &Pred) const {
1207  unsigned OpC = MI->getOpcode();
1208  if (OpC == PPC::BLR || OpC == PPC::BLR8) {
1209    if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1210      bool isPPC64 = Subtarget.isPPC64();
1211      MI->setDesc(get(Pred[0].getImm() ?
1212                      (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) :
1213                      (isPPC64 ? PPC::BDZLR8  : PPC::BDZLR)));
1214    } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1215      MI->setDesc(get(PPC::BCLR));
1216      MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1217        .addReg(Pred[1].getReg());
1218    } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1219      MI->setDesc(get(PPC::BCLRn));
1220      MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1221        .addReg(Pred[1].getReg());
1222    } else {
1223      MI->setDesc(get(PPC::BCCLR));
1224      MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1225        .addImm(Pred[0].getImm())
1226        .addReg(Pred[1].getReg());
1227    }
1228
1229    return true;
1230  } else if (OpC == PPC::B) {
1231    if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1232      bool isPPC64 = Subtarget.isPPC64();
1233      MI->setDesc(get(Pred[0].getImm() ?
1234                      (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
1235                      (isPPC64 ? PPC::BDZ8  : PPC::BDZ)));
1236    } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1237      MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
1238      MI->RemoveOperand(0);
1239
1240      MI->setDesc(get(PPC::BC));
1241      MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1242        .addReg(Pred[1].getReg())
1243        .addMBB(MBB);
1244    } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1245      MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
1246      MI->RemoveOperand(0);
1247
1248      MI->setDesc(get(PPC::BCn));
1249      MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1250        .addReg(Pred[1].getReg())
1251        .addMBB(MBB);
1252    } else {
1253      MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
1254      MI->RemoveOperand(0);
1255
1256      MI->setDesc(get(PPC::BCC));
1257      MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1258        .addImm(Pred[0].getImm())
1259        .addReg(Pred[1].getReg())
1260        .addMBB(MBB);
1261    }
1262
1263    return true;
1264  } else if (OpC == PPC::BCTR  || OpC == PPC::BCTR8 ||
1265             OpC == PPC::BCTRL || OpC == PPC::BCTRL8) {
1266    if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
1267      llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1268
1269    bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
1270    bool isPPC64 = Subtarget.isPPC64();
1271
1272    if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1273      MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) :
1274                                (setLR ? PPC::BCCTRL  : PPC::BCCTR)));
1275      MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1276        .addReg(Pred[1].getReg());
1277      return true;
1278    } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1279      MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) :
1280                                (setLR ? PPC::BCCTRLn  : PPC::BCCTRn)));
1281      MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1282        .addReg(Pred[1].getReg());
1283      return true;
1284    }
1285
1286    MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) :
1287                              (setLR ? PPC::BCCCTRL  : PPC::BCCCTR)));
1288    MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1289      .addImm(Pred[0].getImm())
1290      .addReg(Pred[1].getReg());
1291    return true;
1292  }
1293
1294  return false;
1295}
1296
1297bool PPCInstrInfo::SubsumesPredicate(
1298                     const SmallVectorImpl<MachineOperand> &Pred1,
1299                     const SmallVectorImpl<MachineOperand> &Pred2) const {
1300  assert(Pred1.size() == 2 && "Invalid PPC first predicate");
1301  assert(Pred2.size() == 2 && "Invalid PPC second predicate");
1302
1303  if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
1304    return false;
1305  if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
1306    return false;
1307
1308  // P1 can only subsume P2 if they test the same condition register.
1309  if (Pred1[1].getReg() != Pred2[1].getReg())
1310    return false;
1311
1312  PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
1313  PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
1314
1315  if (P1 == P2)
1316    return true;
1317
1318  // Does P1 subsume P2, e.g. GE subsumes GT.
1319  if (P1 == PPC::PRED_LE &&
1320      (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1321    return true;
1322  if (P1 == PPC::PRED_GE &&
1323      (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1324    return true;
1325
1326  return false;
1327}
1328
1329bool PPCInstrInfo::DefinesPredicate(MachineInstr *MI,
1330                                    std::vector<MachineOperand> &Pred) const {
1331  // Note: At the present time, the contents of Pred from this function is
1332  // unused by IfConversion. This implementation follows ARM by pushing the
1333  // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1334  // predicate, instructions defining CTR or CTR8 are also included as
1335  // predicate-defining instructions.
1336
1337  const TargetRegisterClass *RCs[] =
1338    { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1339      &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1340
1341  bool Found = false;
1342  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1343    const MachineOperand &MO = MI->getOperand(i);
1344    for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1345      const TargetRegisterClass *RC = RCs[c];
1346      if (MO.isReg()) {
1347        if (MO.isDef() && RC->contains(MO.getReg())) {
1348          Pred.push_back(MO);
1349          Found = true;
1350        }
1351      } else if (MO.isRegMask()) {
1352        for (TargetRegisterClass::iterator I = RC->begin(),
1353             IE = RC->end(); I != IE; ++I)
1354          if (MO.clobbersPhysReg(*I)) {
1355            Pred.push_back(MO);
1356            Found = true;
1357          }
1358      }
1359    }
1360  }
1361
1362  return Found;
1363}
1364
1365bool PPCInstrInfo::isPredicable(MachineInstr *MI) const {
1366  unsigned OpC = MI->getOpcode();
1367  switch (OpC) {
1368  default:
1369    return false;
1370  case PPC::B:
1371  case PPC::BLR:
1372  case PPC::BLR8:
1373  case PPC::BCTR:
1374  case PPC::BCTR8:
1375  case PPC::BCTRL:
1376  case PPC::BCTRL8:
1377    return true;
1378  }
1379}
1380
1381bool PPCInstrInfo::analyzeCompare(const MachineInstr *MI,
1382                                  unsigned &SrcReg, unsigned &SrcReg2,
1383                                  int &Mask, int &Value) const {
1384  unsigned Opc = MI->getOpcode();
1385
1386  switch (Opc) {
1387  default: return false;
1388  case PPC::CMPWI:
1389  case PPC::CMPLWI:
1390  case PPC::CMPDI:
1391  case PPC::CMPLDI:
1392    SrcReg = MI->getOperand(1).getReg();
1393    SrcReg2 = 0;
1394    Value = MI->getOperand(2).getImm();
1395    Mask = 0xFFFF;
1396    return true;
1397  case PPC::CMPW:
1398  case PPC::CMPLW:
1399  case PPC::CMPD:
1400  case PPC::CMPLD:
1401  case PPC::FCMPUS:
1402  case PPC::FCMPUD:
1403    SrcReg = MI->getOperand(1).getReg();
1404    SrcReg2 = MI->getOperand(2).getReg();
1405    return true;
1406  }
1407}
1408
1409bool PPCInstrInfo::optimizeCompareInstr(MachineInstr *CmpInstr,
1410                                        unsigned SrcReg, unsigned SrcReg2,
1411                                        int Mask, int Value,
1412                                        const MachineRegisterInfo *MRI) const {
1413  if (DisableCmpOpt)
1414    return false;
1415
1416  int OpC = CmpInstr->getOpcode();
1417  unsigned CRReg = CmpInstr->getOperand(0).getReg();
1418
1419  // FP record forms set CR1 based on the execption status bits, not a
1420  // comparison with zero.
1421  if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1422    return false;
1423
1424  // The record forms set the condition register based on a signed comparison
1425  // with zero (so says the ISA manual). This is not as straightforward as it
1426  // seems, however, because this is always a 64-bit comparison on PPC64, even
1427  // for instructions that are 32-bit in nature (like slw for example).
1428  // So, on PPC32, for unsigned comparisons, we can use the record forms only
1429  // for equality checks (as those don't depend on the sign). On PPC64,
1430  // we are restricted to equality for unsigned 64-bit comparisons and for
1431  // signed 32-bit comparisons the applicability is more restricted.
1432  bool isPPC64 = Subtarget.isPPC64();
1433  bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
1434  bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1435  bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1436
1437  // Get the unique definition of SrcReg.
1438  MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1439  if (!MI) return false;
1440  int MIOpC = MI->getOpcode();
1441
1442  bool equalityOnly = false;
1443  bool noSub = false;
1444  if (isPPC64) {
1445    if (is32BitSignedCompare) {
1446      // We can perform this optimization only if MI is sign-extending.
1447      if (MIOpC == PPC::SRAW  || MIOpC == PPC::SRAWo ||
1448          MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo ||
1449          MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo ||
1450          MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo ||
1451          MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) {
1452        noSub = true;
1453      } else
1454        return false;
1455    } else if (is32BitUnsignedCompare) {
1456      // We can perform this optimization, equality only, if MI is
1457      // zero-extending.
1458      if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo ||
1459          MIOpC == PPC::SLW    || MIOpC == PPC::SLWo ||
1460          MIOpC == PPC::SRW    || MIOpC == PPC::SRWo) {
1461        noSub = true;
1462        equalityOnly = true;
1463      } else
1464        return false;
1465    } else
1466      equalityOnly = is64BitUnsignedCompare;
1467  } else
1468    equalityOnly = is32BitUnsignedCompare;
1469
1470  if (equalityOnly) {
1471    // We need to check the uses of the condition register in order to reject
1472    // non-equality comparisons.
1473    for (MachineRegisterInfo::use_instr_iterator I =MRI->use_instr_begin(CRReg),
1474         IE = MRI->use_instr_end(); I != IE; ++I) {
1475      MachineInstr *UseMI = &*I;
1476      if (UseMI->getOpcode() == PPC::BCC) {
1477        unsigned Pred = UseMI->getOperand(0).getImm();
1478        if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE)
1479          return false;
1480      } else if (UseMI->getOpcode() == PPC::ISEL ||
1481                 UseMI->getOpcode() == PPC::ISEL8) {
1482        unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1483        if (SubIdx != PPC::sub_eq)
1484          return false;
1485      } else
1486        return false;
1487    }
1488  }
1489
1490  MachineBasicBlock::iterator I = CmpInstr;
1491
1492  // Scan forward to find the first use of the compare.
1493  for (MachineBasicBlock::iterator EL = CmpInstr->getParent()->end();
1494       I != EL; ++I) {
1495    bool FoundUse = false;
1496    for (MachineRegisterInfo::use_instr_iterator J =MRI->use_instr_begin(CRReg),
1497         JE = MRI->use_instr_end(); J != JE; ++J)
1498      if (&*J == &*I) {
1499        FoundUse = true;
1500        break;
1501      }
1502
1503    if (FoundUse)
1504      break;
1505  }
1506
1507  // There are two possible candidates which can be changed to set CR[01].
1508  // One is MI, the other is a SUB instruction.
1509  // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1510  MachineInstr *Sub = nullptr;
1511  if (SrcReg2 != 0)
1512    // MI is not a candidate for CMPrr.
1513    MI = nullptr;
1514  // FIXME: Conservatively refuse to convert an instruction which isn't in the
1515  // same BB as the comparison. This is to allow the check below to avoid calls
1516  // (and other explicit clobbers); instead we should really check for these
1517  // more explicitly (in at least a few predecessors).
1518  else if (MI->getParent() != CmpInstr->getParent() || Value != 0) {
1519    // PPC does not have a record-form SUBri.
1520    return false;
1521  }
1522
1523  // Search for Sub.
1524  const TargetRegisterInfo *TRI = &getRegisterInfo();
1525  --I;
1526
1527  // Get ready to iterate backward from CmpInstr.
1528  MachineBasicBlock::iterator E = MI,
1529                              B = CmpInstr->getParent()->begin();
1530
1531  for (; I != E && !noSub; --I) {
1532    const MachineInstr &Instr = *I;
1533    unsigned IOpC = Instr.getOpcode();
1534
1535    if (&*I != CmpInstr && (
1536        Instr.modifiesRegister(PPC::CR0, TRI) ||
1537        Instr.readsRegister(PPC::CR0, TRI)))
1538      // This instruction modifies or uses the record condition register after
1539      // the one we want to change. While we could do this transformation, it
1540      // would likely not be profitable. This transformation removes one
1541      // instruction, and so even forcing RA to generate one move probably
1542      // makes it unprofitable.
1543      return false;
1544
1545    // Check whether CmpInstr can be made redundant by the current instruction.
1546    if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
1547         OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
1548        (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
1549        ((Instr.getOperand(1).getReg() == SrcReg &&
1550          Instr.getOperand(2).getReg() == SrcReg2) ||
1551        (Instr.getOperand(1).getReg() == SrcReg2 &&
1552         Instr.getOperand(2).getReg() == SrcReg))) {
1553      Sub = &*I;
1554      break;
1555    }
1556
1557    if (I == B)
1558      // The 'and' is below the comparison instruction.
1559      return false;
1560  }
1561
1562  // Return false if no candidates exist.
1563  if (!MI && !Sub)
1564    return false;
1565
1566  // The single candidate is called MI.
1567  if (!MI) MI = Sub;
1568
1569  int NewOpC = -1;
1570  MIOpC = MI->getOpcode();
1571  if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8)
1572    NewOpC = MIOpC;
1573  else {
1574    NewOpC = PPC::getRecordFormOpcode(MIOpC);
1575    if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
1576      NewOpC = MIOpC;
1577  }
1578
1579  // FIXME: On the non-embedded POWER architectures, only some of the record
1580  // forms are fast, and we should use only the fast ones.
1581
1582  // The defining instruction has a record form (or is already a record
1583  // form). It is possible, however, that we'll need to reverse the condition
1584  // code of the users.
1585  if (NewOpC == -1)
1586    return false;
1587
1588  SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
1589  SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
1590
1591  // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
1592  // needs to be updated to be based on SUB.  Push the condition code
1593  // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
1594  // condition code of these operands will be modified.
1595  bool ShouldSwap = false;
1596  if (Sub) {
1597    ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
1598      Sub->getOperand(2).getReg() == SrcReg;
1599
1600    // The operands to subf are the opposite of sub, so only in the fixed-point
1601    // case, invert the order.
1602    ShouldSwap = !ShouldSwap;
1603  }
1604
1605  if (ShouldSwap)
1606    for (MachineRegisterInfo::use_instr_iterator
1607         I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1608         I != IE; ++I) {
1609      MachineInstr *UseMI = &*I;
1610      if (UseMI->getOpcode() == PPC::BCC) {
1611        PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
1612        assert((!equalityOnly ||
1613                Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) &&
1614               "Invalid predicate for equality-only optimization");
1615        PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1616                                PPC::getSwappedPredicate(Pred)));
1617      } else if (UseMI->getOpcode() == PPC::ISEL ||
1618                 UseMI->getOpcode() == PPC::ISEL8) {
1619        unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
1620        assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
1621               "Invalid CR bit for equality-only optimization");
1622
1623        if (NewSubReg == PPC::sub_lt)
1624          NewSubReg = PPC::sub_gt;
1625        else if (NewSubReg == PPC::sub_gt)
1626          NewSubReg = PPC::sub_lt;
1627
1628        SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
1629                                                 NewSubReg));
1630      } else // We need to abort on a user we don't understand.
1631        return false;
1632    }
1633
1634  // Create a new virtual register to hold the value of the CR set by the
1635  // record-form instruction. If the instruction was not previously in
1636  // record form, then set the kill flag on the CR.
1637  CmpInstr->eraseFromParent();
1638
1639  MachineBasicBlock::iterator MII = MI;
1640  BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
1641          get(TargetOpcode::COPY), CRReg)
1642    .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
1643
1644  if (MIOpC != NewOpC) {
1645    // We need to be careful here: we're replacing one instruction with
1646    // another, and we need to make sure that we get all of the right
1647    // implicit uses and defs. On the other hand, the caller may be holding
1648    // an iterator to this instruction, and so we can't delete it (this is
1649    // specifically the case if this is the instruction directly after the
1650    // compare).
1651
1652    const MCInstrDesc &NewDesc = get(NewOpC);
1653    MI->setDesc(NewDesc);
1654
1655    if (NewDesc.ImplicitDefs)
1656      for (const uint16_t *ImpDefs = NewDesc.getImplicitDefs();
1657           *ImpDefs; ++ImpDefs)
1658        if (!MI->definesRegister(*ImpDefs))
1659          MI->addOperand(*MI->getParent()->getParent(),
1660                         MachineOperand::CreateReg(*ImpDefs, true, true));
1661    if (NewDesc.ImplicitUses)
1662      for (const uint16_t *ImpUses = NewDesc.getImplicitUses();
1663           *ImpUses; ++ImpUses)
1664        if (!MI->readsRegister(*ImpUses))
1665          MI->addOperand(*MI->getParent()->getParent(),
1666                         MachineOperand::CreateReg(*ImpUses, false, true));
1667  }
1668
1669  // Modify the condition code of operands in OperandsToUpdate.
1670  // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
1671  // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
1672  for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
1673    PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
1674
1675  for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
1676    SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
1677
1678  return true;
1679}
1680
1681/// GetInstSize - Return the number of bytes of code the specified
1682/// instruction may be.  This returns the maximum number of bytes.
1683///
1684unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
1685  unsigned Opcode = MI->getOpcode();
1686
1687  if (Opcode == PPC::INLINEASM) {
1688    const MachineFunction *MF = MI->getParent()->getParent();
1689    const char *AsmStr = MI->getOperand(0).getSymbolName();
1690    return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1691  } else if (Opcode == TargetOpcode::STACKMAP) {
1692    return MI->getOperand(1).getImm();
1693  } else if (Opcode == TargetOpcode::PATCHPOINT) {
1694    PatchPointOpers Opers(MI);
1695    return Opers.getMetaOper(PatchPointOpers::NBytesPos).getImm();
1696  } else {
1697    const MCInstrDesc &Desc = get(Opcode);
1698    return Desc.getSize();
1699  }
1700}
1701
1702