X86AsmPrinter.cpp revision 128a7a96f01864cde6f807075e6a1a5e92132852
1//===-- X86/Printer.cpp - Convert X86 code to human readable rep. ---------===//
2//
3// This file contains a printer that converts from our internal representation
4// of LLVM code to a nice human readable form that is suitable for debuggging.
5//
6//===----------------------------------------------------------------------===//
7
8#include "X86.h"
9#include "X86InstrInfo.h"
10#include "llvm/Pass.h"
11#include "llvm/Function.h"
12#include "llvm/Target/TargetMachine.h"
13#include "llvm/CodeGen/MachineFunction.h"
14#include "llvm/CodeGen/MachineInstr.h"
15#include "Support/Statistic.h"
16
17namespace {
18  struct Printer : public FunctionPass {
19    TargetMachine &TM;
20    std::ostream &O;
21
22    Printer(TargetMachine &tm, std::ostream &o) : TM(tm), O(o) {}
23
24    bool runOnFunction(Function &F);
25  };
26}
27
28/// createX86CodePrinterPass - Print out the specified machine code function to
29/// the specified stream.  This function should work regardless of whether or
30/// not the function is in SSA form or not.
31///
32Pass *createX86CodePrinterPass(TargetMachine &TM, std::ostream &O) {
33  return new Printer(TM, O);
34}
35
36
37/// runOnFunction - This uses the X86InstructionInfo::print method
38/// to print assembly for each instruction.
39bool Printer::runOnFunction (Function & F)
40{
41  static unsigned bbnumber = 0;
42  MachineFunction & MF = MachineFunction::get (&F);
43  const MachineInstrInfo & MII = TM.getInstrInfo ();
44
45  O << "; x86 printing only sorta implemented so far!\n";
46
47  // Print out labels for the function.
48  O << "\t.globl\t" << F.getName () << "\n";
49  O << "\t.type\t" << F.getName () << ", @function\n";
50  O << F.getName () << ":\n";
51
52  // Print out code for the function.
53  for (MachineFunction::const_iterator bb_i = MF.begin (), bb_e = MF.end ();
54       bb_i != bb_e; ++bb_i)
55    {
56      // Print a label for the basic block.
57      O << ".BB" << bbnumber++ << ":\n";
58      for (MachineBasicBlock::const_iterator i_i = bb_i->begin (), i_e =
59	   bb_i->end (); i_i != i_e; ++i_i)
60	{
61	  // Print the assembly for the instruction.
62	  O << "\t";
63          MII.print(*i_i, O, TM);
64	}
65    }
66
67  // We didn't modify anything.
68  return false;
69}
70
71static bool isReg(const MachineOperand &MO) {
72  return MO.getType() == MachineOperand::MO_VirtualRegister ||
73         MO.getType() == MachineOperand::MO_MachineRegister;
74}
75
76static bool isImmediate(const MachineOperand &MO) {
77  return MO.getType() == MachineOperand::MO_SignExtendedImmed ||
78         MO.getType() == MachineOperand::MO_UnextendedImmed;
79}
80
81static bool isScale(const MachineOperand &MO) {
82  return isImmediate(MO) &&
83           (MO.getImmedValue() == 1 || MO.getImmedValue() == 2 ||
84            MO.getImmedValue() == 4 || MO.getImmedValue() == 8);
85}
86
87static bool isMem(const MachineInstr *MI, unsigned Op) {
88  return Op+4 <= MI->getNumOperands() &&
89         isReg(MI->getOperand(Op  )) && isScale(MI->getOperand(Op+1)) &&
90         isReg(MI->getOperand(Op+2)) && isImmediate(MI->getOperand(Op+3));
91}
92
93static void printOp(std::ostream &O, const MachineOperand &MO,
94                    const MRegisterInfo &RI) {
95  switch (MO.getType()) {
96  case MachineOperand::MO_VirtualRegister:
97  case MachineOperand::MO_MachineRegister:
98    if (MO.getReg() < MRegisterInfo::FirstVirtualRegister)
99      O << RI.get(MO.getReg()).Name;
100    else
101      O << "%reg" << MO.getReg();
102    return;
103
104  case MachineOperand::MO_SignExtendedImmed:
105  case MachineOperand::MO_UnextendedImmed:
106    O << (int)MO.getImmedValue();
107    return;
108  default:
109    O << "<unknown op ty>"; return;
110  }
111}
112
113static void printMemReference(std::ostream &O, const MachineInstr *MI,
114                              unsigned Op, const MRegisterInfo &RI) {
115  assert(isMem(MI, Op) && "Invalid memory reference!");
116  const MachineOperand &BaseReg  = MI->getOperand(Op);
117  const MachineOperand &Scale    = MI->getOperand(Op+1);
118  const MachineOperand &IndexReg = MI->getOperand(Op+2);
119  const MachineOperand &Disp     = MI->getOperand(Op+3);
120
121  O << "[";
122  bool NeedPlus = false;
123  if (BaseReg.getReg()) {
124    printOp(O, BaseReg, RI);
125    NeedPlus = true;
126  }
127
128  if (IndexReg.getReg()) {
129    if (NeedPlus) O << " + ";
130    if (IndexReg.getImmedValue() != 1)
131      O << IndexReg.getImmedValue() << "*";
132    printOp(O, IndexReg, RI);
133    NeedPlus = true;
134  }
135
136  if (Disp.getImmedValue()) {
137    if (NeedPlus) O << " + ";
138    printOp(O, Disp, RI);
139  }
140  O << "]";
141}
142
143static inline void toHexDigit(std::ostream &O, unsigned char V) {
144  if (V >= 10)
145    O << (char)('A'+V-10);
146  else
147    O << (char)('0'+V);
148}
149
150static std::ostream &toHex(std::ostream &O, unsigned char V) {
151  toHexDigit(O, V >> 4);
152  toHexDigit(O, V & 0xF);
153  return O;
154}
155
156static std::ostream &emitConstant(std::ostream &O, unsigned Val, unsigned Size){
157  // Output the constant in little endian byte order...
158  for (unsigned i = 0; i != Size; ++i) {
159    toHex(O, Val) << " ";
160    Val >>= 8;
161  }
162  return O;
163}
164
165namespace N86 {  // Native X86 Register numbers...
166  enum {
167    EAX = 0, ECX = 1, EDX = 2, EBX = 3, ESP = 4, EBP = 5, ESI = 6, EDI = 7
168  };
169}
170
171
172// getX86RegNum - This function maps LLVM register identifiers to their X86
173// specific numbering, which is used in various places encoding instructions.
174//
175static unsigned getX86RegNum(unsigned RegNo) {
176  switch(RegNo) {
177  case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
178  case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
179  case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
180  case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
181  case X86::ESP: case X86::SP: case X86::AH: return N86::ESP;
182  case X86::EBP: case X86::BP: case X86::CH: return N86::EBP;
183  case X86::ESI: case X86::SI: case X86::DH: return N86::ESI;
184  case X86::EDI: case X86::DI: case X86::BH: return N86::EDI;
185  default:
186    assert(RegNo >= MRegisterInfo::FirstVirtualRegister &&
187           "Unknown physical register!");
188    DEBUG(std::cerr << "Register allocator hasn't allocated " << RegNo
189                    << " correctly yet!\n");
190    return 0;
191  }
192}
193
194inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
195                                      unsigned RM) {
196  assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
197  return RM | (RegOpcode << 3) | (Mod << 6);
198}
199
200static void emitRegModRMByte(std::ostream &O, unsigned ModRMReg,
201                             unsigned RegOpcodeField) {
202  toHex(O, ModRMByte(3, RegOpcodeField, getX86RegNum(ModRMReg)));
203}
204
205inline static void emitSIBByte(std::ostream &O, unsigned SS, unsigned Index,
206                               unsigned Base) {
207  // SIB byte is in the same format as the ModRMByte...
208  toHex(O, ModRMByte(SS, Index, Base));
209}
210
211static bool isDisp8(int Value) {
212  return Value == (signed char)Value;
213}
214
215static void emitMemModRMByte(std::ostream &O, const MachineInstr *MI,
216                             unsigned Op, unsigned RegOpcodeField) {
217  assert(isMem(MI, Op) && "Invalid memory reference!");
218  const MachineOperand &BaseReg  = MI->getOperand(Op);
219  const MachineOperand &Scale    = MI->getOperand(Op+1);
220  const MachineOperand &IndexReg = MI->getOperand(Op+2);
221  const MachineOperand &Disp     = MI->getOperand(Op+3);
222
223  // Is a SIB byte needed?
224  if (IndexReg.getReg() == 0 && BaseReg.getReg() != X86::ESP) {
225    if (BaseReg.getReg() == 0) {  // Just a displacement?
226      // Emit special case [disp32] encoding
227      toHex(O, ModRMByte(0, RegOpcodeField, 5));
228      emitConstant(O, Disp.getImmedValue(), 4);
229    } else {
230      unsigned BaseRegNo = getX86RegNum(BaseReg.getReg());
231      if (Disp.getImmedValue() == 0 && BaseRegNo != N86::EBP) {
232        // Emit simple indirect register encoding... [EAX] f.e.
233        toHex(O, ModRMByte(0, RegOpcodeField, BaseRegNo));
234      } else if (isDisp8(Disp.getImmedValue())) {
235        // Emit the disp8 encoding... [REG+disp8]
236        toHex(O, ModRMByte(1, RegOpcodeField, BaseRegNo));
237        emitConstant(O, Disp.getImmedValue(), 1);
238      } else {
239        // Emit the most general non-SIB encoding: [REG+disp32]
240        toHex(O, ModRMByte(1, RegOpcodeField, BaseRegNo));
241        emitConstant(O, Disp.getImmedValue(), 4);
242      }
243    }
244
245  } else {  // We need a SIB byte, so start by outputting the ModR/M byte first
246    assert(IndexReg.getReg() != X86::ESP && "Cannot use ESP as index reg!");
247
248    bool ForceDisp32 = false;
249    if (BaseReg.getReg() == 0) {
250      // If there is no base register, we emit the special case SIB byte with
251      // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
252      toHex(O, ModRMByte(0, RegOpcodeField, 4));
253      ForceDisp32 = true;
254    } else if (Disp.getImmedValue() == 0) {
255      // Emit no displacement ModR/M byte
256      toHex(O, ModRMByte(0, RegOpcodeField, 4));
257    } else if (isDisp8(Disp.getImmedValue())) {
258      // Emit the disp8 encoding...
259      toHex(O, ModRMByte(1, RegOpcodeField, 4));
260    } else {
261      // Emit the normal disp32 encoding...
262      toHex(O, ModRMByte(2, RegOpcodeField, 4));
263    }
264
265    // Calculate what the SS field value should be...
266    static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
267    unsigned SS = SSTable[Scale.getImmedValue()];
268
269    if (BaseReg.getReg() == 0) {
270      // Handle the SIB byte for the case where there is no base.  The
271      // displacement has already been output.
272      assert(IndexReg.getReg() && "Index register must be specified!");
273      emitSIBByte(O, SS, getX86RegNum(IndexReg.getReg()), 5);
274    } else {
275      unsigned BaseRegNo = getX86RegNum(BaseReg.getReg());
276      unsigned IndexRegNo = getX86RegNum(IndexReg.getReg());
277      emitSIBByte(O, SS, IndexRegNo, BaseRegNo);
278    }
279
280    // Do we need to output a displacement?
281    if (Disp.getImmedValue() != 0 || ForceDisp32) {
282      if (!ForceDisp32 && isDisp8(Disp.getImmedValue()))
283        emitConstant(O, Disp.getImmedValue(), 1);
284      else
285        emitConstant(O, Disp.getImmedValue(), 4);
286    }
287  }
288}
289
290
291// print - Print out an x86 instruction in intel syntax
292void X86InstrInfo::print(const MachineInstr *MI, std::ostream &O,
293                         const TargetMachine &TM) const {
294  unsigned Opcode = MI->getOpcode();
295  const MachineInstrDescriptor &Desc = get(Opcode);
296
297  // Print instruction prefixes if neccesary
298  if (Desc.TSFlags & X86II::OpSize) O << "66 "; // Operand size...
299  if (Desc.TSFlags & X86II::TB) O << "0F ";     // Two-byte opcode prefix
300
301  switch (Desc.TSFlags & X86II::FormMask) {
302  case X86II::OtherFrm:
303    O << "\t\t\t";
304    O << "-"; MI->print(O, TM);
305    break;
306
307  case X86II::RawFrm:
308    toHex(O, getBaseOpcodeFor(Opcode));
309    O << "\n\t\t\t\t";
310    O << getName(MI->getOpCode()) << " ";
311
312    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
313      if (i) O << ", ";
314      printOp(O, MI->getOperand(i), RI);
315    }
316    O << "\n";
317    return;
318
319  case X86II::AddRegFrm: {
320    // There are currently two forms of acceptable AddRegFrm instructions.
321    // Either the instruction JUST takes a single register (like inc, dec, etc),
322    // or it takes a register and an immediate of the same size as the register
323    // (move immediate f.e.).
324    //
325    assert(isReg(MI->getOperand(0)) &&
326           (MI->getNumOperands() == 1 ||
327            (MI->getNumOperands() == 2 && isImmediate(MI->getOperand(1)))) &&
328           "Illegal form for AddRegFrm instruction!");
329
330    unsigned Reg = MI->getOperand(0).getReg();
331    toHex(O, getBaseOpcodeFor(Opcode) + getX86RegNum(Reg)) << " ";
332
333    if (MI->getNumOperands() == 2) {
334      unsigned Size = 4;
335      emitConstant(O, MI->getOperand(1).getImmedValue(), Size);
336    }
337
338    O << "\n\t\t\t\t";
339    O << getName(MI->getOpCode()) << " ";
340    printOp(O, MI->getOperand(0), RI);
341    if (MI->getNumOperands() == 2) {
342      O << ", ";
343      printOp(O, MI->getOperand(1), RI);
344    }
345    O << "\n";
346    return;
347  }
348  case X86II::MRMDestReg: {
349    // There are two acceptable forms of MRMDestReg instructions, those with 3
350    // and 2 operands:
351    //
352    // 3 Operands: in this form, the first two registers (the destination, and
353    // the first operand) should be the same, post register allocation.  The 3rd
354    // operand is an additional input.  This should be for things like add
355    // instructions.
356    //
357    // 2 Operands: this is for things like mov that do not read a second input
358    //
359    assert(isReg(MI->getOperand(0)) &&
360           (MI->getNumOperands() == 2 ||
361            (MI->getNumOperands() == 3 && isReg(MI->getOperand(1)))) &&
362           isReg(MI->getOperand(MI->getNumOperands()-1))
363           && "Bad format for MRMDestReg!");
364    if (MI->getNumOperands() == 3 &&
365        MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
366      O << "**";
367
368    toHex(O, getBaseOpcodeFor(Opcode)) << " ";
369    unsigned ModRMReg = MI->getOperand(0).getReg();
370    unsigned ExtraReg = MI->getOperand(MI->getNumOperands()-1).getReg();
371    emitRegModRMByte(O, ModRMReg, getX86RegNum(ExtraReg));
372
373    O << "\n\t\t\t\t";
374    O << getName(MI->getOpCode()) << " ";
375    printOp(O, MI->getOperand(0), RI);
376    O << ", ";
377    printOp(O, MI->getOperand(MI->getNumOperands()-1), RI);
378    O << "\n";
379    return;
380  }
381
382  case X86II::MRMDestMem: {
383    // These instructions are the same as MRMDestReg, but instead of having a
384    // register reference for the mod/rm field, it's a memory reference.
385    //
386    assert(isMem(MI, 0) && MI->getNumOperands() == 4+1 &&
387           isReg(MI->getOperand(4)) && "Bad format for MRMDestMem!");
388    toHex(O, getBaseOpcodeFor(Opcode)) << " ";
389    emitMemModRMByte(O, MI, 0, getX86RegNum(MI->getOperand(4).getReg()));
390
391    O << "\n\t\t\t\t";
392    O << getName(MI->getOpCode()) << " <SIZE> PTR ";
393    printMemReference(O, MI, 0, RI);
394    O << ", ";
395    printOp(O, MI->getOperand(4), RI);
396    O << "\n";
397    return;
398  }
399
400  case X86II::MRMSrcReg: {
401    // There is a two forms that are acceptable for MRMSrcReg instructions,
402    // those with 3 and 2 operands:
403    //
404    // 3 Operands: in this form, the last register (the second input) is the
405    // ModR/M input.  The first two operands should be the same, post register
406    // allocation.  This is for things like: add r32, r/m32
407    //
408    // 2 Operands: this is for things like mov that do not read a second input
409    //
410    assert(isReg(MI->getOperand(0)) &&
411           isReg(MI->getOperand(1)) &&
412           (MI->getNumOperands() == 2 ||
413            (MI->getNumOperands() == 3 && isReg(MI->getOperand(2))))
414           && "Bad format for MRMDestReg!");
415    if (MI->getNumOperands() == 3 &&
416        MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
417      O << "**";
418
419    toHex(O, getBaseOpcodeFor(Opcode)) << " ";
420    unsigned ModRMReg = MI->getOperand(MI->getNumOperands()-1).getReg();
421    unsigned ExtraReg = MI->getOperand(0).getReg();
422    emitRegModRMByte(O, ModRMReg, getX86RegNum(ExtraReg));
423
424    O << "\n\t\t\t\t";
425    O << getName(MI->getOpCode()) << " ";
426    printOp(O, MI->getOperand(0), RI);
427    O << ", ";
428    printOp(O, MI->getOperand(MI->getNumOperands()-1), RI);
429    O << "\n";
430    return;
431  }
432
433  case X86II::MRMSrcMem: {
434    // These instructions are the same as MRMSrcReg, but instead of having a
435    // register reference for the mod/rm field, it's a memory reference.
436    //
437    assert(isReg(MI->getOperand(0)) &&
438           (MI->getNumOperands() == 1+4 && isMem(MI, 1)) ||
439           (MI->getNumOperands() == 2+4 && isReg(MI->getOperand(1)) &&
440            isMem(MI, 2))
441           && "Bad format for MRMDestReg!");
442    if (MI->getNumOperands() == 2+4 &&
443        MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
444      O << "**";
445
446    toHex(O, getBaseOpcodeFor(Opcode)) << " ";
447    unsigned ExtraReg = MI->getOperand(0).getReg();
448    emitMemModRMByte(O, MI, MI->getNumOperands()-4, getX86RegNum(ExtraReg));
449
450    O << "\n\t\t\t\t";
451    O << getName(MI->getOpCode()) << " ";
452    printOp(O, MI->getOperand(0), RI);
453    O << ", <SIZE> PTR ";
454    printMemReference(O, MI, MI->getNumOperands()-4, RI);
455    O << "\n";
456    return;
457  }
458
459  case X86II::MRMS0r: case X86II::MRMS1r:
460  case X86II::MRMS2r: case X86II::MRMS3r:
461  case X86II::MRMS4r: case X86II::MRMS5r:
462  case X86II::MRMS6r: case X86II::MRMS7r: {
463    unsigned ExtraField = (Desc.TSFlags & X86II::FormMask)-X86II::MRMS0r;
464
465    // In this form, the following are valid formats:
466    //  1. sete r
467    //  2. shl rdest, rinput  <implicit CL or 1>
468    //  3. sbb rdest, rinput, immediate   [rdest = rinput]
469    //
470    assert(MI->getNumOperands() > 0 && MI->getNumOperands() < 4 &&
471           isReg(MI->getOperand(0)) && "Bad MRMSxR format!");
472    assert((MI->getNumOperands() < 2 || isReg(MI->getOperand(1))) &&
473           "Bad MRMSxR format!");
474    assert((MI->getNumOperands() < 3 || isImmediate(MI->getOperand(2))) &&
475           "Bad MRMSxR format!");
476
477    if (MI->getNumOperands() > 1 &&
478        MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
479      O << "**";
480
481    toHex(O, getBaseOpcodeFor(Opcode)) << " ";
482    emitRegModRMByte(O, MI->getOperand(0).getReg(), ExtraField);
483
484    if (MI->getNumOperands() == 3) {
485      unsigned Size = 4;
486      emitConstant(O, MI->getOperand(2).getImmedValue(), Size);
487    }
488
489    O << "\n\t\t\t\t";
490    O << getName(MI->getOpCode()) << " ";
491    printOp(O, MI->getOperand(0), RI);
492    if (MI->getNumOperands() == 3) {
493      O << ", ";
494      printOp(O, MI->getOperand(2), RI);
495    }
496    O << "\n";
497
498    return;
499  }
500
501  default:
502    O << "\t\t\t-"; MI->print(O, TM); break;
503  }
504}
505