X86AsmPrinter.cpp revision 9d99b43fbcc2e8b7644e06ac26ce941b3719a190
1//===-- X86/Printer.cpp - Convert X86 LLVM code to Intel assembly ---------===//
2//
3// This file contains a printer that converts from our internal
4// representation of machine-dependent LLVM code to Intel-format
5// assembly language. This printer is the output mechanism used
6// by `llc' and `lli -print-machineinstrs' on X86.
7//
8//===----------------------------------------------------------------------===//
9
10#include "X86.h"
11#include "X86InstrInfo.h"
12#include "llvm/Constants.h"
13#include "llvm/DerivedTypes.h"
14#include "llvm/Module.h"
15#include "llvm/Assembly/Writer.h"
16#include "llvm/CodeGen/MachineFunctionPass.h"
17#include "llvm/CodeGen/MachineConstantPool.h"
18#include "llvm/CodeGen/MachineInstr.h"
19#include "llvm/Target/TargetMachine.h"
20#include "llvm/Support/Mangler.h"
21#include "Support/StringExtras.h"
22#include "Support/CommandLine.h"
23
24namespace {
25  // FIXME: This should be automatically picked up by autoconf from the C
26  // frontend
27  cl::opt<bool> EmitCygwin("enable-cygwin-compatible-output", cl::Hidden,
28         cl::desc("Emit X86 assembly code suitable for consumption by cygwin"));
29
30  struct Printer : public MachineFunctionPass {
31    /// Output stream on which we're printing assembly code.
32    ///
33    std::ostream &O;
34
35    /// Target machine description which we query for reg. names, data
36    /// layout, etc.
37    ///
38    TargetMachine &TM;
39
40    /// Name-mangler for global names.
41    ///
42    Mangler *Mang;
43
44    Printer(std::ostream &o, TargetMachine &tm) : O(o), TM(tm) { }
45
46    /// We name each basic block in a Function with a unique number, so
47    /// that we can consistently refer to them later. This is cleared
48    /// at the beginning of each call to runOnMachineFunction().
49    ///
50    typedef std::map<const Value *, unsigned> ValueMapTy;
51    ValueMapTy NumberForBB;
52
53    /// Cache of mangled name for current function. This is
54    /// recalculated at the beginning of each call to
55    /// runOnMachineFunction().
56    ///
57    std::string CurrentFnName;
58
59    virtual const char *getPassName() const {
60      return "X86 Assembly Printer";
61    }
62
63    void checkImplUses (const TargetInstrDescriptor &Desc);
64    void printMachineInstruction(const MachineInstr *MI);
65    void printOp(const MachineOperand &MO,
66		 bool elideOffsetKeyword = false);
67    void printMemReference(const MachineInstr *MI, unsigned Op);
68    void printConstantPool(MachineConstantPool *MCP);
69    bool runOnMachineFunction(MachineFunction &F);
70    std::string ConstantExprToString(const ConstantExpr* CE);
71    std::string valToExprString(const Value* V);
72    bool doInitialization(Module &M);
73    bool doFinalization(Module &M);
74    void printConstantValueOnly(const Constant* CV, int numPadBytesAfter = 0);
75    void printSingleConstantValue(const Constant* CV);
76  };
77} // end of anonymous namespace
78
79/// createX86CodePrinterPass - Returns a pass that prints the X86
80/// assembly code for a MachineFunction to the given output stream,
81/// using the given target machine description.  This should work
82/// regardless of whether the function is in SSA form.
83///
84FunctionPass *createX86CodePrinterPass(std::ostream &o,TargetMachine &tm){
85  return new Printer(o, tm);
86}
87
88/// valToExprString - Helper function for ConstantExprToString().
89/// Appends result to argument string S.
90///
91std::string Printer::valToExprString(const Value* V) {
92  std::string S;
93  bool failed = false;
94  if (const Constant* CV = dyn_cast<Constant>(V)) { // symbolic or known
95    if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV))
96      S += std::string(CB == ConstantBool::True ? "1" : "0");
97    else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV))
98      S += itostr(CI->getValue());
99    else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV))
100      S += utostr(CI->getValue());
101    else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
102      S += ftostr(CFP->getValue());
103    else if (isa<ConstantPointerNull>(CV))
104      S += "0";
105    else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(CV))
106      S += valToExprString(CPR->getValue());
107    else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV))
108      S += ConstantExprToString(CE);
109    else
110      failed = true;
111  } else if (const GlobalValue* GV = dyn_cast<GlobalValue>(V)) {
112    S += Mang->getValueName(GV);
113  }
114  else
115    failed = true;
116
117  if (failed) {
118    assert(0 && "Cannot convert value to string");
119    S += "<illegal-value>";
120  }
121  return S;
122}
123
124/// ConstantExprToString - Convert a ConstantExpr to an asm expression
125/// and return this as a string.
126///
127std::string Printer::ConstantExprToString(const ConstantExpr* CE) {
128  const TargetData &TD = TM.getTargetData();
129  switch(CE->getOpcode()) {
130  case Instruction::GetElementPtr:
131    { // generate a symbolic expression for the byte address
132      const Value* ptrVal = CE->getOperand(0);
133      std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end());
134      if (unsigned Offset = TD.getIndexedOffset(ptrVal->getType(), idxVec))
135        return "(" + valToExprString(ptrVal) + ") + " + utostr(Offset);
136      else
137        return valToExprString(ptrVal);
138    }
139
140  case Instruction::Cast:
141    // Support only non-converting or widening casts for now, that is,
142    // ones that do not involve a change in value.  This assertion is
143    // not a complete check.
144    {
145      Constant *Op = CE->getOperand(0);
146      const Type *OpTy = Op->getType(), *Ty = CE->getType();
147      assert(((isa<PointerType>(OpTy)
148	       && (Ty == Type::LongTy || Ty == Type::ULongTy))
149	      || (isa<PointerType>(Ty)
150		  && (OpTy == Type::LongTy || OpTy == Type::ULongTy)))
151	     || (((TD.getTypeSize(Ty) >= TD.getTypeSize(OpTy))
152		  && (OpTy->isLosslesslyConvertibleTo(Ty))))
153	     && "FIXME: Don't yet support this kind of constant cast expr");
154      return "(" + valToExprString(Op) + ")";
155    }
156
157  case Instruction::Add:
158    return "(" + valToExprString(CE->getOperand(0)) + ") + ("
159               + valToExprString(CE->getOperand(1)) + ")";
160
161  default:
162    assert(0 && "Unsupported operator in ConstantExprToString()");
163    return "";
164  }
165}
166
167/// printSingleConstantValue - Print a single constant value.
168///
169void
170Printer::printSingleConstantValue(const Constant* CV)
171{
172  assert(CV->getType() != Type::VoidTy &&
173         CV->getType() != Type::TypeTy &&
174         CV->getType() != Type::LabelTy &&
175         "Unexpected type for Constant");
176
177  assert((!isa<ConstantArray>(CV) && ! isa<ConstantStruct>(CV))
178         && "Aggregate types should be handled outside this function");
179
180  const Type *type = CV->getType();
181  O << "\t";
182  switch(type->getPrimitiveID())
183    {
184    case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID:
185      O << ".byte";
186      break;
187    case Type::UShortTyID: case Type::ShortTyID:
188      O << ".word";
189      break;
190    case Type::UIntTyID: case Type::IntTyID: case Type::PointerTyID:
191      O << ".long";
192      break;
193    case Type::ULongTyID: case Type::LongTyID:
194      O << ".quad";
195      break;
196    case Type::FloatTyID:
197      O << ".long";
198      break;
199    case Type::DoubleTyID:
200      O << ".quad";
201      break;
202    case Type::ArrayTyID:
203      if ((cast<ArrayType>(type)->getElementType() == Type::UByteTy) ||
204	  (cast<ArrayType>(type)->getElementType() == Type::SByteTy))
205	O << ".string";
206      else
207	assert (0 && "Can't handle printing this type of array");
208      break;
209    default:
210      assert (0 && "Can't handle printing this type of thing");
211      break;
212    }
213  O << "\t";
214
215  if (const ConstantExpr* CE = dyn_cast<ConstantExpr>(CV))
216    {
217      // Constant expression built from operators, constants, and
218      // symbolic addrs
219      O << ConstantExprToString(CE) << "\n";
220    }
221  else if (type->isPrimitiveType())
222    {
223      if (type->isFloatingPoint()) {
224	// FP Constants are printed as integer constants to avoid losing
225	// precision...
226	double Val = cast<ConstantFP>(CV)->getValue();
227	if (type == Type::FloatTy) {
228	  float FVal = (float)Val;
229	  char *ProxyPtr = (char*)&FVal;        // Abide by C TBAA rules
230	  O << *(unsigned int*)ProxyPtr;
231	} else if (type == Type::DoubleTy) {
232	  char *ProxyPtr = (char*)&Val;         // Abide by C TBAA rules
233	  O << *(uint64_t*)ProxyPtr;
234	} else {
235	  assert(0 && "Unknown floating point type!");
236	}
237
238	O << "\t# " << type->getDescription() << " value: " << Val << "\n";
239      } else {
240	WriteAsOperand(O, CV, false, false) << "\n";
241      }
242    }
243  else if (const ConstantPointerRef* CPR = dyn_cast<ConstantPointerRef>(CV))
244    {
245      // This is a constant address for a global variable or method.
246      // Use the name of the variable or method as the address value.
247      O << Mang->getValueName(CPR->getValue()) << "\n";
248    }
249  else if (isa<ConstantPointerNull>(CV))
250    {
251      // Null pointer value
252      O << "0\n";
253    }
254  else
255    {
256      assert(0 && "Unknown elementary type for constant");
257    }
258}
259
260/// isStringCompatible - Can we treat the specified array as a string?
261/// Only if it is an array of ubytes or non-negative sbytes.
262///
263static bool isStringCompatible(const ConstantArray *CVA) {
264  const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType();
265  if (ETy == Type::UByteTy) return true;
266  if (ETy != Type::SByteTy) return false;
267
268  for (unsigned i = 0; i < CVA->getNumOperands(); ++i)
269    if (cast<ConstantSInt>(CVA->getOperand(i))->getValue() < 0)
270      return false;
271
272  return true;
273}
274
275/// toOctal - Convert the low order bits of X into an octal digit.
276///
277static inline char toOctal(int X) {
278  return (X&7)+'0';
279}
280
281/// getAsCString - Return the specified array as a C compatible
282/// string, only if the predicate isStringCompatible is true.
283///
284static std::string getAsCString(const ConstantArray *CVA) {
285  assert(isStringCompatible(CVA) && "Array is not string compatible!");
286
287  std::string Result;
288  const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType();
289  Result = "\"";
290  for (unsigned i = 0; i < CVA->getNumOperands(); ++i) {
291    unsigned char C = cast<ConstantInt>(CVA->getOperand(i))->getRawValue();
292
293    if (C == '"') {
294      Result += "\\\"";
295    } else if (C == '\\') {
296      Result += "\\\\";
297    } else if (isprint(C)) {
298      Result += C;
299    } else {
300      switch(C) {
301      case '\b': Result += "\\b"; break;
302      case '\f': Result += "\\f"; break;
303      case '\n': Result += "\\n"; break;
304      case '\r': Result += "\\r"; break;
305      case '\t': Result += "\\t"; break;
306      default:
307        Result += '\\';
308        Result += toOctal(C >> 6);
309        Result += toOctal(C >> 3);
310        Result += toOctal(C >> 0);
311        break;
312      }
313    }
314  }
315  Result += "\"";
316  return Result;
317}
318
319// Print a constant value or values (it may be an aggregate).
320// Uses printSingleConstantValue() to print each individual value.
321void
322Printer::printConstantValueOnly(const Constant* CV,
323				int numPadBytesAfter /* = 0 */)
324{
325  const ConstantArray *CVA = dyn_cast<ConstantArray>(CV);
326  const TargetData &TD = TM.getTargetData();
327
328  if (CVA && isStringCompatible(CVA))
329    { // print the string alone and return
330      O << "\t.string\t" << getAsCString(CVA) << "\n";
331    }
332  else if (CVA)
333    { // Not a string.  Print the values in successive locations
334      const std::vector<Use> &constValues = CVA->getValues();
335      for (unsigned i=0; i < constValues.size(); i++)
336        printConstantValueOnly(cast<Constant>(constValues[i].get()));
337    }
338  else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
339    { // Print the fields in successive locations. Pad to align if needed!
340      const StructLayout *cvsLayout =
341        TD.getStructLayout(CVS->getType());
342      const std::vector<Use>& constValues = CVS->getValues();
343      unsigned sizeSoFar = 0;
344      for (unsigned i=0, N = constValues.size(); i < N; i++)
345        {
346          const Constant* field = cast<Constant>(constValues[i].get());
347
348          // Check if padding is needed and insert one or more 0s.
349          unsigned fieldSize = TD.getTypeSize(field->getType());
350          int padSize = ((i == N-1? cvsLayout->StructSize
351			  : cvsLayout->MemberOffsets[i+1])
352                         - cvsLayout->MemberOffsets[i]) - fieldSize;
353          sizeSoFar += (fieldSize + padSize);
354
355          // Now print the actual field value
356          printConstantValueOnly(field, padSize);
357        }
358      assert(sizeSoFar == cvsLayout->StructSize &&
359             "Layout of constant struct may be incorrect!");
360    }
361  else
362    printSingleConstantValue(CV);
363
364  if (numPadBytesAfter) O << "\t.zero\t " << numPadBytesAfter << "\n";
365}
366
367/// printConstantPool - Print to the current output stream assembly
368/// representations of the constants in the constant pool MCP. This is
369/// used to print out constants which have been "spilled to memory" by
370/// the code generator.
371///
372void Printer::printConstantPool(MachineConstantPool *MCP) {
373  const std::vector<Constant*> &CP = MCP->getConstants();
374  const TargetData &TD = TM.getTargetData();
375
376  if (CP.empty()) return;
377
378  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
379    O << "\t.section .rodata\n";
380    O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType())
381      << "\n";
382    O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t#"
383      << *CP[i] << "\n";
384    printConstantValueOnly (CP[i]);
385  }
386}
387
388/// runOnMachineFunction - This uses the printMachineInstruction()
389/// method to print assembly for each instruction.
390///
391bool Printer::runOnMachineFunction(MachineFunction &MF) {
392  // BBNumber is used here so that a given Printer will never give two
393  // BBs the same name. (If you have a better way, please let me know!)
394  static unsigned BBNumber = 0;
395
396  O << "\n\n";
397  // What's my mangled name?
398  CurrentFnName = Mang->getValueName(MF.getFunction());
399
400  // Print out constants referenced by the function
401  printConstantPool(MF.getConstantPool());
402
403  // Print out labels for the function.
404  O << "\t.text\n";
405  O << "\t.align 16\n";
406  O << "\t.globl\t" << CurrentFnName << "\n";
407  if (!EmitCygwin)
408    O << "\t.type\t" << CurrentFnName << ", @function\n";
409  O << CurrentFnName << ":\n";
410
411  // Number each basic block so that we can consistently refer to them
412  // in PC-relative references.
413  NumberForBB.clear();
414  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
415       I != E; ++I) {
416    NumberForBB[I->getBasicBlock()] = BBNumber++;
417  }
418
419  // Print out code for the function.
420  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
421       I != E; ++I) {
422    // Print a label for the basic block.
423    O << ".LBB" << NumberForBB[I->getBasicBlock()] << ":\t# "
424      << I->getBasicBlock()->getName() << "\n";
425    for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
426	 II != E; ++II) {
427      // Print the assembly for the instruction.
428      O << "\t";
429      printMachineInstruction(*II);
430    }
431  }
432
433  // We didn't modify anything.
434  return false;
435}
436
437static bool isScale(const MachineOperand &MO) {
438  return MO.isImmediate() &&
439    (MO.getImmedValue() == 1 || MO.getImmedValue() == 2 ||
440     MO.getImmedValue() == 4 || MO.getImmedValue() == 8);
441}
442
443static bool isMem(const MachineInstr *MI, unsigned Op) {
444  if (MI->getOperand(Op).isFrameIndex()) return true;
445  if (MI->getOperand(Op).isConstantPoolIndex()) return true;
446  return Op+4 <= MI->getNumOperands() &&
447    MI->getOperand(Op  ).isRegister() &&isScale(MI->getOperand(Op+1)) &&
448    MI->getOperand(Op+2).isRegister() &&MI->getOperand(Op+3).isImmediate();
449}
450
451
452
453void Printer::printOp(const MachineOperand &MO,
454		      bool elideOffsetKeyword /* = false */) {
455  const MRegisterInfo &RI = *TM.getRegisterInfo();
456  switch (MO.getType()) {
457  case MachineOperand::MO_VirtualRegister:
458    if (Value *V = MO.getVRegValueOrNull()) {
459      O << "<" << V->getName() << ">";
460      return;
461    }
462    // FALLTHROUGH
463  case MachineOperand::MO_MachineRegister:
464    if (MO.getReg() < MRegisterInfo::FirstVirtualRegister)
465      // Bug Workaround: See note in Printer::doInitialization about %.
466      O << "%" << RI.get(MO.getReg()).Name;
467    else
468      O << "%reg" << MO.getReg();
469    return;
470
471  case MachineOperand::MO_SignExtendedImmed:
472  case MachineOperand::MO_UnextendedImmed:
473    O << (int)MO.getImmedValue();
474    return;
475  case MachineOperand::MO_PCRelativeDisp:
476    {
477      ValueMapTy::const_iterator i = NumberForBB.find(MO.getVRegValue());
478      assert (i != NumberForBB.end()
479	      && "Could not find a BB I previously put in the NumberForBB map!");
480      O << ".LBB" << i->second << " # PC rel: " << MO.getVRegValue()->getName();
481    }
482    return;
483  case MachineOperand::MO_GlobalAddress:
484    if (!elideOffsetKeyword)
485      O << "OFFSET ";
486    O << Mang->getValueName(MO.getGlobal());
487    return;
488  case MachineOperand::MO_ExternalSymbol:
489    O << MO.getSymbolName();
490    return;
491  default:
492    O << "<unknown operand type>"; return;
493  }
494}
495
496static const std::string sizePtr(const TargetInstrDescriptor &Desc) {
497  switch (Desc.TSFlags & X86II::ArgMask) {
498  default: assert(0 && "Unknown arg size!");
499  case X86II::Arg8:   return "BYTE PTR";
500  case X86II::Arg16:  return "WORD PTR";
501  case X86II::Arg32:  return "DWORD PTR";
502  case X86II::Arg64:  return "QWORD PTR";
503  case X86II::ArgF32:  return "DWORD PTR";
504  case X86II::ArgF64:  return "QWORD PTR";
505  case X86II::ArgF80:  return "XWORD PTR";
506  }
507}
508
509void Printer::printMemReference(const MachineInstr *MI, unsigned Op) {
510  assert(isMem(MI, Op) && "Invalid memory reference!");
511
512  if (MI->getOperand(Op).isFrameIndex()) {
513    O << "[frame slot #" << MI->getOperand(Op).getFrameIndex();
514    if (MI->getOperand(Op+3).getImmedValue())
515      O << " + " << MI->getOperand(Op+3).getImmedValue();
516    O << "]";
517    return;
518  } else if (MI->getOperand(Op).isConstantPoolIndex()) {
519    O << "[.CPI" << CurrentFnName << "_"
520      << MI->getOperand(Op).getConstantPoolIndex();
521    if (MI->getOperand(Op+3).getImmedValue())
522      O << " + " << MI->getOperand(Op+3).getImmedValue();
523    O << "]";
524    return;
525  }
526
527  const MachineOperand &BaseReg  = MI->getOperand(Op);
528  int ScaleVal                   = MI->getOperand(Op+1).getImmedValue();
529  const MachineOperand &IndexReg = MI->getOperand(Op+2);
530  int DispVal                    = MI->getOperand(Op+3).getImmedValue();
531
532  O << "[";
533  bool NeedPlus = false;
534  if (BaseReg.getReg()) {
535    printOp(BaseReg);
536    NeedPlus = true;
537  }
538
539  if (IndexReg.getReg()) {
540    if (NeedPlus) O << " + ";
541    if (ScaleVal != 1)
542      O << ScaleVal << "*";
543    printOp(IndexReg);
544    NeedPlus = true;
545  }
546
547  if (DispVal) {
548    if (NeedPlus)
549      if (DispVal > 0)
550	O << " + ";
551      else {
552	O << " - ";
553	DispVal = -DispVal;
554      }
555    O << DispVal;
556  }
557  O << "]";
558}
559
560/// checkImplUses - Emit the implicit-use registers for the
561/// instruction described by DESC, if its PrintImplUses flag is set.
562///
563void Printer::checkImplUses (const TargetInstrDescriptor &Desc) {
564  const MRegisterInfo &RI = *TM.getRegisterInfo();
565  if (Desc.TSFlags & X86II::PrintImplUses) {
566    for (const unsigned *p = Desc.ImplicitUses; *p; ++p) {
567      // Bug Workaround: See note in Printer::doInitialization about %.
568      O << ", %" << RI.get(*p).Name;
569    }
570  }
571}
572
573/// printMachineInstruction -- Print out a single X86 LLVM instruction
574/// MI in Intel syntax to the current output stream.
575///
576void Printer::printMachineInstruction(const MachineInstr *MI) {
577  unsigned Opcode = MI->getOpcode();
578  const TargetInstrInfo &TII = TM.getInstrInfo();
579  const TargetInstrDescriptor &Desc = TII.get(Opcode);
580
581  switch (Desc.TSFlags & X86II::FormMask) {
582  case X86II::Pseudo:
583    // Print pseudo-instructions as comments; either they should have been
584    // turned into real instructions by now, or they don't need to be
585    // seen by the assembler (e.g., IMPLICIT_USEs.)
586    O << "# ";
587    if (Opcode == X86::PHI) {
588      printOp(MI->getOperand(0));
589      O << " = phi ";
590      for (unsigned i = 1, e = MI->getNumOperands(); i != e; i+=2) {
591	if (i != 1) O << ", ";
592	O << "[";
593	printOp(MI->getOperand(i));
594	O << ", ";
595	printOp(MI->getOperand(i+1));
596	O << "]";
597      }
598    } else {
599      unsigned i = 0;
600      if (MI->getNumOperands() && (MI->getOperand(0).opIsDefOnly() ||
601                                   MI->getOperand(0).opIsDefAndUse())) {
602	printOp(MI->getOperand(0));
603	O << " = ";
604	++i;
605      }
606      O << TII.getName(MI->getOpcode());
607
608      for (unsigned e = MI->getNumOperands(); i != e; ++i) {
609	O << " ";
610	if (MI->getOperand(i).opIsDefOnly() ||
611            MI->getOperand(i).opIsDefAndUse()) O << "*";
612	printOp(MI->getOperand(i));
613	if (MI->getOperand(i).opIsDefOnly() ||
614            MI->getOperand(i).opIsDefAndUse()) O << "*";
615      }
616    }
617    O << "\n";
618    return;
619
620  case X86II::RawFrm:
621    // The accepted forms of Raw instructions are:
622    //   1. nop     - No operand required
623    //   2. jmp foo - PC relative displacement operand
624    //   3. call bar - GlobalAddress Operand or External Symbol Operand
625    //
626    assert(MI->getNumOperands() == 0 ||
627           (MI->getNumOperands() == 1 &&
628	    (MI->getOperand(0).isPCRelativeDisp() ||
629	     MI->getOperand(0).isGlobalAddress() ||
630	     MI->getOperand(0).isExternalSymbol())) &&
631           "Illegal raw instruction!");
632    O << TII.getName(MI->getOpcode()) << " ";
633
634    if (MI->getNumOperands() == 1) {
635      printOp(MI->getOperand(0), true); // Don't print "OFFSET"...
636    }
637    O << "\n";
638    return;
639
640  case X86II::AddRegFrm: {
641    // There are currently two forms of acceptable AddRegFrm instructions.
642    // Either the instruction JUST takes a single register (like inc, dec, etc),
643    // or it takes a register and an immediate of the same size as the register
644    // (move immediate f.e.).  Note that this immediate value might be stored as
645    // an LLVM value, to represent, for example, loading the address of a global
646    // into a register.  The initial register might be duplicated if this is a
647    // M_2_ADDR_REG instruction
648    //
649    assert(MI->getOperand(0).isRegister() &&
650           (MI->getNumOperands() == 1 ||
651            (MI->getNumOperands() == 2 &&
652             (MI->getOperand(1).getVRegValueOrNull() ||
653              MI->getOperand(1).isImmediate() ||
654	      MI->getOperand(1).isRegister() ||
655	      MI->getOperand(1).isGlobalAddress() ||
656	      MI->getOperand(1).isExternalSymbol()))) &&
657           "Illegal form for AddRegFrm instruction!");
658
659    unsigned Reg = MI->getOperand(0).getReg();
660
661    O << TII.getName(MI->getOpCode()) << " ";
662    printOp(MI->getOperand(0));
663    if (MI->getNumOperands() == 2 &&
664	(!MI->getOperand(1).isRegister() ||
665	 MI->getOperand(1).getVRegValueOrNull() ||
666	 MI->getOperand(1).isGlobalAddress() ||
667	 MI->getOperand(1).isExternalSymbol())) {
668      O << ", ";
669      printOp(MI->getOperand(1));
670    }
671    checkImplUses(Desc);
672    O << "\n";
673    return;
674  }
675  case X86II::MRMDestReg: {
676    // There are two acceptable forms of MRMDestReg instructions, those with 2,
677    // 3 and 4 operands:
678    //
679    // 2 Operands: this is for things like mov that do not read a second input
680    //
681    // 3 Operands: in this form, the first two registers (the destination, and
682    // the first operand) should be the same, post register allocation.  The 3rd
683    // operand is an additional input.  This should be for things like add
684    // instructions.
685    //
686    // 4 Operands: This form is for instructions which are 3 operands forms, but
687    // have a constant argument as well.
688    //
689    bool isTwoAddr = TII.isTwoAddrInstr(Opcode);
690    assert(MI->getOperand(0).isRegister() &&
691           (MI->getNumOperands() == 2 ||
692	    (isTwoAddr && MI->getOperand(1).isRegister() &&
693	     MI->getOperand(0).getReg() == MI->getOperand(1).getReg() &&
694	     (MI->getNumOperands() == 3 ||
695	      (MI->getNumOperands() == 4 && MI->getOperand(3).isImmediate()))))
696           && "Bad format for MRMDestReg!");
697
698    O << TII.getName(MI->getOpCode()) << " ";
699    printOp(MI->getOperand(0));
700    O << ", ";
701    printOp(MI->getOperand(1+isTwoAddr));
702    if (MI->getNumOperands() == 4) {
703      O << ", ";
704      printOp(MI->getOperand(3));
705    }
706    O << "\n";
707    return;
708  }
709
710  case X86II::MRMDestMem: {
711    // These instructions are the same as MRMDestReg, but instead of having a
712    // register reference for the mod/rm field, it's a memory reference.
713    //
714    assert(isMem(MI, 0) && MI->getNumOperands() == 4+1 &&
715           MI->getOperand(4).isRegister() && "Bad format for MRMDestMem!");
716
717    O << TII.getName(MI->getOpCode()) << " " << sizePtr(Desc) << " ";
718    printMemReference(MI, 0);
719    O << ", ";
720    printOp(MI->getOperand(4));
721    O << "\n";
722    return;
723  }
724
725  case X86II::MRMSrcReg: {
726    // There is a two forms that are acceptable for MRMSrcReg instructions,
727    // those with 3 and 2 operands:
728    //
729    // 3 Operands: in this form, the last register (the second input) is the
730    // ModR/M input.  The first two operands should be the same, post register
731    // allocation.  This is for things like: add r32, r/m32
732    //
733    // 2 Operands: this is for things like mov that do not read a second input
734    //
735    assert(MI->getOperand(0).isRegister() &&
736           MI->getOperand(1).isRegister() &&
737           (MI->getNumOperands() == 2 ||
738            (MI->getNumOperands() == 3 && MI->getOperand(2).isRegister()))
739           && "Bad format for MRMSrcReg!");
740    if (MI->getNumOperands() == 3 &&
741        MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
742      O << "**";
743
744    O << TII.getName(MI->getOpCode()) << " ";
745    printOp(MI->getOperand(0));
746    O << ", ";
747    printOp(MI->getOperand(MI->getNumOperands()-1));
748    O << "\n";
749    return;
750  }
751
752  case X86II::MRMSrcMem: {
753    // These instructions are the same as MRMSrcReg, but instead of having a
754    // register reference for the mod/rm field, it's a memory reference.
755    //
756    assert(MI->getOperand(0).isRegister() &&
757           (MI->getNumOperands() == 1+4 && isMem(MI, 1)) ||
758           (MI->getNumOperands() == 2+4 && MI->getOperand(1).isRegister() &&
759            isMem(MI, 2))
760           && "Bad format for MRMDestReg!");
761    if (MI->getNumOperands() == 2+4 &&
762        MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
763      O << "**";
764
765    O << TII.getName(MI->getOpCode()) << " ";
766    printOp(MI->getOperand(0));
767    O << ", " << sizePtr(Desc) << " ";
768    printMemReference(MI, MI->getNumOperands()-4);
769    O << "\n";
770    return;
771  }
772
773  case X86II::MRMS0r: case X86II::MRMS1r:
774  case X86II::MRMS2r: case X86II::MRMS3r:
775  case X86II::MRMS4r: case X86II::MRMS5r:
776  case X86II::MRMS6r: case X86II::MRMS7r: {
777    // In this form, the following are valid formats:
778    //  1. sete r
779    //  2. cmp reg, immediate
780    //  2. shl rdest, rinput  <implicit CL or 1>
781    //  3. sbb rdest, rinput, immediate   [rdest = rinput]
782    //
783    assert(MI->getNumOperands() > 0 && MI->getNumOperands() < 4 &&
784           MI->getOperand(0).isRegister() && "Bad MRMSxR format!");
785    assert((MI->getNumOperands() != 2 ||
786            MI->getOperand(1).isRegister() || MI->getOperand(1).isImmediate())&&
787           "Bad MRMSxR format!");
788    assert((MI->getNumOperands() < 3 ||
789	    (MI->getOperand(1).isRegister() && MI->getOperand(2).isImmediate())) &&
790           "Bad MRMSxR format!");
791
792    if (MI->getNumOperands() > 1 && MI->getOperand(1).isRegister() &&
793        MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
794      O << "**";
795
796    O << TII.getName(MI->getOpCode()) << " ";
797    printOp(MI->getOperand(0));
798    if (MI->getOperand(MI->getNumOperands()-1).isImmediate()) {
799      O << ", ";
800      printOp(MI->getOperand(MI->getNumOperands()-1));
801    }
802    checkImplUses(Desc);
803    O << "\n";
804
805    return;
806  }
807
808  case X86II::MRMS0m: case X86II::MRMS1m:
809  case X86II::MRMS2m: case X86II::MRMS3m:
810  case X86II::MRMS4m: case X86II::MRMS5m:
811  case X86II::MRMS6m: case X86II::MRMS7m: {
812    // In this form, the following are valid formats:
813    //  1. sete [m]
814    //  2. cmp [m], immediate
815    //  2. shl [m], rinput  <implicit CL or 1>
816    //  3. sbb [m], immediate
817    //
818    assert(MI->getNumOperands() >= 4 && MI->getNumOperands() <= 5 &&
819           isMem(MI, 0) && "Bad MRMSxM format!");
820    assert((MI->getNumOperands() != 5 || MI->getOperand(4).isImmediate()) &&
821           "Bad MRMSxM format!");
822    // Bug: The 80-bit FP store-pop instruction "fstp XWORD PTR [...]"
823    // is misassembled by gas in intel_syntax mode as its 32-bit
824    // equivalent "fstp DWORD PTR [...]". Workaround: Output the raw
825    // opcode bytes instead of the instruction.
826    if (MI->getOpCode() == X86::FSTPr80) {
827      if ((MI->getOperand(0).getReg() == X86::ESP)
828	  && (MI->getOperand(1).getImmedValue() == 1)) {
829	int DispVal = MI->getOperand(3).getImmedValue();
830	if ((DispVal < -128) || (DispVal > 127)) { // 4 byte disp.
831          unsigned int val = (unsigned int) DispVal;
832          O << ".byte 0xdb, 0xbc, 0x24\n\t";
833          O << ".long 0x" << std::hex << (unsigned) val << std::dec << "\t# ";
834	} else { // 1 byte disp.
835          unsigned char val = (unsigned char) DispVal;
836          O << ".byte 0xdb, 0x7c, 0x24, 0x" << std::hex << (unsigned) val
837            << std::dec << "\t# ";
838	}
839      }
840    }
841    // Bug: The 80-bit FP load instruction "fld XWORD PTR [...]" is
842    // misassembled by gas in intel_syntax mode as its 32-bit
843    // equivalent "fld DWORD PTR [...]". Workaround: Output the raw
844    // opcode bytes instead of the instruction.
845    if (MI->getOpCode() == X86::FLDr80) {
846      if ((MI->getOperand(0).getReg() == X86::ESP)
847          && (MI->getOperand(1).getImmedValue() == 1)) {
848	int DispVal = MI->getOperand(3).getImmedValue();
849	if ((DispVal < -128) || (DispVal > 127)) { // 4 byte disp.
850          unsigned int val = (unsigned int) DispVal;
851          O << ".byte 0xdb, 0xac, 0x24\n\t";
852          O << ".long 0x" << std::hex << (unsigned) val << std::dec << "\t# ";
853	} else { // 1 byte disp.
854          unsigned char val = (unsigned char) DispVal;
855          O << ".byte 0xdb, 0x6c, 0x24, 0x" << std::hex << (unsigned) val
856            << std::dec << "\t# ";
857	}
858      }
859    }
860    // Bug: gas intel_syntax mode treats "fild QWORD PTR [...]" as an
861    // invalid opcode, saying "64 bit operations are only supported in
862    // 64 bit modes." libopcodes disassembles it as "fild DWORD PTR
863    // [...]", which is wrong. Workaround: Output the raw opcode bytes
864    // instead of the instruction.
865    if (MI->getOpCode() == X86::FILDr64) {
866      if ((MI->getOperand(0).getReg() == X86::ESP)
867          && (MI->getOperand(1).getImmedValue() == 1)) {
868	int DispVal = MI->getOperand(3).getImmedValue();
869	if ((DispVal < -128) || (DispVal > 127)) { // 4 byte disp.
870          unsigned int val = (unsigned int) DispVal;
871          O << ".byte 0xdf, 0xac, 0x24\n\t";
872          O << ".long 0x" << std::hex << (unsigned) val << std::dec << "\t# ";
873	} else { // 1 byte disp.
874          unsigned char val = (unsigned char) DispVal;
875          O << ".byte 0xdf, 0x6c, 0x24, 0x" << std::hex << (unsigned) val
876            << std::dec << "\t# ";
877	}
878      }
879    }
880    // Bug: gas intel_syntax mode treats "fistp QWORD PTR [...]" as
881    // an invalid opcode, saying "64 bit operations are only
882    // supported in 64 bit modes." libopcodes disassembles it as
883    // "fistpll DWORD PTR [...]", which is wrong. Workaround: Output
884    // "fistpll DWORD PTR " instead, which is what libopcodes is
885    // expecting to see.
886    if (MI->getOpCode() == X86::FISTPr64) {
887      O << "fistpll DWORD PTR ";
888      printMemReference(MI, 0);
889      if (MI->getNumOperands() == 5) {
890	O << ", ";
891	printOp(MI->getOperand(4));
892      }
893      O << "\t# ";
894    }
895
896    O << TII.getName(MI->getOpCode()) << " ";
897    O << sizePtr(Desc) << " ";
898    printMemReference(MI, 0);
899    if (MI->getNumOperands() == 5) {
900      O << ", ";
901      printOp(MI->getOperand(4));
902    }
903    O << "\n";
904    return;
905  }
906
907  default:
908    O << "\tUNKNOWN FORM:\t\t-"; MI->print(O, TM); break;
909  }
910}
911
912bool Printer::doInitialization(Module &M) {
913  // Tell gas we are outputting Intel syntax (not AT&T syntax) assembly.
914  //
915  // Bug: gas in `intel_syntax noprefix' mode interprets the symbol `Sp' in an
916  // instruction as a reference to the register named sp, and if you try to
917  // reference a symbol `Sp' (e.g. `mov ECX, OFFSET Sp') then it gets lowercased
918  // before being looked up in the symbol table. This creates spurious
919  // `undefined symbol' errors when linking. Workaround: Do not use `noprefix'
920  // mode, and decorate all register names with percent signs.
921  O << "\t.intel_syntax\n";
922  Mang = new Mangler(M, EmitCygwin);
923  return false; // success
924}
925
926static const Function *isConstantFunctionPointerRef(const Constant *C) {
927  if (const ConstantPointerRef *R = dyn_cast<ConstantPointerRef>(C))
928    if (const Function *F = dyn_cast<Function>(R->getValue()))
929      return F;
930  return 0;
931}
932
933bool Printer::doFinalization(Module &M)
934{
935  const TargetData &TD = TM.getTargetData();
936  // Print out module-level global variables here.
937  for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I) {
938    std::string name(Mang->getValueName(I));
939    if (I->hasInitializer()) {
940      Constant *C = I->getInitializer();
941      if (C->isNullValue()) {
942        O << "\n\n\t.comm " << name << "," << TD.getTypeSize(C->getType())
943          << "," << (unsigned)TD.getTypeAlignment(C->getType());
944        O << "\t\t# ";
945        WriteAsOperand(O, I, true, true, &M);
946        O << "\n";
947      } else {
948        O << "\n\n\t.data\n";
949        O << "\t.globl " << name << "\n";
950        O << "\t.type " << name << ",@object\n";
951        O << "\t.size " << name << "," << TD.getTypeSize(C->getType()) << "\n";
952        O << "\t.align " << (unsigned)TD.getTypeAlignment(C->getType()) << "\n";
953        O << name << ":\t\t\t\t# ";
954        WriteAsOperand(O, I, true, true, &M);
955        O << " = ";
956        WriteAsOperand(O, C, false, false, &M);
957        O << "\n";
958        printConstantValueOnly(C);
959      }
960    } else {
961      O << "\t.globl " << name << "\n";
962      O << "\t.comm " << name << ", "
963        << (unsigned)TD.getTypeSize(I->getType()) << ", "
964        << (unsigned)TD.getTypeAlignment(I->getType()) << "\n";
965    }
966  }
967  delete Mang;
968  return false; // success
969}
970