X86AsmPrinter.cpp revision b12ee503f7c91542ed8de3f38b309b860a274679
1//===-- X86AsmPrinter.cpp - Convert X86 LLVM code to Intel assembly -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains a printer that converts from our internal representation
11// of machine-dependent LLVM code to Intel-format assembly language. This
12// printer is the output mechanism used by `llc' and `lli -print-machineinstrs'
13// on X86.
14//
15//===----------------------------------------------------------------------===//
16
17#include "X86.h"
18#include "X86InstrInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Module.h"
23#include "llvm/Assembly/Writer.h"
24#include "llvm/CodeGen/MachineCodeEmitter.h"
25#include "llvm/CodeGen/MachineConstantPool.h"
26#include "llvm/CodeGen/MachineFunctionPass.h"
27#include "llvm/CodeGen/MachineInstr.h"
28#include "llvm/CodeGen/ValueTypes.h"
29#include "llvm/Target/TargetMachine.h"
30#include "llvm/Support/Mangler.h"
31#include "Support/Statistic.h"
32#include "Support/StringExtras.h"
33#include "Support/CommandLine.h"
34using namespace llvm;
35
36namespace {
37  Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed");
38
39  // FIXME: This should be automatically picked up by autoconf from the C
40  // frontend
41  cl::opt<bool> EmitCygwin("enable-cygwin-compatible-output", cl::Hidden,
42         cl::desc("Emit X86 assembly code suitable for consumption by cygwin"));
43
44  struct GasBugWorkaroundEmitter : public MachineCodeEmitter {
45    GasBugWorkaroundEmitter(std::ostream& o)
46      : O(o), OldFlags(O.flags()), firstByte(true) {
47      O << std::hex;
48    }
49
50    ~GasBugWorkaroundEmitter() {
51      O.flags(OldFlags);
52      O << "\t# ";
53    }
54
55    virtual void emitByte(unsigned char B) {
56      if (!firstByte) O << "\n\t";
57      firstByte = false;
58      O << ".byte 0x" << (unsigned) B;
59    }
60
61    // These should never be called
62    virtual void emitWord(unsigned W) { assert(0); }
63    virtual uint64_t getGlobalValueAddress(GlobalValue *V) { abort(); }
64    virtual uint64_t getGlobalValueAddress(const std::string &Name) { abort(); }
65    virtual uint64_t getConstantPoolEntryAddress(unsigned Index) { abort(); }
66    virtual uint64_t getCurrentPCValue() { abort(); }
67    virtual uint64_t forceCompilationOf(Function *F) { abort(); }
68
69  private:
70    std::ostream& O;
71    std::ios::fmtflags OldFlags;
72    bool firstByte;
73  };
74
75  struct X86AsmPrinter : public MachineFunctionPass {
76    /// Output stream on which we're printing assembly code.
77    ///
78    std::ostream &O;
79
80    /// Target machine description which we query for reg. names, data
81    /// layout, etc.
82    ///
83    TargetMachine &TM;
84
85    /// Name-mangler for global names.
86    ///
87    Mangler *Mang;
88
89    X86AsmPrinter(std::ostream &o, TargetMachine &tm) : O(o), TM(tm) { }
90
91    /// Cache of mangled name for current function. This is
92    /// recalculated at the beginning of each call to
93    /// runOnMachineFunction().
94    ///
95    std::string CurrentFnName;
96
97    virtual const char *getPassName() const {
98      return "X86 Assembly Printer";
99    }
100
101    /// printInstruction - This method is automatically generated by tablegen
102    /// from the instruction set description.  This method returns true if the
103    /// machine instruction was sufficiently described to print it, otherwise it
104    /// returns false.
105    bool printInstruction(const MachineInstr *MI);
106
107    // This method is used by the tablegen'erated instruction printer.
108    void printOperand(const MachineOperand &MO, MVT::ValueType VT) {
109      printOp(MO);
110    }
111
112    void printImplUsesBefore(const TargetInstrDescriptor &Desc);
113    bool printImplDefsBefore(const TargetInstrDescriptor &Desc);
114    bool printImplUsesAfter(const TargetInstrDescriptor &Desc, const bool LC);
115    bool printImplDefsAfter(const TargetInstrDescriptor &Desc, const bool LC);
116    void printMachineInstruction(const MachineInstr *MI);
117    void printOp(const MachineOperand &MO, bool elideOffsetKeyword = false);
118    void printMemReference(const MachineInstr *MI, unsigned Op);
119    void printConstantPool(MachineConstantPool *MCP);
120    bool runOnMachineFunction(MachineFunction &F);
121    bool doInitialization(Module &M);
122    bool doFinalization(Module &M);
123    void emitGlobalConstant(const Constant* CV);
124    void emitConstantValueOnly(const Constant *CV);
125  };
126} // end of anonymous namespace
127
128/// createX86CodePrinterPass - Returns a pass that prints the X86
129/// assembly code for a MachineFunction to the given output stream,
130/// using the given target machine description.  This should work
131/// regardless of whether the function is in SSA form.
132///
133FunctionPass *llvm::createX86CodePrinterPass(std::ostream &o,TargetMachine &tm){
134  return new X86AsmPrinter(o, tm);
135}
136
137
138// Include the auto-generated portion of the assembly writer.
139#include "X86GenAsmWriter.inc"
140
141
142/// toOctal - Convert the low order bits of X into an octal digit.
143///
144static inline char toOctal(int X) {
145  return (X&7)+'0';
146}
147
148/// getAsCString - Return the specified array as a C compatible
149/// string, only if the predicate isStringCompatible is true.
150///
151static void printAsCString(std::ostream &O, const ConstantArray *CVA) {
152  assert(CVA->isString() && "Array is not string compatible!");
153
154  O << "\"";
155  for (unsigned i = 0; i != CVA->getNumOperands(); ++i) {
156    unsigned char C = cast<ConstantInt>(CVA->getOperand(i))->getRawValue();
157
158    if (C == '"') {
159      O << "\\\"";
160    } else if (C == '\\') {
161      O << "\\\\";
162    } else if (isprint(C)) {
163      O << C;
164    } else {
165      switch(C) {
166      case '\b': O << "\\b"; break;
167      case '\f': O << "\\f"; break;
168      case '\n': O << "\\n"; break;
169      case '\r': O << "\\r"; break;
170      case '\t': O << "\\t"; break;
171      default:
172        O << '\\';
173        O << toOctal(C >> 6);
174        O << toOctal(C >> 3);
175        O << toOctal(C >> 0);
176        break;
177      }
178    }
179  }
180  O << "\"";
181}
182
183// Print out the specified constant, without a storage class.  Only the
184// constants valid in constant expressions can occur here.
185void X86AsmPrinter::emitConstantValueOnly(const Constant *CV) {
186  if (CV->isNullValue())
187    O << "0";
188  else if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
189    assert(CB == ConstantBool::True);
190    O << "1";
191  } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV))
192    if (((CI->getValue() << 32) >> 32) == CI->getValue())
193      O << CI->getValue();
194    else
195      O << (unsigned long long)CI->getValue();
196  else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV))
197    O << CI->getValue();
198  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
199    // This is a constant address for a global variable or function.  Use the
200    // name of the variable or function as the address value.
201    O << Mang->getValueName(GV);
202  else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
203    const TargetData &TD = TM.getTargetData();
204    switch(CE->getOpcode()) {
205    case Instruction::GetElementPtr: {
206      // generate a symbolic expression for the byte address
207      const Constant *ptrVal = CE->getOperand(0);
208      std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end());
209      if (unsigned Offset = TD.getIndexedOffset(ptrVal->getType(), idxVec)) {
210        O << "(";
211        emitConstantValueOnly(ptrVal);
212        O << ") + " << Offset;
213      } else {
214        emitConstantValueOnly(ptrVal);
215      }
216      break;
217    }
218    case Instruction::Cast: {
219      // Support only non-converting or widening casts for now, that is, ones
220      // that do not involve a change in value.  This assertion is really gross,
221      // and may not even be a complete check.
222      Constant *Op = CE->getOperand(0);
223      const Type *OpTy = Op->getType(), *Ty = CE->getType();
224
225      // Remember, kids, pointers on x86 can be losslessly converted back and
226      // forth into 32-bit or wider integers, regardless of signedness. :-P
227      assert(((isa<PointerType>(OpTy)
228               && (Ty == Type::LongTy || Ty == Type::ULongTy
229                   || Ty == Type::IntTy || Ty == Type::UIntTy))
230              || (isa<PointerType>(Ty)
231                  && (OpTy == Type::LongTy || OpTy == Type::ULongTy
232                      || OpTy == Type::IntTy || OpTy == Type::UIntTy))
233              || (((TD.getTypeSize(Ty) >= TD.getTypeSize(OpTy))
234                   && OpTy->isLosslesslyConvertibleTo(Ty))))
235             && "FIXME: Don't yet support this kind of constant cast expr");
236      O << "(";
237      emitConstantValueOnly(Op);
238      O << ")";
239      break;
240    }
241    case Instruction::Add:
242      O << "(";
243      emitConstantValueOnly(CE->getOperand(0));
244      O << ") + (";
245      emitConstantValueOnly(CE->getOperand(1));
246      O << ")";
247      break;
248    default:
249      assert(0 && "Unsupported operator!");
250    }
251  } else {
252    assert(0 && "Unknown constant value!");
253  }
254}
255
256// Print a constant value or values, with the appropriate storage class as a
257// prefix.
258void X86AsmPrinter::emitGlobalConstant(const Constant *CV) {
259  const TargetData &TD = TM.getTargetData();
260
261  if (CV->isNullValue()) {
262    O << "\t.zero\t " << TD.getTypeSize(CV->getType()) << "\n";
263    return;
264  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
265    if (CVA->isString()) {
266      O << "\t.ascii\t";
267      printAsCString(O, CVA);
268      O << "\n";
269    } else { // Not a string.  Print the values in successive locations
270      const std::vector<Use> &constValues = CVA->getValues();
271      for (unsigned i=0; i < constValues.size(); i++)
272        emitGlobalConstant(cast<Constant>(constValues[i].get()));
273    }
274    return;
275  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
276    // Print the fields in successive locations. Pad to align if needed!
277    const StructLayout *cvsLayout = TD.getStructLayout(CVS->getType());
278    const std::vector<Use>& constValues = CVS->getValues();
279    unsigned sizeSoFar = 0;
280    for (unsigned i=0, N = constValues.size(); i < N; i++) {
281      const Constant* field = cast<Constant>(constValues[i].get());
282
283      // Check if padding is needed and insert one or more 0s.
284      unsigned fieldSize = TD.getTypeSize(field->getType());
285      unsigned padSize = ((i == N-1? cvsLayout->StructSize
286                           : cvsLayout->MemberOffsets[i+1])
287                          - cvsLayout->MemberOffsets[i]) - fieldSize;
288      sizeSoFar += fieldSize + padSize;
289
290      // Now print the actual field value
291      emitGlobalConstant(field);
292
293      // Insert the field padding unless it's zero bytes...
294      if (padSize)
295        O << "\t.zero\t " << padSize << "\n";
296    }
297    assert(sizeSoFar == cvsLayout->StructSize &&
298           "Layout of constant struct may be incorrect!");
299    return;
300  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
301    // FP Constants are printed as integer constants to avoid losing
302    // precision...
303    double Val = CFP->getValue();
304    switch (CFP->getType()->getTypeID()) {
305    default: assert(0 && "Unknown floating point type!");
306    case Type::FloatTyID: {
307      union FU {                            // Abide by C TBAA rules
308        float FVal;
309        unsigned UVal;
310      } U;
311      U.FVal = Val;
312      O << ".long\t" << U.UVal << "\t# float " << Val << "\n";
313      return;
314    }
315    case Type::DoubleTyID: {
316      union DU {                            // Abide by C TBAA rules
317        double FVal;
318        uint64_t UVal;
319      } U;
320      U.FVal = Val;
321      O << ".quad\t" << U.UVal << "\t# double " << Val << "\n";
322      return;
323    }
324    }
325  }
326
327  const Type *type = CV->getType();
328  O << "\t";
329  switch (type->getTypeID()) {
330  case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID:
331    O << ".byte";
332    break;
333  case Type::UShortTyID: case Type::ShortTyID:
334    O << ".word";
335    break;
336  case Type::FloatTyID: case Type::PointerTyID:
337  case Type::UIntTyID: case Type::IntTyID:
338    O << ".long";
339    break;
340  case Type::DoubleTyID:
341  case Type::ULongTyID: case Type::LongTyID:
342    O << ".quad";
343    break;
344  default:
345    assert (0 && "Can't handle printing this type of thing");
346    break;
347  }
348  O << "\t";
349  emitConstantValueOnly(CV);
350  O << "\n";
351}
352
353/// printConstantPool - Print to the current output stream assembly
354/// representations of the constants in the constant pool MCP. This is
355/// used to print out constants which have been "spilled to memory" by
356/// the code generator.
357///
358void X86AsmPrinter::printConstantPool(MachineConstantPool *MCP) {
359  const std::vector<Constant*> &CP = MCP->getConstants();
360  const TargetData &TD = TM.getTargetData();
361
362  if (CP.empty()) return;
363
364  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
365    O << "\t.section .rodata\n";
366    O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType())
367      << "\n";
368    O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t#"
369      << *CP[i] << "\n";
370    emitGlobalConstant(CP[i]);
371  }
372}
373
374/// runOnMachineFunction - This uses the printMachineInstruction()
375/// method to print assembly for each instruction.
376///
377bool X86AsmPrinter::runOnMachineFunction(MachineFunction &MF) {
378  O << "\n\n";
379  // What's my mangled name?
380  CurrentFnName = Mang->getValueName(MF.getFunction());
381
382  // Print out constants referenced by the function
383  printConstantPool(MF.getConstantPool());
384
385  // Print out labels for the function.
386  O << "\t.text\n";
387  O << "\t.align 16\n";
388  O << "\t.globl\t" << CurrentFnName << "\n";
389  if (!EmitCygwin)
390    O << "\t.type\t" << CurrentFnName << ", @function\n";
391  O << CurrentFnName << ":\n";
392
393  // Print out code for the function.
394  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
395       I != E; ++I) {
396    // Print a label for the basic block.
397    O << ".LBB" << CurrentFnName << "_" << I->getNumber() << ":\t# "
398      << I->getBasicBlock()->getName() << "\n";
399    for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
400         II != E; ++II) {
401      // Print the assembly for the instruction.
402      O << "\t";
403      printMachineInstruction(II);
404    }
405  }
406
407  // We didn't modify anything.
408  return false;
409}
410
411static bool isScale(const MachineOperand &MO) {
412  return MO.isImmediate() &&
413    (MO.getImmedValue() == 1 || MO.getImmedValue() == 2 ||
414     MO.getImmedValue() == 4 || MO.getImmedValue() == 8);
415}
416
417static bool isMem(const MachineInstr *MI, unsigned Op) {
418  if (MI->getOperand(Op).isFrameIndex()) return true;
419  if (MI->getOperand(Op).isConstantPoolIndex()) return true;
420  return Op+4 <= MI->getNumOperands() &&
421    MI->getOperand(Op  ).isRegister() &&isScale(MI->getOperand(Op+1)) &&
422    MI->getOperand(Op+2).isRegister() &&MI->getOperand(Op+3).isImmediate();
423}
424
425
426
427void X86AsmPrinter::printOp(const MachineOperand &MO,
428                            bool elideOffsetKeyword /* = false */) {
429  const MRegisterInfo &RI = *TM.getRegisterInfo();
430  switch (MO.getType()) {
431  case MachineOperand::MO_VirtualRegister:
432    if (Value *V = MO.getVRegValueOrNull()) {
433      O << "<" << V->getName() << ">";
434      return;
435    }
436    // FALLTHROUGH
437  case MachineOperand::MO_MachineRegister:
438    if (MRegisterInfo::isPhysicalRegister(MO.getReg()))
439      // Bug Workaround: See note in Printer::doInitialization about %.
440      O << "%" << RI.get(MO.getReg()).Name;
441    else
442      O << "%reg" << MO.getReg();
443    return;
444
445  case MachineOperand::MO_SignExtendedImmed:
446  case MachineOperand::MO_UnextendedImmed:
447    O << (int)MO.getImmedValue();
448    return;
449  case MachineOperand::MO_MachineBasicBlock: {
450    MachineBasicBlock *MBBOp = MO.getMachineBasicBlock();
451    O << ".LBB" << Mang->getValueName(MBBOp->getParent()->getFunction())
452      << "_" << MBBOp->getNumber () << "\t# "
453      << MBBOp->getBasicBlock ()->getName ();
454    return;
455  }
456  case MachineOperand::MO_PCRelativeDisp:
457    std::cerr << "Shouldn't use addPCDisp() when building X86 MachineInstrs";
458    abort ();
459    return;
460  case MachineOperand::MO_GlobalAddress:
461    if (!elideOffsetKeyword)
462      O << "OFFSET ";
463    O << Mang->getValueName(MO.getGlobal());
464    return;
465  case MachineOperand::MO_ExternalSymbol:
466    O << MO.getSymbolName();
467    return;
468  default:
469    O << "<unknown operand type>"; return;
470  }
471}
472
473static const char* const sizePtr(const TargetInstrDescriptor &Desc) {
474  switch (Desc.TSFlags & X86II::MemMask) {
475  default: assert(0 && "Unknown arg size!");
476  case X86II::Mem8:   return "BYTE PTR";
477  case X86II::Mem16:  return "WORD PTR";
478  case X86II::Mem32:  return "DWORD PTR";
479  case X86II::Mem64:  return "QWORD PTR";
480  case X86II::Mem80:  return "XWORD PTR";
481  }
482}
483
484void X86AsmPrinter::printMemReference(const MachineInstr *MI, unsigned Op) {
485  assert(isMem(MI, Op) && "Invalid memory reference!");
486
487  if (MI->getOperand(Op).isFrameIndex()) {
488    O << "[frame slot #" << MI->getOperand(Op).getFrameIndex();
489    if (MI->getOperand(Op+3).getImmedValue())
490      O << " + " << MI->getOperand(Op+3).getImmedValue();
491    O << "]";
492    return;
493  } else if (MI->getOperand(Op).isConstantPoolIndex()) {
494    O << "[.CPI" << CurrentFnName << "_"
495      << MI->getOperand(Op).getConstantPoolIndex();
496    if (MI->getOperand(Op+3).getImmedValue())
497      O << " + " << MI->getOperand(Op+3).getImmedValue();
498    O << "]";
499    return;
500  }
501
502  const MachineOperand &BaseReg  = MI->getOperand(Op);
503  int ScaleVal                   = MI->getOperand(Op+1).getImmedValue();
504  const MachineOperand &IndexReg = MI->getOperand(Op+2);
505  int DispVal                    = MI->getOperand(Op+3).getImmedValue();
506
507  O << "[";
508  bool NeedPlus = false;
509  if (BaseReg.getReg()) {
510    printOp(BaseReg);
511    NeedPlus = true;
512  }
513
514  if (IndexReg.getReg()) {
515    if (NeedPlus) O << " + ";
516    if (ScaleVal != 1)
517      O << ScaleVal << "*";
518    printOp(IndexReg);
519    NeedPlus = true;
520  }
521
522  if (DispVal) {
523    if (NeedPlus)
524      if (DispVal > 0)
525        O << " + ";
526      else {
527        O << " - ";
528        DispVal = -DispVal;
529      }
530    O << DispVal;
531  }
532  O << "]";
533}
534
535
536/// printImplUsesBefore - Emit the implicit-use registers for the instruction
537/// described by DESC, if its PrintImplUsesBefore flag is set.
538///
539void X86AsmPrinter::printImplUsesBefore(const TargetInstrDescriptor &Desc) {
540  const MRegisterInfo &RI = *TM.getRegisterInfo();
541  if (Desc.TSFlags & X86II::PrintImplUsesBefore) {
542    for (const unsigned *p = Desc.ImplicitUses; *p; ++p) {
543      // Bug Workaround: See note in X86AsmPrinter::doInitialization about %.
544      O << "%" << RI.get(*p).Name << ", ";
545    }
546  }
547}
548
549/// printImplDefsBefore - Emit the implicit-def registers for the instruction
550/// described by DESC, if its PrintImplUsesBefore flag is set.  Return true if
551/// we printed any registers.
552///
553bool X86AsmPrinter::printImplDefsBefore(const TargetInstrDescriptor &Desc) {
554  bool Printed = false;
555  const MRegisterInfo &RI = *TM.getRegisterInfo();
556  if (Desc.TSFlags & X86II::PrintImplDefsBefore) {
557    const unsigned *p = Desc.ImplicitDefs;
558    if (*p) {
559      O << (Printed ? ", %" : "%") << RI.get (*p).Name;
560      Printed = true;
561      ++p;
562    }
563    while (*p) {
564      // Bug Workaround: See note in X86AsmPrinter::doInitialization about %.
565      O << ", %" << RI.get(*p).Name;
566      ++p;
567    }
568  }
569  return Printed;
570}
571
572
573/// printImplUsesAfter - Emit the implicit-use registers for the instruction
574/// described by DESC, if its PrintImplUsesAfter flag is set.
575///
576/// Inputs:
577///   Comma - List of registers will need a leading comma.
578///   Desc  - Description of the Instruction.
579///
580/// Return value:
581///   true  - Emitted one or more registers.
582///   false - Emitted no registers.
583///
584bool X86AsmPrinter::printImplUsesAfter(const TargetInstrDescriptor &Desc,
585                                       const bool Comma = true) {
586  const MRegisterInfo &RI = *TM.getRegisterInfo();
587  if (Desc.TSFlags & X86II::PrintImplUsesAfter) {
588    bool emitted = false;
589    const unsigned *p = Desc.ImplicitUses;
590    if (*p) {
591      O << (Comma ? ", %" : "%") << RI.get (*p).Name;
592      emitted = true;
593      ++p;
594    }
595    while (*p) {
596      // Bug Workaround: See note in X86AsmPrinter::doInitialization about %.
597      O << ", %" << RI.get(*p).Name;
598      ++p;
599    }
600    return emitted;
601  }
602  return false;
603}
604
605/// printImplDefsAfter - Emit the implicit-definition registers for the
606/// instruction described by DESC, if its PrintImplDefsAfter flag is set.
607///
608/// Inputs:
609///   Comma - List of registers will need a leading comma.
610///   Desc  - Description of the Instruction
611///
612/// Return value:
613///   true  - Emitted one or more registers.
614///   false - Emitted no registers.
615///
616bool X86AsmPrinter::printImplDefsAfter(const TargetInstrDescriptor &Desc,
617                                       const bool Comma = true) {
618  const MRegisterInfo &RI = *TM.getRegisterInfo();
619  if (Desc.TSFlags & X86II::PrintImplDefsAfter) {
620    bool emitted = false;
621    const unsigned *p = Desc.ImplicitDefs;
622    if (*p) {
623      O << (Comma ? ", %" : "%") << RI.get (*p).Name;
624      emitted = true;
625      ++p;
626    }
627    while (*p) {
628      // Bug Workaround: See note in X86AsmPrinter::doInitialization about %.
629      O << ", %" << RI.get(*p).Name;
630      ++p;
631    }
632    return emitted;
633  }
634  return false;
635}
636
637/// printMachineInstruction -- Print out a single X86 LLVM instruction
638/// MI in Intel syntax to the current output stream.
639///
640void X86AsmPrinter::printMachineInstruction(const MachineInstr *MI) {
641  ++EmittedInsts;
642  if (printInstruction(MI))
643    return;   // Printer was automatically generated
644
645  unsigned Opcode = MI->getOpcode();
646  const TargetInstrInfo &TII = *TM.getInstrInfo();
647  const TargetInstrDescriptor &Desc = TII.get(Opcode);
648
649  switch (Desc.TSFlags & X86II::FormMask) {
650  case X86II::Pseudo:
651    // Print pseudo-instructions as comments; either they should have been
652    // turned into real instructions by now, or they don't need to be
653    // seen by the assembler (e.g., IMPLICIT_USEs.)
654    O << "# ";
655    if (Opcode == X86::PHI) {
656      printOp(MI->getOperand(0));
657      O << " = phi ";
658      for (unsigned i = 1, e = MI->getNumOperands(); i != e; i+=2) {
659        if (i != 1) O << ", ";
660        O << "[";
661        printOp(MI->getOperand(i));
662        O << ", ";
663        printOp(MI->getOperand(i+1));
664        O << "]";
665      }
666    } else {
667      unsigned i = 0;
668      if (MI->getNumOperands() && MI->getOperand(0).isDef()) {
669        printOp(MI->getOperand(0));
670        O << " = ";
671        ++i;
672      }
673      O << TII.getName(MI->getOpcode());
674
675      for (unsigned e = MI->getNumOperands(); i != e; ++i) {
676        O << " ";
677        if (MI->getOperand(i).isDef()) O << "*";
678        printOp(MI->getOperand(i));
679        if (MI->getOperand(i).isDef()) O << "*";
680      }
681    }
682    O << "\n";
683    return;
684
685  case X86II::RawFrm:
686  {
687    // The accepted forms of Raw instructions are:
688    //   1. jmp foo - MachineBasicBlock operand
689    //   2. call bar - GlobalAddress Operand or External Symbol Operand
690    //   3. in AL, imm - Immediate operand
691    //
692    assert(MI->getNumOperands() == 1 &&
693           (MI->getOperand(0).isMachineBasicBlock() ||
694            MI->getOperand(0).isGlobalAddress() ||
695            MI->getOperand(0).isExternalSymbol() ||
696            MI->getOperand(0).isImmediate()) &&
697           "Illegal raw instruction!");
698    O << TII.getName(MI->getOpcode()) << " ";
699
700    bool LeadingComma = printImplDefsBefore(Desc);
701
702    if (MI->getNumOperands() == 1) {
703      if (LeadingComma) O << ", ";
704      printOp(MI->getOperand(0), true); // Don't print "OFFSET"...
705      LeadingComma = true;
706    }
707    LeadingComma = printImplDefsAfter(Desc, LeadingComma) || LeadingComma;
708    printImplUsesAfter(Desc, LeadingComma);
709    O << "\n";
710    return;
711  }
712
713  case X86II::AddRegFrm: {
714    // There are currently two forms of acceptable AddRegFrm instructions.
715    // Either the instruction JUST takes a single register (like inc, dec, etc),
716    // or it takes a register and an immediate of the same size as the register
717    // (move immediate f.e.).  Note that this immediate value might be stored as
718    // an LLVM value, to represent, for example, loading the address of a global
719    // into a register.  The initial register might be duplicated if this is a
720    // M_2_ADDR_REG instruction
721    //
722    assert(MI->getOperand(0).isRegister() &&
723           (MI->getNumOperands() == 1 ||
724            (MI->getNumOperands() == 2 &&
725             (MI->getOperand(1).getVRegValueOrNull() ||
726              MI->getOperand(1).isImmediate() ||
727              MI->getOperand(1).isRegister() ||
728              MI->getOperand(1).isGlobalAddress() ||
729              MI->getOperand(1).isExternalSymbol()))) &&
730           "Illegal form for AddRegFrm instruction!");
731
732    unsigned Reg = MI->getOperand(0).getReg();
733
734    O << TII.getName(MI->getOpcode()) << " ";
735
736    printImplUsesBefore(Desc);   // fcmov*
737
738    printOp(MI->getOperand(0));
739    if (MI->getNumOperands() == 2 &&
740        (!MI->getOperand(1).isRegister() ||
741         MI->getOperand(1).getVRegValueOrNull() ||
742         MI->getOperand(1).isGlobalAddress() ||
743         MI->getOperand(1).isExternalSymbol())) {
744      O << ", ";
745      printOp(MI->getOperand(1));
746    }
747    printImplUsesAfter(Desc);
748    O << "\n";
749    return;
750  }
751  case X86II::MRMDestReg: {
752    // There are three forms of MRMDestReg instructions, those with 2
753    // or 3 operands:
754    //
755    // 2 Operands: this is for things like mov that do not read a
756    // second input.
757    //
758    // 2 Operands: two address instructions which def&use the first
759    // argument and use the second as input.
760    //
761    // 3 Operands: in this form, two address instructions are the same
762    // as in 2 but have a constant argument as well.
763    //
764    bool isTwoAddr = TII.isTwoAddrInstr(Opcode);
765    assert(MI->getOperand(0).isRegister() &&
766           (MI->getNumOperands() == 2 ||
767            (MI->getNumOperands() == 3 && MI->getOperand(2).isImmediate()))
768           && "Bad format for MRMDestReg!");
769
770    O << TII.getName(MI->getOpcode()) << " ";
771    printOp(MI->getOperand(0));
772    O << ", ";
773    printOp(MI->getOperand(1));
774    if (MI->getNumOperands() == 3) {
775      O << ", ";
776      printOp(MI->getOperand(2));
777    }
778    printImplUsesAfter(Desc);
779    O << "\n";
780    return;
781  }
782
783  case X86II::MRMDestMem: {
784    // These instructions are the same as MRMDestReg, but instead of having a
785    // register reference for the mod/rm field, it's a memory reference.
786    //
787    assert(isMem(MI, 0) &&
788           (MI->getNumOperands() == 4+1 ||
789            (MI->getNumOperands() == 4+2 && MI->getOperand(5).isImmediate()))
790           && "Bad format for MRMDestMem!");
791
792    O << TII.getName(MI->getOpcode()) << " " << sizePtr(Desc) << " ";
793    printMemReference(MI, 0);
794    O << ", ";
795    printOp(MI->getOperand(4));
796    if (MI->getNumOperands() == 4+2) {
797      O << ", ";
798      printOp(MI->getOperand(5));
799    }
800    printImplUsesAfter(Desc);
801    O << "\n";
802    return;
803  }
804
805  case X86II::MRMSrcReg: {
806    // There are three forms that are acceptable for MRMSrcReg
807    // instructions, those with 2 or 3 operands:
808    //
809    // 2 Operands: this is for things like mov that do not read a
810    // second input.
811    //
812    // 2 Operands: in this form, the last register is the ModR/M
813    // input.  The first operand is a def&use.  This is for things
814    // like: add r32, r/m32
815    //
816    // 3 Operands: in this form, we can have 'INST R1, R2, imm', which is used
817    // for instructions like the IMULrri instructions.
818    //
819    //
820    assert(MI->getOperand(0).isRegister() &&
821           MI->getOperand(1).isRegister() &&
822           (MI->getNumOperands() == 2 ||
823            (MI->getNumOperands() == 3 &&
824             (MI->getOperand(2).isImmediate())))
825           && "Bad format for MRMSrcReg!");
826
827    O << TII.getName(MI->getOpcode()) << " ";
828    printOp(MI->getOperand(0));
829    O << ", ";
830    printOp(MI->getOperand(1));
831    if (MI->getNumOperands() == 3) {
832        O << ", ";
833        printOp(MI->getOperand(2));
834    }
835    O << "\n";
836    return;
837  }
838
839  case X86II::MRMSrcMem: {
840    // These instructions are the same as MRMSrcReg, but instead of having a
841    // register reference for the mod/rm field, it's a memory reference.
842    //
843    assert(MI->getOperand(0).isRegister() &&
844           ((MI->getNumOperands() == 1+4 && isMem(MI, 1)) ||
845            (MI->getNumOperands() == 2+4 && MI->getOperand(5).isImmediate() &&
846             isMem(MI, 1)))
847           && "Bad format for MRMSrcMem!");
848    O << TII.getName(MI->getOpcode()) << " ";
849    printOp(MI->getOperand(0));
850    O << ", " << sizePtr(Desc) << " ";
851    printMemReference(MI, 1);
852    if (MI->getNumOperands() == 2+4) {
853      O << ", ";
854      printOp(MI->getOperand(5));
855    }
856    O << "\n";
857    return;
858  }
859
860  case X86II::MRM0r: case X86II::MRM1r:
861  case X86II::MRM2r: case X86II::MRM3r:
862  case X86II::MRM4r: case X86II::MRM5r:
863  case X86II::MRM6r: case X86II::MRM7r: {
864    // In this form, the following are valid formats:
865    //  1. sete r
866    //  2. cmp reg, immediate
867    //  2. shl rdest, rinput  <implicit CL or 1>
868    //  3. sbb rdest, rinput, immediate   [rdest = rinput]
869    //
870    assert(MI->getNumOperands() > 0 && MI->getNumOperands() < 4 &&
871           MI->getOperand(0).isRegister() && "Bad MRMSxR format!");
872    assert((MI->getNumOperands() != 2 ||
873            MI->getOperand(1).isRegister() || MI->getOperand(1).isImmediate())&&
874           "Bad MRMSxR format!");
875    assert((MI->getNumOperands() < 3 ||
876      (MI->getOperand(1).isRegister() && MI->getOperand(2).isImmediate())) &&
877           "Bad MRMSxR format!");
878
879    if (MI->getNumOperands() > 1 && MI->getOperand(1).isRegister() &&
880        MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
881      O << "**";
882
883    O << TII.getName(MI->getOpcode()) << " ";
884    printOp(MI->getOperand(0));
885    if (MI->getOperand(MI->getNumOperands()-1).isImmediate()) {
886      O << ", ";
887      printOp(MI->getOperand(MI->getNumOperands()-1));
888    }
889    printImplUsesAfter(Desc);
890    O << "\n";
891
892    return;
893  }
894
895  case X86II::MRM0m: case X86II::MRM1m:
896  case X86II::MRM2m: case X86II::MRM3m:
897  case X86II::MRM4m: case X86II::MRM5m:
898  case X86II::MRM6m: case X86II::MRM7m: {
899    // In this form, the following are valid formats:
900    //  1. sete [m]
901    //  2. cmp [m], immediate
902    //  2. shl [m], rinput  <implicit CL or 1>
903    //  3. sbb [m], immediate
904    //
905    assert(MI->getNumOperands() >= 4 && MI->getNumOperands() <= 5 &&
906           isMem(MI, 0) && "Bad MRMSxM format!");
907    assert((MI->getNumOperands() != 5 ||
908            (MI->getOperand(4).isImmediate() ||
909             MI->getOperand(4).isGlobalAddress())) &&
910           "Bad MRMSxM format!");
911
912    const MachineOperand &Op3 = MI->getOperand(3);
913
914    // gas bugs:
915    //
916    // The 80-bit FP store-pop instruction "fstp XWORD PTR [...]"
917    // is misassembled by gas in intel_syntax mode as its 32-bit
918    // equivalent "fstp DWORD PTR [...]". Workaround: Output the raw
919    // opcode bytes instead of the instruction.
920    //
921    // The 80-bit FP load instruction "fld XWORD PTR [...]" is
922    // misassembled by gas in intel_syntax mode as its 32-bit
923    // equivalent "fld DWORD PTR [...]". Workaround: Output the raw
924    // opcode bytes instead of the instruction.
925    //
926    // gas intel_syntax mode treats "fild QWORD PTR [...]" as an
927    // invalid opcode, saying "64 bit operations are only supported in
928    // 64 bit modes." libopcodes disassembles it as "fild DWORD PTR
929    // [...]", which is wrong. Workaround: Output the raw opcode bytes
930    // instead of the instruction.
931    //
932    // gas intel_syntax mode treats "fistp QWORD PTR [...]" as an
933    // invalid opcode, saying "64 bit operations are only supported in
934    // 64 bit modes." libopcodes disassembles it as "fistpll DWORD PTR
935    // [...]", which is wrong. Workaround: Output the raw opcode bytes
936    // instead of the instruction.
937    if (MI->getOpcode() == X86::FSTP80m ||
938        MI->getOpcode() == X86::FLD80m ||
939        MI->getOpcode() == X86::FILD64m ||
940        MI->getOpcode() == X86::FISTP64m) {
941      GasBugWorkaroundEmitter gwe(O);
942      X86::emitInstruction(gwe, (X86InstrInfo&)*TM.getInstrInfo(), *MI);
943    }
944
945    O << TII.getName(MI->getOpcode()) << " ";
946    O << sizePtr(Desc) << " ";
947    printMemReference(MI, 0);
948    if (MI->getNumOperands() == 5) {
949      O << ", ";
950      printOp(MI->getOperand(4));
951    }
952    printImplUsesAfter(Desc);
953    O << "\n";
954    return;
955  }
956  default:
957    O << "\tUNKNOWN FORM:\t\t-"; MI->print(O, &TM); break;
958  }
959}
960
961bool X86AsmPrinter::doInitialization(Module &M) {
962  // Tell gas we are outputting Intel syntax (not AT&T syntax) assembly.
963  //
964  // Bug: gas in `intel_syntax noprefix' mode interprets the symbol `Sp' in an
965  // instruction as a reference to the register named sp, and if you try to
966  // reference a symbol `Sp' (e.g. `mov ECX, OFFSET Sp') then it gets lowercased
967  // before being looked up in the symbol table. This creates spurious
968  // `undefined symbol' errors when linking. Workaround: Do not use `noprefix'
969  // mode, and decorate all register names with percent signs.
970  O << "\t.intel_syntax\n";
971  Mang = new Mangler(M, EmitCygwin);
972  return false; // success
973}
974
975// SwitchSection - Switch to the specified section of the executable if we are
976// not already in it!
977//
978static void SwitchSection(std::ostream &OS, std::string &CurSection,
979                          const char *NewSection) {
980  if (CurSection != NewSection) {
981    CurSection = NewSection;
982    if (!CurSection.empty())
983      OS << "\t" << NewSection << "\n";
984  }
985}
986
987bool X86AsmPrinter::doFinalization(Module &M) {
988  const TargetData &TD = TM.getTargetData();
989  std::string CurSection;
990
991  // Print out module-level global variables here.
992  for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
993    if (I->hasInitializer()) {   // External global require no code
994      O << "\n\n";
995      std::string name = Mang->getValueName(I);
996      Constant *C = I->getInitializer();
997      unsigned Size = TD.getTypeSize(C->getType());
998      unsigned Align = TD.getTypeAlignment(C->getType());
999
1000      if (C->isNullValue() &&
1001          (I->hasLinkOnceLinkage() || I->hasInternalLinkage() ||
1002           I->hasWeakLinkage() /* FIXME: Verify correct */)) {
1003        SwitchSection(O, CurSection, ".data");
1004        if (I->hasInternalLinkage())
1005          O << "\t.local " << name << "\n";
1006
1007        O << "\t.comm " << name << "," << TD.getTypeSize(C->getType())
1008          << "," << (unsigned)TD.getTypeAlignment(C->getType());
1009        O << "\t\t# ";
1010        WriteAsOperand(O, I, true, true, &M);
1011        O << "\n";
1012      } else {
1013        switch (I->getLinkage()) {
1014        case GlobalValue::LinkOnceLinkage:
1015        case GlobalValue::WeakLinkage:   // FIXME: Verify correct for weak.
1016          // Nonnull linkonce -> weak
1017          O << "\t.weak " << name << "\n";
1018          SwitchSection(O, CurSection, "");
1019          O << "\t.section\t.llvm.linkonce.d." << name << ",\"aw\",@progbits\n";
1020          break;
1021
1022        case GlobalValue::AppendingLinkage:
1023          // FIXME: appending linkage variables should go into a section of
1024          // their name or something.  For now, just emit them as external.
1025        case GlobalValue::ExternalLinkage:
1026          // If external or appending, declare as a global symbol
1027          O << "\t.globl " << name << "\n";
1028          // FALL THROUGH
1029        case GlobalValue::InternalLinkage:
1030          if (C->isNullValue())
1031            SwitchSection(O, CurSection, ".bss");
1032          else
1033            SwitchSection(O, CurSection, ".data");
1034          break;
1035        }
1036
1037        O << "\t.align " << Align << "\n";
1038        O << "\t.type " << name << ",@object\n";
1039        O << "\t.size " << name << "," << Size << "\n";
1040        O << name << ":\t\t\t\t# ";
1041        WriteAsOperand(O, I, true, true, &M);
1042        O << " = ";
1043        WriteAsOperand(O, C, false, false, &M);
1044        O << "\n";
1045        emitGlobalConstant(C);
1046      }
1047    }
1048
1049  delete Mang;
1050  return false; // success
1051}
1052