X86AsmPrinter.cpp revision db760d00c3db53e600a0fd4050f0be29bfc79b2c
1//===-- X86/Printer.cpp - Convert X86 LLVM code to Intel assembly ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains a printer that converts from our internal representation
11// of machine-dependent LLVM code to Intel-format assembly language. This
12// printer is the output mechanism used by `llc' and `lli -print-machineinstrs'
13// on X86.
14//
15//===----------------------------------------------------------------------===//
16
17#include "X86.h"
18#include "X86InstrInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Module.h"
23#include "llvm/Assembly/Writer.h"
24#include "llvm/CodeGen/MachineCodeEmitter.h"
25#include "llvm/CodeGen/MachineConstantPool.h"
26#include "llvm/CodeGen/MachineFunctionPass.h"
27#include "llvm/CodeGen/MachineInstr.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/Support/Mangler.h"
30#include "Support/Statistic.h"
31#include "Support/StringExtras.h"
32#include "Support/CommandLine.h"
33using namespace llvm;
34
35namespace {
36  Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed");
37
38  // FIXME: This should be automatically picked up by autoconf from the C
39  // frontend
40  cl::opt<bool> EmitCygwin("enable-cygwin-compatible-output", cl::Hidden,
41         cl::desc("Emit X86 assembly code suitable for consumption by cygwin"));
42
43  struct GasBugWorkaroundEmitter : public MachineCodeEmitter {
44      GasBugWorkaroundEmitter(std::ostream& o)
45          : O(o), OldFlags(O.flags()), firstByte(true) {
46          O << std::hex;
47      }
48
49      ~GasBugWorkaroundEmitter() {
50          O.flags(OldFlags);
51          O << "\t# ";
52      }
53
54      virtual void emitByte(unsigned char B) {
55          if (!firstByte) O << "\n\t";
56          firstByte = false;
57          O << ".byte 0x" << (unsigned) B;
58      }
59
60      // These should never be called
61      virtual void emitWord(unsigned W) { assert(0); }
62      virtual uint64_t getGlobalValueAddress(GlobalValue *V) { abort(); }
63      virtual uint64_t getGlobalValueAddress(const std::string &Name) { abort(); }
64      virtual uint64_t getConstantPoolEntryAddress(unsigned Index) { abort(); }
65      virtual uint64_t getCurrentPCValue() { abort(); }
66      virtual uint64_t forceCompilationOf(Function *F) { abort(); }
67
68  private:
69      std::ostream& O;
70      std::ios::fmtflags OldFlags;
71      bool firstByte;
72  };
73
74  struct Printer : public MachineFunctionPass {
75    /// Output stream on which we're printing assembly code.
76    ///
77    std::ostream &O;
78
79    /// Target machine description which we query for reg. names, data
80    /// layout, etc.
81    ///
82    TargetMachine &TM;
83
84    /// Name-mangler for global names.
85    ///
86    Mangler *Mang;
87
88    Printer(std::ostream &o, TargetMachine &tm) : O(o), TM(tm) { }
89
90    /// We name each basic block in a Function with a unique number, so
91    /// that we can consistently refer to them later. This is cleared
92    /// at the beginning of each call to runOnMachineFunction().
93    ///
94    typedef std::map<const Value *, unsigned> ValueMapTy;
95    ValueMapTy NumberForBB;
96
97    /// Cache of mangled name for current function. This is
98    /// recalculated at the beginning of each call to
99    /// runOnMachineFunction().
100    ///
101    std::string CurrentFnName;
102
103    virtual const char *getPassName() const {
104      return "X86 Assembly Printer";
105    }
106
107    void checkImplUses (const TargetInstrDescriptor &Desc);
108    void printMachineInstruction(const MachineInstr *MI);
109    void printOp(const MachineOperand &MO,
110		 bool elideOffsetKeyword = false);
111    void printMemReference(const MachineInstr *MI, unsigned Op);
112    void printConstantPool(MachineConstantPool *MCP);
113    bool runOnMachineFunction(MachineFunction &F);
114    bool doInitialization(Module &M);
115    bool doFinalization(Module &M);
116    void emitGlobalConstant(const Constant* CV);
117    void emitConstantValueOnly(const Constant *CV);
118  };
119} // end of anonymous namespace
120
121/// createX86CodePrinterPass - Returns a pass that prints the X86
122/// assembly code for a MachineFunction to the given output stream,
123/// using the given target machine description.  This should work
124/// regardless of whether the function is in SSA form.
125///
126FunctionPass *llvm::createX86CodePrinterPass(std::ostream &o,TargetMachine &tm){
127  return new Printer(o, tm);
128}
129
130/// toOctal - Convert the low order bits of X into an octal digit.
131///
132static inline char toOctal(int X) {
133  return (X&7)+'0';
134}
135
136/// getAsCString - Return the specified array as a C compatible
137/// string, only if the predicate isStringCompatible is true.
138///
139static void printAsCString(std::ostream &O, const ConstantArray *CVA) {
140  assert(CVA->isString() && "Array is not string compatible!");
141
142  O << "\"";
143  for (unsigned i = 0; i != CVA->getNumOperands(); ++i) {
144    unsigned char C = cast<ConstantInt>(CVA->getOperand(i))->getRawValue();
145
146    if (C == '"') {
147      O << "\\\"";
148    } else if (C == '\\') {
149      O << "\\\\";
150    } else if (isprint(C)) {
151      O << C;
152    } else {
153      switch(C) {
154      case '\b': O << "\\b"; break;
155      case '\f': O << "\\f"; break;
156      case '\n': O << "\\n"; break;
157      case '\r': O << "\\r"; break;
158      case '\t': O << "\\t"; break;
159      default:
160        O << '\\';
161        O << toOctal(C >> 6);
162        O << toOctal(C >> 3);
163        O << toOctal(C >> 0);
164        break;
165      }
166    }
167  }
168  O << "\"";
169}
170
171// Print out the specified constant, without a storage class.  Only the
172// constants valid in constant expressions can occur here.
173void Printer::emitConstantValueOnly(const Constant *CV) {
174  if (CV->isNullValue())
175    O << "0";
176  else if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
177    assert(CB == ConstantBool::True);
178    O << "1";
179  } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV))
180    if (((CI->getValue() << 32) >> 32) == CI->getValue())
181      O << CI->getValue();
182    else
183      O << (unsigned long long)CI->getValue();
184  else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV))
185    O << CI->getValue();
186  else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(CV))
187    // This is a constant address for a global variable or function.  Use the
188    // name of the variable or function as the address value.
189    O << Mang->getValueName(CPR->getValue());
190  else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
191    const TargetData &TD = TM.getTargetData();
192    switch(CE->getOpcode()) {
193    case Instruction::GetElementPtr: {
194      // generate a symbolic expression for the byte address
195      const Constant *ptrVal = CE->getOperand(0);
196      std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end());
197      if (unsigned Offset = TD.getIndexedOffset(ptrVal->getType(), idxVec)) {
198        O << "(";
199        emitConstantValueOnly(ptrVal);
200        O << ") + " << Offset;
201      } else {
202        emitConstantValueOnly(ptrVal);
203      }
204      break;
205    }
206    case Instruction::Cast: {
207      // Support only non-converting or widening casts for now, that is, ones
208      // that do not involve a change in value.  This assertion is really gross,
209      // and may not even be a complete check.
210      Constant *Op = CE->getOperand(0);
211      const Type *OpTy = Op->getType(), *Ty = CE->getType();
212
213      // Remember, kids, pointers on x86 can be losslessly converted back and
214      // forth into 32-bit or wider integers, regardless of signedness. :-P
215      assert(((isa<PointerType>(OpTy)
216               && (Ty == Type::LongTy || Ty == Type::ULongTy
217                   || Ty == Type::IntTy || Ty == Type::UIntTy))
218              || (isa<PointerType>(Ty)
219                  && (OpTy == Type::LongTy || OpTy == Type::ULongTy
220                      || OpTy == Type::IntTy || OpTy == Type::UIntTy))
221              || (((TD.getTypeSize(Ty) >= TD.getTypeSize(OpTy))
222                   && OpTy->isLosslesslyConvertibleTo(Ty))))
223             && "FIXME: Don't yet support this kind of constant cast expr");
224      O << "(";
225      emitConstantValueOnly(Op);
226      O << ")";
227      break;
228    }
229    case Instruction::Add:
230      O << "(";
231      emitConstantValueOnly(CE->getOperand(0));
232      O << ") + (";
233      emitConstantValueOnly(CE->getOperand(1));
234      O << ")";
235      break;
236    default:
237      assert(0 && "Unsupported operator!");
238    }
239  } else {
240    assert(0 && "Unknown constant value!");
241  }
242}
243
244// Print a constant value or values, with the appropriate storage class as a
245// prefix.
246void Printer::emitGlobalConstant(const Constant *CV) {
247  const TargetData &TD = TM.getTargetData();
248
249  if (CV->isNullValue()) {
250    O << "\t.zero\t " << TD.getTypeSize(CV->getType()) << "\n";
251    return;
252  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
253    if (CVA->isString()) {
254      O << "\t.ascii\t";
255      printAsCString(O, CVA);
256      O << "\n";
257    } else { // Not a string.  Print the values in successive locations
258      const std::vector<Use> &constValues = CVA->getValues();
259      for (unsigned i=0; i < constValues.size(); i++)
260        emitGlobalConstant(cast<Constant>(constValues[i].get()));
261    }
262    return;
263  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
264    // Print the fields in successive locations. Pad to align if needed!
265    const StructLayout *cvsLayout = TD.getStructLayout(CVS->getType());
266    const std::vector<Use>& constValues = CVS->getValues();
267    unsigned sizeSoFar = 0;
268    for (unsigned i=0, N = constValues.size(); i < N; i++) {
269      const Constant* field = cast<Constant>(constValues[i].get());
270
271      // Check if padding is needed and insert one or more 0s.
272      unsigned fieldSize = TD.getTypeSize(field->getType());
273      unsigned padSize = ((i == N-1? cvsLayout->StructSize
274                           : cvsLayout->MemberOffsets[i+1])
275                          - cvsLayout->MemberOffsets[i]) - fieldSize;
276      sizeSoFar += fieldSize + padSize;
277
278      // Now print the actual field value
279      emitGlobalConstant(field);
280
281      // Insert the field padding unless it's zero bytes...
282      if (padSize)
283        O << "\t.zero\t " << padSize << "\n";
284    }
285    assert(sizeSoFar == cvsLayout->StructSize &&
286           "Layout of constant struct may be incorrect!");
287    return;
288  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
289    // FP Constants are printed as integer constants to avoid losing
290    // precision...
291    double Val = CFP->getValue();
292    switch (CFP->getType()->getPrimitiveID()) {
293    default: assert(0 && "Unknown floating point type!");
294    case Type::FloatTyID: {
295      union FU {                            // Abide by C TBAA rules
296        float FVal;
297        unsigned UVal;
298      } U;
299      U.FVal = Val;
300      O << ".long\t" << U.UVal << "\t# float " << Val << "\n";
301      return;
302    }
303    case Type::DoubleTyID: {
304      union DU {                            // Abide by C TBAA rules
305        double FVal;
306        uint64_t UVal;
307      } U;
308      U.FVal = Val;
309      O << ".quad\t" << U.UVal << "\t# double " << Val << "\n";
310      return;
311    }
312    }
313  }
314
315  const Type *type = CV->getType();
316  O << "\t";
317  switch (type->getPrimitiveID()) {
318  case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID:
319    O << ".byte";
320    break;
321  case Type::UShortTyID: case Type::ShortTyID:
322    O << ".word";
323    break;
324  case Type::FloatTyID: case Type::PointerTyID:
325  case Type::UIntTyID: case Type::IntTyID:
326    O << ".long";
327    break;
328  case Type::DoubleTyID:
329  case Type::ULongTyID: case Type::LongTyID:
330    O << ".quad";
331    break;
332  default:
333    assert (0 && "Can't handle printing this type of thing");
334    break;
335  }
336  O << "\t";
337  emitConstantValueOnly(CV);
338  O << "\n";
339}
340
341/// printConstantPool - Print to the current output stream assembly
342/// representations of the constants in the constant pool MCP. This is
343/// used to print out constants which have been "spilled to memory" by
344/// the code generator.
345///
346void Printer::printConstantPool(MachineConstantPool *MCP) {
347  const std::vector<Constant*> &CP = MCP->getConstants();
348  const TargetData &TD = TM.getTargetData();
349
350  if (CP.empty()) return;
351
352  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
353    O << "\t.section .rodata\n";
354    O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType())
355      << "\n";
356    O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t#"
357      << *CP[i] << "\n";
358    emitGlobalConstant(CP[i]);
359  }
360}
361
362/// runOnMachineFunction - This uses the printMachineInstruction()
363/// method to print assembly for each instruction.
364///
365bool Printer::runOnMachineFunction(MachineFunction &MF) {
366  // BBNumber is used here so that a given Printer will never give two
367  // BBs the same name. (If you have a better way, please let me know!)
368  static unsigned BBNumber = 0;
369
370  O << "\n\n";
371  // What's my mangled name?
372  CurrentFnName = Mang->getValueName(MF.getFunction());
373
374  // Print out constants referenced by the function
375  printConstantPool(MF.getConstantPool());
376
377  // Print out labels for the function.
378  O << "\t.text\n";
379  O << "\t.align 16\n";
380  O << "\t.globl\t" << CurrentFnName << "\n";
381  if (!EmitCygwin)
382    O << "\t.type\t" << CurrentFnName << ", @function\n";
383  O << CurrentFnName << ":\n";
384
385  // Number each basic block so that we can consistently refer to them
386  // in PC-relative references.
387  NumberForBB.clear();
388  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
389       I != E; ++I) {
390    NumberForBB[I->getBasicBlock()] = BBNumber++;
391  }
392
393  // Print out code for the function.
394  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
395       I != E; ++I) {
396    // Print a label for the basic block.
397    O << ".LBB" << NumberForBB[I->getBasicBlock()] << ":\t# "
398      << I->getBasicBlock()->getName() << "\n";
399    for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
400	 II != E; ++II) {
401      // Print the assembly for the instruction.
402      O << "\t";
403      printMachineInstruction(II);
404    }
405  }
406
407  // We didn't modify anything.
408  return false;
409}
410
411static bool isScale(const MachineOperand &MO) {
412  return MO.isImmediate() &&
413    (MO.getImmedValue() == 1 || MO.getImmedValue() == 2 ||
414     MO.getImmedValue() == 4 || MO.getImmedValue() == 8);
415}
416
417static bool isMem(const MachineInstr *MI, unsigned Op) {
418  if (MI->getOperand(Op).isFrameIndex()) return true;
419  if (MI->getOperand(Op).isConstantPoolIndex()) return true;
420  return Op+4 <= MI->getNumOperands() &&
421    MI->getOperand(Op  ).isRegister() &&isScale(MI->getOperand(Op+1)) &&
422    MI->getOperand(Op+2).isRegister() &&MI->getOperand(Op+3).isImmediate();
423}
424
425
426
427void Printer::printOp(const MachineOperand &MO,
428		      bool elideOffsetKeyword /* = false */) {
429  const MRegisterInfo &RI = *TM.getRegisterInfo();
430  switch (MO.getType()) {
431  case MachineOperand::MO_VirtualRegister:
432    if (Value *V = MO.getVRegValueOrNull()) {
433      O << "<" << V->getName() << ">";
434      return;
435    }
436    // FALLTHROUGH
437  case MachineOperand::MO_MachineRegister:
438    if (MRegisterInfo::isPhysicalRegister(MO.getReg()))
439      // Bug Workaround: See note in Printer::doInitialization about %.
440      O << "%" << RI.get(MO.getReg()).Name;
441    else
442      O << "%reg" << MO.getReg();
443    return;
444
445  case MachineOperand::MO_SignExtendedImmed:
446  case MachineOperand::MO_UnextendedImmed:
447    O << (int)MO.getImmedValue();
448    return;
449  case MachineOperand::MO_PCRelativeDisp: {
450    ValueMapTy::const_iterator i = NumberForBB.find(MO.getVRegValue());
451    assert (i != NumberForBB.end()
452            && "Could not find a BB in the NumberForBB map!");
453    O << ".LBB" << i->second << " # PC rel: " << MO.getVRegValue()->getName();
454    return;
455  }
456  case MachineOperand::MO_GlobalAddress:
457    if (!elideOffsetKeyword)
458      O << "OFFSET ";
459    O << Mang->getValueName(MO.getGlobal());
460    return;
461  case MachineOperand::MO_ExternalSymbol:
462    O << MO.getSymbolName();
463    return;
464  default:
465    O << "<unknown operand type>"; return;
466  }
467}
468
469static const char* const sizePtr(const TargetInstrDescriptor &Desc) {
470  switch (Desc.TSFlags & X86II::MemMask) {
471  default: assert(0 && "Unknown arg size!");
472  case X86II::Mem8:   return "BYTE PTR";
473  case X86II::Mem16:  return "WORD PTR";
474  case X86II::Mem32:  return "DWORD PTR";
475  case X86II::Mem64:  return "QWORD PTR";
476  case X86II::Mem80:  return "XWORD PTR";
477  }
478}
479
480void Printer::printMemReference(const MachineInstr *MI, unsigned Op) {
481  assert(isMem(MI, Op) && "Invalid memory reference!");
482
483  if (MI->getOperand(Op).isFrameIndex()) {
484    O << "[frame slot #" << MI->getOperand(Op).getFrameIndex();
485    if (MI->getOperand(Op+3).getImmedValue())
486      O << " + " << MI->getOperand(Op+3).getImmedValue();
487    O << "]";
488    return;
489  } else if (MI->getOperand(Op).isConstantPoolIndex()) {
490    O << "[.CPI" << CurrentFnName << "_"
491      << MI->getOperand(Op).getConstantPoolIndex();
492    if (MI->getOperand(Op+3).getImmedValue())
493      O << " + " << MI->getOperand(Op+3).getImmedValue();
494    O << "]";
495    return;
496  }
497
498  const MachineOperand &BaseReg  = MI->getOperand(Op);
499  int ScaleVal                   = MI->getOperand(Op+1).getImmedValue();
500  const MachineOperand &IndexReg = MI->getOperand(Op+2);
501  int DispVal                    = MI->getOperand(Op+3).getImmedValue();
502
503  O << "[";
504  bool NeedPlus = false;
505  if (BaseReg.getReg()) {
506    printOp(BaseReg);
507    NeedPlus = true;
508  }
509
510  if (IndexReg.getReg()) {
511    if (NeedPlus) O << " + ";
512    if (ScaleVal != 1)
513      O << ScaleVal << "*";
514    printOp(IndexReg);
515    NeedPlus = true;
516  }
517
518  if (DispVal) {
519    if (NeedPlus)
520      if (DispVal > 0)
521	O << " + ";
522      else {
523	O << " - ";
524	DispVal = -DispVal;
525      }
526    O << DispVal;
527  }
528  O << "]";
529}
530
531/// checkImplUses - Emit the implicit-use registers for the
532/// instruction described by DESC, if its PrintImplUses flag is set.
533///
534void Printer::checkImplUses (const TargetInstrDescriptor &Desc) {
535  const MRegisterInfo &RI = *TM.getRegisterInfo();
536  if (Desc.TSFlags & X86II::PrintImplUses) {
537    for (const unsigned *p = Desc.ImplicitUses; *p; ++p) {
538      // Bug Workaround: See note in Printer::doInitialization about %.
539      O << ", %" << RI.get(*p).Name;
540    }
541  }
542}
543
544/// printMachineInstruction -- Print out a single X86 LLVM instruction
545/// MI in Intel syntax to the current output stream.
546///
547void Printer::printMachineInstruction(const MachineInstr *MI) {
548  unsigned Opcode = MI->getOpcode();
549  const TargetInstrInfo &TII = TM.getInstrInfo();
550  const TargetInstrDescriptor &Desc = TII.get(Opcode);
551
552  ++EmittedInsts;
553  switch (Desc.TSFlags & X86II::FormMask) {
554  case X86II::Pseudo:
555    // Print pseudo-instructions as comments; either they should have been
556    // turned into real instructions by now, or they don't need to be
557    // seen by the assembler (e.g., IMPLICIT_USEs.)
558    O << "# ";
559    if (Opcode == X86::PHI) {
560      printOp(MI->getOperand(0));
561      O << " = phi ";
562      for (unsigned i = 1, e = MI->getNumOperands(); i != e; i+=2) {
563	if (i != 1) O << ", ";
564	O << "[";
565	printOp(MI->getOperand(i));
566	O << ", ";
567	printOp(MI->getOperand(i+1));
568	O << "]";
569      }
570    } else {
571      unsigned i = 0;
572      if (MI->getNumOperands() && MI->getOperand(0).isDef()) {
573	printOp(MI->getOperand(0));
574	O << " = ";
575	++i;
576      }
577      O << TII.getName(MI->getOpcode());
578
579      for (unsigned e = MI->getNumOperands(); i != e; ++i) {
580	O << " ";
581	if (MI->getOperand(i).isDef()) O << "*";
582	printOp(MI->getOperand(i));
583	if (MI->getOperand(i).isDef()) O << "*";
584      }
585    }
586    O << "\n";
587    return;
588
589  case X86II::RawFrm:
590    // The accepted forms of Raw instructions are:
591    //   1. nop     - No operand required
592    //   2. jmp foo - PC relative displacement operand
593    //   3. call bar - GlobalAddress Operand or External Symbol Operand
594    //
595    assert(MI->getNumOperands() == 0 ||
596           (MI->getNumOperands() == 1 &&
597	    (MI->getOperand(0).isPCRelativeDisp() ||
598	     MI->getOperand(0).isGlobalAddress() ||
599	     MI->getOperand(0).isExternalSymbol())) &&
600           "Illegal raw instruction!");
601    O << TII.getName(MI->getOpcode()) << " ";
602
603    if (MI->getNumOperands() == 1) {
604      printOp(MI->getOperand(0), true); // Don't print "OFFSET"...
605    }
606    O << "\n";
607    return;
608
609  case X86II::AddRegFrm: {
610    // There are currently two forms of acceptable AddRegFrm instructions.
611    // Either the instruction JUST takes a single register (like inc, dec, etc),
612    // or it takes a register and an immediate of the same size as the register
613    // (move immediate f.e.).  Note that this immediate value might be stored as
614    // an LLVM value, to represent, for example, loading the address of a global
615    // into a register.  The initial register might be duplicated if this is a
616    // M_2_ADDR_REG instruction
617    //
618    assert(MI->getOperand(0).isRegister() &&
619           (MI->getNumOperands() == 1 ||
620            (MI->getNumOperands() == 2 &&
621             (MI->getOperand(1).getVRegValueOrNull() ||
622              MI->getOperand(1).isImmediate() ||
623	      MI->getOperand(1).isRegister() ||
624	      MI->getOperand(1).isGlobalAddress() ||
625	      MI->getOperand(1).isExternalSymbol()))) &&
626           "Illegal form for AddRegFrm instruction!");
627
628    unsigned Reg = MI->getOperand(0).getReg();
629
630    O << TII.getName(MI->getOpcode()) << " ";
631    printOp(MI->getOperand(0));
632    if (MI->getNumOperands() == 2 &&
633	(!MI->getOperand(1).isRegister() ||
634	 MI->getOperand(1).getVRegValueOrNull() ||
635	 MI->getOperand(1).isGlobalAddress() ||
636	 MI->getOperand(1).isExternalSymbol())) {
637      O << ", ";
638      printOp(MI->getOperand(1));
639    }
640    checkImplUses(Desc);
641    O << "\n";
642    return;
643  }
644  case X86II::MRMDestReg: {
645    // There are three forms of MRMDestReg instructions, those with 2
646    // or 3 operands:
647    //
648    // 2 Operands: this is for things like mov that do not read a
649    // second input.
650    //
651    // 2 Operands: two address instructions which def&use the first
652    // argument and use the second as input.
653    //
654    // 3 Operands: in this form, two address instructions are the same
655    // as in 2 but have a constant argument as well.
656    //
657    bool isTwoAddr = TII.isTwoAddrInstr(Opcode);
658    assert(MI->getOperand(0).isRegister() &&
659           (MI->getNumOperands() == 2 ||
660            (MI->getNumOperands() == 3 && MI->getOperand(2).isImmediate()))
661           && "Bad format for MRMDestReg!");
662
663    O << TII.getName(MI->getOpcode()) << " ";
664    printOp(MI->getOperand(0));
665    O << ", ";
666    printOp(MI->getOperand(1));
667    if (MI->getNumOperands() == 3) {
668      O << ", ";
669      printOp(MI->getOperand(2));
670    }
671    checkImplUses(Desc);
672    O << "\n";
673    return;
674  }
675
676  case X86II::MRMDestMem: {
677    // These instructions are the same as MRMDestReg, but instead of having a
678    // register reference for the mod/rm field, it's a memory reference.
679    //
680    assert(isMem(MI, 0) &&
681           (MI->getNumOperands() == 4+1 ||
682            (MI->getNumOperands() == 4+2 && MI->getOperand(5).isImmediate()))
683           && "Bad format for MRMDestMem!");
684
685    O << TII.getName(MI->getOpcode()) << " " << sizePtr(Desc) << " ";
686    printMemReference(MI, 0);
687    O << ", ";
688    printOp(MI->getOperand(4));
689    if (MI->getNumOperands() == 4+2) {
690      O << ", ";
691      printOp(MI->getOperand(5));
692    }
693    checkImplUses(Desc);
694    O << "\n";
695    return;
696  }
697
698  case X86II::MRMSrcReg: {
699    // There are three forms that are acceptable for MRMSrcReg
700    // instructions, those with 2 or 3 operands:
701    //
702    // 2 Operands: this is for things like mov that do not read a
703    // second input.
704    //
705    // 2 Operands: in this form, the last register is the ModR/M
706    // input.  The first operand is a def&use.  This is for things
707    // like: add r32, r/m32
708    //
709    // 3 Operands: in this form, we can have 'INST R1, R2, imm', which is used
710    // for instructions like the IMULrri instructions.
711    //
712    //
713    assert(MI->getOperand(0).isRegister() &&
714           MI->getOperand(1).isRegister() &&
715           (MI->getNumOperands() == 2 ||
716            (MI->getNumOperands() == 3 &&
717             (MI->getOperand(2).isImmediate())))
718           && "Bad format for MRMSrcReg!");
719
720    O << TII.getName(MI->getOpcode()) << " ";
721    printOp(MI->getOperand(0));
722    O << ", ";
723    printOp(MI->getOperand(1));
724    if (MI->getNumOperands() == 3) {
725        O << ", ";
726        printOp(MI->getOperand(2));
727    }
728    O << "\n";
729    return;
730  }
731
732  case X86II::MRMSrcMem: {
733    // These instructions are the same as MRMSrcReg, but instead of having a
734    // register reference for the mod/rm field, it's a memory reference.
735    //
736    assert(MI->getOperand(0).isRegister() &&
737           (MI->getNumOperands() == 1+4 && isMem(MI, 1)) ||
738(MI->getNumOperands() == 2+4 && MI->getOperand(5).isImmediate() && isMem(MI, 1))
739           && "Bad format for MRMSrcMem!");
740    O << TII.getName(MI->getOpcode()) << " ";
741    printOp(MI->getOperand(0));
742    O << ", " << sizePtr(Desc) << " ";
743    printMemReference(MI, 1);
744    if (MI->getNumOperands() == 2+4) {
745      O << ", ";
746      printOp(MI->getOperand(5));
747    }
748    O << "\n";
749    return;
750  }
751
752  case X86II::MRM0r: case X86II::MRM1r:
753  case X86II::MRM2r: case X86II::MRM3r:
754  case X86II::MRM4r: case X86II::MRM5r:
755  case X86II::MRM6r: case X86II::MRM7r: {
756    // In this form, the following are valid formats:
757    //  1. sete r
758    //  2. cmp reg, immediate
759    //  2. shl rdest, rinput  <implicit CL or 1>
760    //  3. sbb rdest, rinput, immediate   [rdest = rinput]
761    //
762    assert(MI->getNumOperands() > 0 && MI->getNumOperands() < 4 &&
763           MI->getOperand(0).isRegister() && "Bad MRMSxR format!");
764    assert((MI->getNumOperands() != 2 ||
765            MI->getOperand(1).isRegister() || MI->getOperand(1).isImmediate())&&
766           "Bad MRMSxR format!");
767    assert((MI->getNumOperands() < 3 ||
768	    (MI->getOperand(1).isRegister() && MI->getOperand(2).isImmediate())) &&
769           "Bad MRMSxR format!");
770
771    if (MI->getNumOperands() > 1 && MI->getOperand(1).isRegister() &&
772        MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
773      O << "**";
774
775    O << TII.getName(MI->getOpcode()) << " ";
776    printOp(MI->getOperand(0));
777    if (MI->getOperand(MI->getNumOperands()-1).isImmediate()) {
778      O << ", ";
779      printOp(MI->getOperand(MI->getNumOperands()-1));
780    }
781    checkImplUses(Desc);
782    O << "\n";
783
784    return;
785  }
786
787  case X86II::MRM0m: case X86II::MRM1m:
788  case X86II::MRM2m: case X86II::MRM3m:
789  case X86II::MRM4m: case X86II::MRM5m:
790  case X86II::MRM6m: case X86II::MRM7m: {
791    // In this form, the following are valid formats:
792    //  1. sete [m]
793    //  2. cmp [m], immediate
794    //  2. shl [m], rinput  <implicit CL or 1>
795    //  3. sbb [m], immediate
796    //
797    assert(MI->getNumOperands() >= 4 && MI->getNumOperands() <= 5 &&
798           isMem(MI, 0) && "Bad MRMSxM format!");
799    assert((MI->getNumOperands() != 5 ||
800            (MI->getOperand(4).isImmediate() ||
801             MI->getOperand(4).isGlobalAddress())) &&
802           "Bad MRMSxM format!");
803
804    const MachineOperand &Op3 = MI->getOperand(3);
805
806    // gas bugs:
807    //
808    // The 80-bit FP store-pop instruction "fstp XWORD PTR [...]"
809    // is misassembled by gas in intel_syntax mode as its 32-bit
810    // equivalent "fstp DWORD PTR [...]". Workaround: Output the raw
811    // opcode bytes instead of the instruction.
812    //
813    // The 80-bit FP load instruction "fld XWORD PTR [...]" is
814    // misassembled by gas in intel_syntax mode as its 32-bit
815    // equivalent "fld DWORD PTR [...]". Workaround: Output the raw
816    // opcode bytes instead of the instruction.
817    //
818    // gas intel_syntax mode treats "fild QWORD PTR [...]" as an
819    // invalid opcode, saying "64 bit operations are only supported in
820    // 64 bit modes." libopcodes disassembles it as "fild DWORD PTR
821    // [...]", which is wrong. Workaround: Output the raw opcode bytes
822    // instead of the instruction.
823    //
824    // gas intel_syntax mode treats "fistp QWORD PTR [...]" as an
825    // invalid opcode, saying "64 bit operations are only supported in
826    // 64 bit modes." libopcodes disassembles it as "fistpll DWORD PTR
827    // [...]", which is wrong. Workaround: Output the raw opcode bytes
828    // instead of the instruction.
829    if (MI->getOpcode() == X86::FSTP80m ||
830        MI->getOpcode() == X86::FLD80m ||
831        MI->getOpcode() == X86::FILD64m ||
832        MI->getOpcode() == X86::FISTP64m) {
833        GasBugWorkaroundEmitter gwe(O);
834        X86::emitInstruction(gwe, (X86InstrInfo&)TM.getInstrInfo(), *MI);
835    }
836
837    O << TII.getName(MI->getOpcode()) << " ";
838    O << sizePtr(Desc) << " ";
839    printMemReference(MI, 0);
840    if (MI->getNumOperands() == 5) {
841      O << ", ";
842      printOp(MI->getOperand(4));
843    }
844    checkImplUses(Desc);
845    O << "\n";
846    return;
847  }
848  default:
849    O << "\tUNKNOWN FORM:\t\t-"; MI->print(O, TM); break;
850  }
851}
852
853bool Printer::doInitialization(Module &M) {
854  // Tell gas we are outputting Intel syntax (not AT&T syntax) assembly.
855  //
856  // Bug: gas in `intel_syntax noprefix' mode interprets the symbol `Sp' in an
857  // instruction as a reference to the register named sp, and if you try to
858  // reference a symbol `Sp' (e.g. `mov ECX, OFFSET Sp') then it gets lowercased
859  // before being looked up in the symbol table. This creates spurious
860  // `undefined symbol' errors when linking. Workaround: Do not use `noprefix'
861  // mode, and decorate all register names with percent signs.
862  O << "\t.intel_syntax\n";
863  Mang = new Mangler(M, EmitCygwin);
864  return false; // success
865}
866
867// SwitchSection - Switch to the specified section of the executable if we are
868// not already in it!
869//
870static void SwitchSection(std::ostream &OS, std::string &CurSection,
871                          const char *NewSection) {
872  if (CurSection != NewSection) {
873    CurSection = NewSection;
874    if (!CurSection.empty())
875      OS << "\t" << NewSection << "\n";
876  }
877}
878
879bool Printer::doFinalization(Module &M) {
880  const TargetData &TD = TM.getTargetData();
881  std::string CurSection;
882
883  // Print out module-level global variables here.
884  for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
885    if (I->hasInitializer()) {   // External global require no code
886      O << "\n\n";
887      std::string name = Mang->getValueName(I);
888      Constant *C = I->getInitializer();
889      unsigned Size = TD.getTypeSize(C->getType());
890      unsigned Align = TD.getTypeAlignment(C->getType());
891
892      if (C->isNullValue() &&
893          (I->hasLinkOnceLinkage() || I->hasInternalLinkage() ||
894           I->hasWeakLinkage() /* FIXME: Verify correct */)) {
895        SwitchSection(O, CurSection, ".data");
896        if (I->hasInternalLinkage())
897          O << "\t.local " << name << "\n";
898
899        O << "\t.comm " << name << "," << TD.getTypeSize(C->getType())
900          << "," << (unsigned)TD.getTypeAlignment(C->getType());
901        O << "\t\t# ";
902        WriteAsOperand(O, I, true, true, &M);
903        O << "\n";
904      } else {
905        switch (I->getLinkage()) {
906        case GlobalValue::LinkOnceLinkage:
907        case GlobalValue::WeakLinkage:   // FIXME: Verify correct for weak.
908          // Nonnull linkonce -> weak
909          O << "\t.weak " << name << "\n";
910          SwitchSection(O, CurSection, "");
911          O << "\t.section\t.llvm.linkonce.d." << name << ",\"aw\",@progbits\n";
912          break;
913
914        case GlobalValue::AppendingLinkage:
915          // FIXME: appending linkage variables should go into a section of
916          // their name or something.  For now, just emit them as external.
917        case GlobalValue::ExternalLinkage:
918          // If external or appending, declare as a global symbol
919          O << "\t.globl " << name << "\n";
920          // FALL THROUGH
921        case GlobalValue::InternalLinkage:
922          if (C->isNullValue())
923            SwitchSection(O, CurSection, ".bss");
924          else
925            SwitchSection(O, CurSection, ".data");
926          break;
927        }
928
929        O << "\t.align " << Align << "\n";
930        O << "\t.type " << name << ",@object\n";
931        O << "\t.size " << name << "," << Size << "\n";
932        O << name << ":\t\t\t\t# ";
933        WriteAsOperand(O, I, true, true, &M);
934        O << " = ";
935        WriteAsOperand(O, C, false, false, &M);
936        O << "\n";
937        emitGlobalConstant(C);
938      }
939    }
940
941  delete Mang;
942  return false; // success
943}
944