X86AsmPrinter.cpp revision f2d2925452b6f002361db4bb3a08b68ebcb8e8a7
1//===-- X86/Printer.cpp - Convert X86 LLVM code to Intel assembly ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains a printer that converts from our internal
11// representation of machine-dependent LLVM code to Intel-format
12// assembly language. This printer is the output mechanism used
13// by `llc' and `lli -print-machineinstrs' on X86.
14//
15//===----------------------------------------------------------------------===//
16
17#include "X86.h"
18#include "X86InstrInfo.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Module.h"
22#include "llvm/Assembly/Writer.h"
23#include "llvm/CodeGen/MachineFunctionPass.h"
24#include "llvm/CodeGen/MachineConstantPool.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Support/Mangler.h"
28#include "Support/Statistic.h"
29#include "Support/StringExtras.h"
30#include "Support/CommandLine.h"
31
32namespace llvm {
33
34namespace {
35  Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed");
36
37  // FIXME: This should be automatically picked up by autoconf from the C
38  // frontend
39  cl::opt<bool> EmitCygwin("enable-cygwin-compatible-output", cl::Hidden,
40         cl::desc("Emit X86 assembly code suitable for consumption by cygwin"));
41
42  struct Printer : public MachineFunctionPass {
43    /// Output stream on which we're printing assembly code.
44    ///
45    std::ostream &O;
46
47    /// Target machine description which we query for reg. names, data
48    /// layout, etc.
49    ///
50    TargetMachine &TM;
51
52    /// Name-mangler for global names.
53    ///
54    Mangler *Mang;
55
56    Printer(std::ostream &o, TargetMachine &tm) : O(o), TM(tm) { }
57
58    /// We name each basic block in a Function with a unique number, so
59    /// that we can consistently refer to them later. This is cleared
60    /// at the beginning of each call to runOnMachineFunction().
61    ///
62    typedef std::map<const Value *, unsigned> ValueMapTy;
63    ValueMapTy NumberForBB;
64
65    /// Cache of mangled name for current function. This is
66    /// recalculated at the beginning of each call to
67    /// runOnMachineFunction().
68    ///
69    std::string CurrentFnName;
70
71    virtual const char *getPassName() const {
72      return "X86 Assembly Printer";
73    }
74
75    void checkImplUses (const TargetInstrDescriptor &Desc);
76    void printMachineInstruction(const MachineInstr *MI);
77    void printOp(const MachineOperand &MO,
78		 bool elideOffsetKeyword = false);
79    void printMemReference(const MachineInstr *MI, unsigned Op);
80    void printConstantPool(MachineConstantPool *MCP);
81    bool runOnMachineFunction(MachineFunction &F);
82    bool doInitialization(Module &M);
83    bool doFinalization(Module &M);
84    void emitGlobalConstant(const Constant* CV);
85    void emitConstantValueOnly(const Constant *CV);
86  };
87} // end of anonymous namespace
88
89/// createX86CodePrinterPass - Returns a pass that prints the X86
90/// assembly code for a MachineFunction to the given output stream,
91/// using the given target machine description.  This should work
92/// regardless of whether the function is in SSA form.
93///
94FunctionPass *createX86CodePrinterPass(std::ostream &o,TargetMachine &tm){
95  return new Printer(o, tm);
96}
97
98/// isStringCompatible - Can we treat the specified array as a string?
99/// Only if it is an array of ubytes or non-negative sbytes.
100///
101static bool isStringCompatible(const ConstantArray *CVA) {
102  const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType();
103  if (ETy == Type::UByteTy) return true;
104  if (ETy != Type::SByteTy) return false;
105
106  for (unsigned i = 0; i < CVA->getNumOperands(); ++i)
107    if (cast<ConstantSInt>(CVA->getOperand(i))->getValue() < 0)
108      return false;
109
110  return true;
111}
112
113/// toOctal - Convert the low order bits of X into an octal digit.
114///
115static inline char toOctal(int X) {
116  return (X&7)+'0';
117}
118
119/// getAsCString - Return the specified array as a C compatible
120/// string, only if the predicate isStringCompatible is true.
121///
122static void printAsCString(std::ostream &O, const ConstantArray *CVA) {
123  assert(isStringCompatible(CVA) && "Array is not string compatible!");
124
125  O << "\"";
126  for (unsigned i = 0; i < CVA->getNumOperands(); ++i) {
127    unsigned char C = cast<ConstantInt>(CVA->getOperand(i))->getRawValue();
128
129    if (C == '"') {
130      O << "\\\"";
131    } else if (C == '\\') {
132      O << "\\\\";
133    } else if (isprint(C)) {
134      O << C;
135    } else {
136      switch(C) {
137      case '\b': O << "\\b"; break;
138      case '\f': O << "\\f"; break;
139      case '\n': O << "\\n"; break;
140      case '\r': O << "\\r"; break;
141      case '\t': O << "\\t"; break;
142      default:
143        O << '\\';
144        O << toOctal(C >> 6);
145        O << toOctal(C >> 3);
146        O << toOctal(C >> 0);
147        break;
148      }
149    }
150  }
151  O << "\"";
152}
153
154// Print out the specified constant, without a storage class.  Only the
155// constants valid in constant expressions can occur here.
156void Printer::emitConstantValueOnly(const Constant *CV) {
157  if (CV->isNullValue())
158    O << "0";
159  else if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
160    assert(CB == ConstantBool::True);
161    O << "1";
162  } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV))
163    O << CI->getValue();
164  else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV))
165    O << CI->getValue();
166  else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(CV))
167    // This is a constant address for a global variable or function.  Use the
168    // name of the variable or function as the address value.
169    O << Mang->getValueName(CPR->getValue());
170  else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
171    const TargetData &TD = TM.getTargetData();
172    switch(CE->getOpcode()) {
173    case Instruction::GetElementPtr: {
174      // generate a symbolic expression for the byte address
175      const Constant *ptrVal = CE->getOperand(0);
176      std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end());
177      if (unsigned Offset = TD.getIndexedOffset(ptrVal->getType(), idxVec)) {
178        O << "(";
179        emitConstantValueOnly(ptrVal);
180        O << ") + " << Offset;
181      } else {
182        emitConstantValueOnly(ptrVal);
183      }
184      break;
185    }
186    case Instruction::Cast: {
187      // Support only non-converting or widening casts for now, that is, ones
188      // that do not involve a change in value.  This assertion is really gross,
189      // and may not even be a complete check.
190      Constant *Op = CE->getOperand(0);
191      const Type *OpTy = Op->getType(), *Ty = CE->getType();
192
193      // Remember, kids, pointers on x86 can be losslessly converted back and
194      // forth into 32-bit or wider integers, regardless of signedness. :-P
195      assert(((isa<PointerType>(OpTy)
196               && (Ty == Type::LongTy || Ty == Type::ULongTy
197                   || Ty == Type::IntTy || Ty == Type::UIntTy))
198              || (isa<PointerType>(Ty)
199                  && (OpTy == Type::LongTy || OpTy == Type::ULongTy
200                      || OpTy == Type::IntTy || OpTy == Type::UIntTy))
201              || (((TD.getTypeSize(Ty) >= TD.getTypeSize(OpTy))
202                   && OpTy->isLosslesslyConvertibleTo(Ty))))
203             && "FIXME: Don't yet support this kind of constant cast expr");
204      O << "(";
205      emitConstantValueOnly(Op);
206      O << ")";
207      break;
208    }
209    case Instruction::Add:
210      O << "(";
211      emitConstantValueOnly(CE->getOperand(0));
212      O << ") + (";
213      emitConstantValueOnly(CE->getOperand(1));
214      O << ")";
215      break;
216    default:
217      assert(0 && "Unsupported operator!");
218    }
219  } else {
220    assert(0 && "Unknown constant value!");
221  }
222}
223
224// Print a constant value or values, with the appropriate storage class as a
225// prefix.
226void Printer::emitGlobalConstant(const Constant *CV) {
227  const TargetData &TD = TM.getTargetData();
228
229  if (CV->isNullValue()) {
230    O << "\t.zero\t " << TD.getTypeSize(CV->getType()) << "\n";
231    return;
232  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
233    if (isStringCompatible(CVA)) {
234      O << "\t.ascii\t";
235      printAsCString(O, CVA);
236      O << "\n";
237    } else { // Not a string.  Print the values in successive locations
238      const std::vector<Use> &constValues = CVA->getValues();
239      for (unsigned i=0; i < constValues.size(); i++)
240        emitGlobalConstant(cast<Constant>(constValues[i].get()));
241    }
242    return;
243  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
244    // Print the fields in successive locations. Pad to align if needed!
245    const StructLayout *cvsLayout = TD.getStructLayout(CVS->getType());
246    const std::vector<Use>& constValues = CVS->getValues();
247    unsigned sizeSoFar = 0;
248    for (unsigned i=0, N = constValues.size(); i < N; i++) {
249      const Constant* field = cast<Constant>(constValues[i].get());
250
251      // Check if padding is needed and insert one or more 0s.
252      unsigned fieldSize = TD.getTypeSize(field->getType());
253      unsigned padSize = ((i == N-1? cvsLayout->StructSize
254                           : cvsLayout->MemberOffsets[i+1])
255                          - cvsLayout->MemberOffsets[i]) - fieldSize;
256      sizeSoFar += fieldSize + padSize;
257
258      // Now print the actual field value
259      emitGlobalConstant(field);
260
261      // Insert the field padding unless it's zero bytes...
262      if (padSize)
263        O << "\t.zero\t " << padSize << "\n";
264    }
265    assert(sizeSoFar == cvsLayout->StructSize &&
266           "Layout of constant struct may be incorrect!");
267    return;
268  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
269    // FP Constants are printed as integer constants to avoid losing
270    // precision...
271    double Val = CFP->getValue();
272    switch (CFP->getType()->getPrimitiveID()) {
273    default: assert(0 && "Unknown floating point type!");
274    case Type::FloatTyID: {
275      union FU {                            // Abide by C TBAA rules
276        float FVal;
277        unsigned UVal;
278      } U;
279      U.FVal = Val;
280      O << ".long\t" << U.UVal << "\t# float " << Val << "\n";
281      return;
282    }
283    case Type::DoubleTyID: {
284      union DU {                            // Abide by C TBAA rules
285        double FVal;
286        uint64_t UVal;
287      } U;
288      U.FVal = Val;
289      O << ".quad\t" << U.UVal << "\t# double " << Val << "\n";
290      return;
291    }
292    }
293  }
294
295  const Type *type = CV->getType();
296  O << "\t";
297  switch (type->getPrimitiveID()) {
298  case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID:
299    O << ".byte";
300    break;
301  case Type::UShortTyID: case Type::ShortTyID:
302    O << ".word";
303    break;
304  case Type::FloatTyID: case Type::PointerTyID:
305  case Type::UIntTyID: case Type::IntTyID:
306    O << ".long";
307    break;
308  case Type::DoubleTyID:
309  case Type::ULongTyID: case Type::LongTyID:
310    O << ".quad";
311    break;
312  default:
313    assert (0 && "Can't handle printing this type of thing");
314    break;
315  }
316  O << "\t";
317  emitConstantValueOnly(CV);
318  O << "\n";
319}
320
321/// printConstantPool - Print to the current output stream assembly
322/// representations of the constants in the constant pool MCP. This is
323/// used to print out constants which have been "spilled to memory" by
324/// the code generator.
325///
326void Printer::printConstantPool(MachineConstantPool *MCP) {
327  const std::vector<Constant*> &CP = MCP->getConstants();
328  const TargetData &TD = TM.getTargetData();
329
330  if (CP.empty()) return;
331
332  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
333    O << "\t.section .rodata\n";
334    O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType())
335      << "\n";
336    O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t#"
337      << *CP[i] << "\n";
338    emitGlobalConstant(CP[i]);
339  }
340}
341
342/// runOnMachineFunction - This uses the printMachineInstruction()
343/// method to print assembly for each instruction.
344///
345bool Printer::runOnMachineFunction(MachineFunction &MF) {
346  // BBNumber is used here so that a given Printer will never give two
347  // BBs the same name. (If you have a better way, please let me know!)
348  static unsigned BBNumber = 0;
349
350  O << "\n\n";
351  // What's my mangled name?
352  CurrentFnName = Mang->getValueName(MF.getFunction());
353
354  // Print out constants referenced by the function
355  printConstantPool(MF.getConstantPool());
356
357  // Print out labels for the function.
358  O << "\t.text\n";
359  O << "\t.align 16\n";
360  O << "\t.globl\t" << CurrentFnName << "\n";
361  if (!EmitCygwin)
362    O << "\t.type\t" << CurrentFnName << ", @function\n";
363  O << CurrentFnName << ":\n";
364
365  // Number each basic block so that we can consistently refer to them
366  // in PC-relative references.
367  NumberForBB.clear();
368  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
369       I != E; ++I) {
370    NumberForBB[I->getBasicBlock()] = BBNumber++;
371  }
372
373  // Print out code for the function.
374  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
375       I != E; ++I) {
376    // Print a label for the basic block.
377    O << ".LBB" << NumberForBB[I->getBasicBlock()] << ":\t# "
378      << I->getBasicBlock()->getName() << "\n";
379    for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
380	 II != E; ++II) {
381      // Print the assembly for the instruction.
382      O << "\t";
383      printMachineInstruction(*II);
384    }
385  }
386
387  // We didn't modify anything.
388  return false;
389}
390
391static bool isScale(const MachineOperand &MO) {
392  return MO.isImmediate() &&
393    (MO.getImmedValue() == 1 || MO.getImmedValue() == 2 ||
394     MO.getImmedValue() == 4 || MO.getImmedValue() == 8);
395}
396
397static bool isMem(const MachineInstr *MI, unsigned Op) {
398  if (MI->getOperand(Op).isFrameIndex()) return true;
399  if (MI->getOperand(Op).isConstantPoolIndex()) return true;
400  return Op+4 <= MI->getNumOperands() &&
401    MI->getOperand(Op  ).isRegister() &&isScale(MI->getOperand(Op+1)) &&
402    MI->getOperand(Op+2).isRegister() &&MI->getOperand(Op+3).isImmediate();
403}
404
405
406
407void Printer::printOp(const MachineOperand &MO,
408		      bool elideOffsetKeyword /* = false */) {
409  const MRegisterInfo &RI = *TM.getRegisterInfo();
410  switch (MO.getType()) {
411  case MachineOperand::MO_VirtualRegister:
412    if (Value *V = MO.getVRegValueOrNull()) {
413      O << "<" << V->getName() << ">";
414      return;
415    }
416    // FALLTHROUGH
417  case MachineOperand::MO_MachineRegister:
418    if (MO.getReg() < MRegisterInfo::FirstVirtualRegister)
419      // Bug Workaround: See note in Printer::doInitialization about %.
420      O << "%" << RI.get(MO.getReg()).Name;
421    else
422      O << "%reg" << MO.getReg();
423    return;
424
425  case MachineOperand::MO_SignExtendedImmed:
426  case MachineOperand::MO_UnextendedImmed:
427    O << (int)MO.getImmedValue();
428    return;
429  case MachineOperand::MO_PCRelativeDisp: {
430    ValueMapTy::const_iterator i = NumberForBB.find(MO.getVRegValue());
431    assert (i != NumberForBB.end()
432            && "Could not find a BB in the NumberForBB map!");
433    O << ".LBB" << i->second << " # PC rel: " << MO.getVRegValue()->getName();
434    return;
435  }
436  case MachineOperand::MO_GlobalAddress:
437    if (!elideOffsetKeyword)
438      O << "OFFSET ";
439    O << Mang->getValueName(MO.getGlobal());
440    return;
441  case MachineOperand::MO_ExternalSymbol:
442    O << MO.getSymbolName();
443    return;
444  default:
445    O << "<unknown operand type>"; return;
446  }
447}
448
449static const std::string sizePtr(const TargetInstrDescriptor &Desc) {
450  switch (Desc.TSFlags & X86II::ArgMask) {
451  default: assert(0 && "Unknown arg size!");
452  case X86II::Arg8:   return "BYTE PTR";
453  case X86II::Arg16:  return "WORD PTR";
454  case X86II::Arg32:  return "DWORD PTR";
455  case X86II::Arg64:  return "QWORD PTR";
456  case X86II::ArgF32:  return "DWORD PTR";
457  case X86II::ArgF64:  return "QWORD PTR";
458  case X86II::ArgF80:  return "XWORD PTR";
459  }
460}
461
462void Printer::printMemReference(const MachineInstr *MI, unsigned Op) {
463  assert(isMem(MI, Op) && "Invalid memory reference!");
464
465  if (MI->getOperand(Op).isFrameIndex()) {
466    O << "[frame slot #" << MI->getOperand(Op).getFrameIndex();
467    if (MI->getOperand(Op+3).getImmedValue())
468      O << " + " << MI->getOperand(Op+3).getImmedValue();
469    O << "]";
470    return;
471  } else if (MI->getOperand(Op).isConstantPoolIndex()) {
472    O << "[.CPI" << CurrentFnName << "_"
473      << MI->getOperand(Op).getConstantPoolIndex();
474    if (MI->getOperand(Op+3).getImmedValue())
475      O << " + " << MI->getOperand(Op+3).getImmedValue();
476    O << "]";
477    return;
478  }
479
480  const MachineOperand &BaseReg  = MI->getOperand(Op);
481  int ScaleVal                   = MI->getOperand(Op+1).getImmedValue();
482  const MachineOperand &IndexReg = MI->getOperand(Op+2);
483  int DispVal                    = MI->getOperand(Op+3).getImmedValue();
484
485  O << "[";
486  bool NeedPlus = false;
487  if (BaseReg.getReg()) {
488    printOp(BaseReg);
489    NeedPlus = true;
490  }
491
492  if (IndexReg.getReg()) {
493    if (NeedPlus) O << " + ";
494    if (ScaleVal != 1)
495      O << ScaleVal << "*";
496    printOp(IndexReg);
497    NeedPlus = true;
498  }
499
500  if (DispVal) {
501    if (NeedPlus)
502      if (DispVal > 0)
503	O << " + ";
504      else {
505	O << " - ";
506	DispVal = -DispVal;
507      }
508    O << DispVal;
509  }
510  O << "]";
511}
512
513/// checkImplUses - Emit the implicit-use registers for the
514/// instruction described by DESC, if its PrintImplUses flag is set.
515///
516void Printer::checkImplUses (const TargetInstrDescriptor &Desc) {
517  const MRegisterInfo &RI = *TM.getRegisterInfo();
518  if (Desc.TSFlags & X86II::PrintImplUses) {
519    for (const unsigned *p = Desc.ImplicitUses; *p; ++p) {
520      // Bug Workaround: See note in Printer::doInitialization about %.
521      O << ", %" << RI.get(*p).Name;
522    }
523  }
524}
525
526/// printMachineInstruction -- Print out a single X86 LLVM instruction
527/// MI in Intel syntax to the current output stream.
528///
529void Printer::printMachineInstruction(const MachineInstr *MI) {
530  unsigned Opcode = MI->getOpcode();
531  const TargetInstrInfo &TII = TM.getInstrInfo();
532  const TargetInstrDescriptor &Desc = TII.get(Opcode);
533
534  ++EmittedInsts;
535  switch (Desc.TSFlags & X86II::FormMask) {
536  case X86II::Pseudo:
537    // Print pseudo-instructions as comments; either they should have been
538    // turned into real instructions by now, or they don't need to be
539    // seen by the assembler (e.g., IMPLICIT_USEs.)
540    O << "# ";
541    if (Opcode == X86::PHI) {
542      printOp(MI->getOperand(0));
543      O << " = phi ";
544      for (unsigned i = 1, e = MI->getNumOperands(); i != e; i+=2) {
545	if (i != 1) O << ", ";
546	O << "[";
547	printOp(MI->getOperand(i));
548	O << ", ";
549	printOp(MI->getOperand(i+1));
550	O << "]";
551      }
552    } else {
553      unsigned i = 0;
554      if (MI->getNumOperands() && (MI->getOperand(0).opIsDefOnly() ||
555                                   MI->getOperand(0).opIsDefAndUse())) {
556	printOp(MI->getOperand(0));
557	O << " = ";
558	++i;
559      }
560      O << TII.getName(MI->getOpcode());
561
562      for (unsigned e = MI->getNumOperands(); i != e; ++i) {
563	O << " ";
564	if (MI->getOperand(i).opIsDefOnly() ||
565            MI->getOperand(i).opIsDefAndUse()) O << "*";
566	printOp(MI->getOperand(i));
567	if (MI->getOperand(i).opIsDefOnly() ||
568            MI->getOperand(i).opIsDefAndUse()) O << "*";
569      }
570    }
571    O << "\n";
572    return;
573
574  case X86II::RawFrm:
575    // The accepted forms of Raw instructions are:
576    //   1. nop     - No operand required
577    //   2. jmp foo - PC relative displacement operand
578    //   3. call bar - GlobalAddress Operand or External Symbol Operand
579    //
580    assert(MI->getNumOperands() == 0 ||
581           (MI->getNumOperands() == 1 &&
582	    (MI->getOperand(0).isPCRelativeDisp() ||
583	     MI->getOperand(0).isGlobalAddress() ||
584	     MI->getOperand(0).isExternalSymbol())) &&
585           "Illegal raw instruction!");
586    O << TII.getName(MI->getOpcode()) << " ";
587
588    if (MI->getNumOperands() == 1) {
589      printOp(MI->getOperand(0), true); // Don't print "OFFSET"...
590    }
591    O << "\n";
592    return;
593
594  case X86II::AddRegFrm: {
595    // There are currently two forms of acceptable AddRegFrm instructions.
596    // Either the instruction JUST takes a single register (like inc, dec, etc),
597    // or it takes a register and an immediate of the same size as the register
598    // (move immediate f.e.).  Note that this immediate value might be stored as
599    // an LLVM value, to represent, for example, loading the address of a global
600    // into a register.  The initial register might be duplicated if this is a
601    // M_2_ADDR_REG instruction
602    //
603    assert(MI->getOperand(0).isRegister() &&
604           (MI->getNumOperands() == 1 ||
605            (MI->getNumOperands() == 2 &&
606             (MI->getOperand(1).getVRegValueOrNull() ||
607              MI->getOperand(1).isImmediate() ||
608	      MI->getOperand(1).isRegister() ||
609	      MI->getOperand(1).isGlobalAddress() ||
610	      MI->getOperand(1).isExternalSymbol()))) &&
611           "Illegal form for AddRegFrm instruction!");
612
613    unsigned Reg = MI->getOperand(0).getReg();
614
615    O << TII.getName(MI->getOpCode()) << " ";
616    printOp(MI->getOperand(0));
617    if (MI->getNumOperands() == 2 &&
618	(!MI->getOperand(1).isRegister() ||
619	 MI->getOperand(1).getVRegValueOrNull() ||
620	 MI->getOperand(1).isGlobalAddress() ||
621	 MI->getOperand(1).isExternalSymbol())) {
622      O << ", ";
623      printOp(MI->getOperand(1));
624    }
625    checkImplUses(Desc);
626    O << "\n";
627    return;
628  }
629  case X86II::MRMDestReg: {
630    // There are two acceptable forms of MRMDestReg instructions, those with 2,
631    // 3 and 4 operands:
632    //
633    // 2 Operands: this is for things like mov that do not read a second input
634    //
635    // 3 Operands: in this form, the first two registers (the destination, and
636    // the first operand) should be the same, post register allocation.  The 3rd
637    // operand is an additional input.  This should be for things like add
638    // instructions.
639    //
640    // 4 Operands: This form is for instructions which are 3 operands forms, but
641    // have a constant argument as well.
642    //
643    bool isTwoAddr = TII.isTwoAddrInstr(Opcode);
644    assert(MI->getOperand(0).isRegister() &&
645           (MI->getNumOperands() == 2 ||
646	    (isTwoAddr && MI->getOperand(1).isRegister() &&
647	     MI->getOperand(0).getReg() == MI->getOperand(1).getReg() &&
648	     (MI->getNumOperands() == 3 ||
649	      (MI->getNumOperands() == 4 && MI->getOperand(3).isImmediate()))))
650           && "Bad format for MRMDestReg!");
651
652    O << TII.getName(MI->getOpCode()) << " ";
653    printOp(MI->getOperand(0));
654    O << ", ";
655    printOp(MI->getOperand(1+isTwoAddr));
656    if (MI->getNumOperands() == 4) {
657      O << ", ";
658      printOp(MI->getOperand(3));
659    }
660    O << "\n";
661    return;
662  }
663
664  case X86II::MRMDestMem: {
665    // These instructions are the same as MRMDestReg, but instead of having a
666    // register reference for the mod/rm field, it's a memory reference.
667    //
668    assert(isMem(MI, 0) && MI->getNumOperands() == 4+1 &&
669           MI->getOperand(4).isRegister() && "Bad format for MRMDestMem!");
670
671    O << TII.getName(MI->getOpCode()) << " " << sizePtr(Desc) << " ";
672    printMemReference(MI, 0);
673    O << ", ";
674    printOp(MI->getOperand(4));
675    O << "\n";
676    return;
677  }
678
679  case X86II::MRMSrcReg: {
680    // There are three forms that are acceptable for MRMSrcReg instructions,
681    // those with 3 and 2 operands:
682    //
683    // 3 Operands: in this form, the last register (the second input) is the
684    // ModR/M input.  The first two operands should be the same, post register
685    // allocation.  This is for things like: add r32, r/m32
686    //
687    // 3 Operands: in this form, we can have 'INST R, R, imm', which is used for
688    // instructions like the IMULri instructions.
689    //
690    // 2 Operands: this is for things like mov that do not read a second input
691    //
692    assert(MI->getOperand(0).isRegister() &&
693           MI->getOperand(1).isRegister() &&
694           (MI->getNumOperands() == 2 ||
695            (MI->getNumOperands() == 3 &&
696             (MI->getOperand(2).isRegister() ||
697              MI->getOperand(2).isImmediate())))
698           && "Bad format for MRMSrcReg!");
699    if (MI->getNumOperands() == 3 &&
700        MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
701      O << "**";
702
703    O << TII.getName(MI->getOpCode()) << " ";
704    printOp(MI->getOperand(0));
705
706    // If this is IMULri* instructions, print the non-two-address operand.
707    if (MI->getNumOperands() == 3 && MI->getOperand(2).isImmediate()) {
708      O << ", ";
709      printOp(MI->getOperand(1));
710    }
711
712    O << ", ";
713    printOp(MI->getOperand(MI->getNumOperands()-1));
714    O << "\n";
715    return;
716  }
717
718  case X86II::MRMSrcMem: {
719    // These instructions are the same as MRMSrcReg, but instead of having a
720    // register reference for the mod/rm field, it's a memory reference.
721    //
722    assert(MI->getOperand(0).isRegister() &&
723           (MI->getNumOperands() == 1+4 && isMem(MI, 1)) ||
724           (MI->getNumOperands() == 2+4 && MI->getOperand(1).isRegister() &&
725            isMem(MI, 2))
726           && "Bad format for MRMDestReg!");
727    if (MI->getNumOperands() == 2+4 &&
728        MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
729      O << "**";
730
731    O << TII.getName(MI->getOpCode()) << " ";
732    printOp(MI->getOperand(0));
733    O << ", " << sizePtr(Desc) << " ";
734    printMemReference(MI, MI->getNumOperands()-4);
735    O << "\n";
736    return;
737  }
738
739  case X86II::MRMS0r: case X86II::MRMS1r:
740  case X86II::MRMS2r: case X86II::MRMS3r:
741  case X86II::MRMS4r: case X86II::MRMS5r:
742  case X86II::MRMS6r: case X86II::MRMS7r: {
743    // In this form, the following are valid formats:
744    //  1. sete r
745    //  2. cmp reg, immediate
746    //  2. shl rdest, rinput  <implicit CL or 1>
747    //  3. sbb rdest, rinput, immediate   [rdest = rinput]
748    //
749    assert(MI->getNumOperands() > 0 && MI->getNumOperands() < 4 &&
750           MI->getOperand(0).isRegister() && "Bad MRMSxR format!");
751    assert((MI->getNumOperands() != 2 ||
752            MI->getOperand(1).isRegister() || MI->getOperand(1).isImmediate())&&
753           "Bad MRMSxR format!");
754    assert((MI->getNumOperands() < 3 ||
755	    (MI->getOperand(1).isRegister() && MI->getOperand(2).isImmediate())) &&
756           "Bad MRMSxR format!");
757
758    if (MI->getNumOperands() > 1 && MI->getOperand(1).isRegister() &&
759        MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
760      O << "**";
761
762    O << TII.getName(MI->getOpCode()) << " ";
763    printOp(MI->getOperand(0));
764    if (MI->getOperand(MI->getNumOperands()-1).isImmediate()) {
765      O << ", ";
766      printOp(MI->getOperand(MI->getNumOperands()-1));
767    }
768    checkImplUses(Desc);
769    O << "\n";
770
771    return;
772  }
773
774  case X86II::MRMS0m: case X86II::MRMS1m:
775  case X86II::MRMS2m: case X86II::MRMS3m:
776  case X86II::MRMS4m: case X86II::MRMS5m:
777  case X86II::MRMS6m: case X86II::MRMS7m: {
778    // In this form, the following are valid formats:
779    //  1. sete [m]
780    //  2. cmp [m], immediate
781    //  2. shl [m], rinput  <implicit CL or 1>
782    //  3. sbb [m], immediate
783    //
784    assert(MI->getNumOperands() >= 4 && MI->getNumOperands() <= 5 &&
785           isMem(MI, 0) && "Bad MRMSxM format!");
786    assert((MI->getNumOperands() != 5 ||
787            (MI->getOperand(4).isImmediate() ||
788             MI->getOperand(4).isGlobalAddress())) &&
789           "Bad MRMSxM format!");
790
791    const MachineOperand &Op3 = MI->getOperand(3);
792
793    // Bug: The 80-bit FP store-pop instruction "fstp XWORD PTR [...]"
794    // is misassembled by gas in intel_syntax mode as its 32-bit
795    // equivalent "fstp DWORD PTR [...]". Workaround: Output the raw
796    // opcode bytes instead of the instruction.
797    if (MI->getOpCode() == X86::FSTPr80) {
798      if ((MI->getOperand(0).getReg() == X86::ESP)
799	  && (MI->getOperand(1).getImmedValue() == 1)) {
800        if (Op3.isImmediate() &&
801            Op3.getImmedValue() >= -128 && Op3.getImmedValue() <= 127) {
802          // 1 byte disp.
803          O << ".byte 0xdb, 0x7c, 0x24, 0x" << std::hex
804            << ((unsigned)Op3.getImmedValue() & 255) << std::dec << "\t# ";
805        } else {
806          O << ".byte 0xdb, 0xbc, 0x24\n\t";
807          O << ".long ";
808          printOp(Op3);
809          O << "\t# ";
810	}
811      }
812    }
813
814    // Bug: The 80-bit FP load instruction "fld XWORD PTR [...]" is
815    // misassembled by gas in intel_syntax mode as its 32-bit
816    // equivalent "fld DWORD PTR [...]". Workaround: Output the raw
817    // opcode bytes instead of the instruction.
818    if (MI->getOpCode() == X86::FLDr80 &&
819        MI->getOperand(0).getReg() == X86::ESP &&
820        MI->getOperand(1).getImmedValue() == 1) {
821      if (Op3.isImmediate() && Op3.getImmedValue() >= -128 &&
822          Op3.getImmedValue() <= 127) {   // 1 byte displacement
823        O << ".byte 0xdb, 0x6c, 0x24, 0x" << std::hex
824          << ((unsigned)Op3.getImmedValue() & 255) << std::dec << "\t# ";
825      } else {
826        O << ".byte 0xdb, 0xac, 0x24\n\t";
827        O << ".long ";
828        printOp(Op3);
829        O << "\t# ";
830      }
831    }
832
833    // Bug: gas intel_syntax mode treats "fild QWORD PTR [...]" as an
834    // invalid opcode, saying "64 bit operations are only supported in
835    // 64 bit modes." libopcodes disassembles it as "fild DWORD PTR
836    // [...]", which is wrong. Workaround: Output the raw opcode bytes
837    // instead of the instruction.
838    if (MI->getOpCode() == X86::FILDr64 &&
839        MI->getOperand(0).getReg() == X86::ESP &&
840        MI->getOperand(1).getImmedValue() == 1) {
841      if (Op3.isImmediate() && Op3.getImmedValue() >= -128 &&
842          Op3.getImmedValue() <= 127) {   // 1 byte displacement
843        O << ".byte 0xdf, 0x6c, 0x24, 0x" << std::hex
844          << ((unsigned)Op3.getImmedValue() & 255) << std::dec << "\t# ";
845      } else {
846        O << ".byte 0xdf, 0xac, 0x24\n\t";
847        O << ".long ";
848        printOp(Op3);
849        O << std::dec << "\t# ";
850      }
851    }
852
853    // Bug: gas intel_syntax mode treats "fistp QWORD PTR [...]" as
854    // an invalid opcode, saying "64 bit operations are only
855    // supported in 64 bit modes." libopcodes disassembles it as
856    // "fistpll DWORD PTR [...]", which is wrong. Workaround: Output
857    // "fistpll DWORD PTR " instead, which is what libopcodes is
858    // expecting to see.
859    if (MI->getOpCode() == X86::FISTPr64) {
860      O << "fistpll DWORD PTR ";
861      printMemReference(MI, 0);
862      if (MI->getNumOperands() == 5) {
863	O << ", ";
864	printOp(MI->getOperand(4));
865      }
866      O << "\t# ";
867    }
868
869    O << TII.getName(MI->getOpCode()) << " ";
870    O << sizePtr(Desc) << " ";
871    printMemReference(MI, 0);
872    if (MI->getNumOperands() == 5) {
873      O << ", ";
874      printOp(MI->getOperand(4));
875    }
876    O << "\n";
877    return;
878  }
879
880  default:
881    O << "\tUNKNOWN FORM:\t\t-"; MI->print(O, TM); break;
882  }
883}
884
885bool Printer::doInitialization(Module &M) {
886  // Tell gas we are outputting Intel syntax (not AT&T syntax) assembly.
887  //
888  // Bug: gas in `intel_syntax noprefix' mode interprets the symbol `Sp' in an
889  // instruction as a reference to the register named sp, and if you try to
890  // reference a symbol `Sp' (e.g. `mov ECX, OFFSET Sp') then it gets lowercased
891  // before being looked up in the symbol table. This creates spurious
892  // `undefined symbol' errors when linking. Workaround: Do not use `noprefix'
893  // mode, and decorate all register names with percent signs.
894  O << "\t.intel_syntax\n";
895  Mang = new Mangler(M, EmitCygwin);
896  return false; // success
897}
898
899// SwitchSection - Switch to the specified section of the executable if we are
900// not already in it!
901//
902static void SwitchSection(std::ostream &OS, std::string &CurSection,
903                          const char *NewSection) {
904  if (CurSection != NewSection) {
905    CurSection = NewSection;
906    if (!CurSection.empty())
907      OS << "\t" << NewSection << "\n";
908  }
909}
910
911bool Printer::doFinalization(Module &M) {
912  const TargetData &TD = TM.getTargetData();
913  std::string CurSection;
914
915  // Print out module-level global variables here.
916  for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
917    if (I->hasInitializer()) {   // External global require no code
918      O << "\n\n";
919      std::string name = Mang->getValueName(I);
920      Constant *C = I->getInitializer();
921      unsigned Size = TD.getTypeSize(C->getType());
922      unsigned Align = TD.getTypeAlignment(C->getType());
923
924      if (C->isNullValue() &&
925          (I->hasLinkOnceLinkage() || I->hasInternalLinkage() ||
926           I->hasWeakLinkage() /* FIXME: Verify correct */)) {
927        SwitchSection(O, CurSection, ".data");
928        if (I->hasInternalLinkage())
929          O << "\t.local " << name << "\n";
930
931        O << "\t.comm " << name << "," << TD.getTypeSize(C->getType())
932          << "," << (unsigned)TD.getTypeAlignment(C->getType());
933        O << "\t\t# ";
934        WriteAsOperand(O, I, true, true, &M);
935        O << "\n";
936      } else {
937        switch (I->getLinkage()) {
938        case GlobalValue::LinkOnceLinkage:
939        case GlobalValue::WeakLinkage:   // FIXME: Verify correct for weak.
940          // Nonnull linkonce -> weak
941          O << "\t.weak " << name << "\n";
942          SwitchSection(O, CurSection, "");
943          O << "\t.section\t.llvm.linkonce.d." << name << ",\"aw\",@progbits\n";
944          break;
945
946        case GlobalValue::AppendingLinkage:
947          // FIXME: appending linkage variables should go into a section of
948          // their name or something.  For now, just emit them as external.
949        case GlobalValue::ExternalLinkage:
950          // If external or appending, declare as a global symbol
951          O << "\t.globl " << name << "\n";
952          // FALL THROUGH
953        case GlobalValue::InternalLinkage:
954          if (C->isNullValue())
955            SwitchSection(O, CurSection, ".bss");
956          else
957            SwitchSection(O, CurSection, ".data");
958          break;
959        }
960
961        O << "\t.align " << Align << "\n";
962        O << "\t.type " << name << ",@object\n";
963        O << "\t.size " << name << "," << Size << "\n";
964        O << name << ":\t\t\t\t# ";
965        WriteAsOperand(O, I, true, true, &M);
966        O << " = ";
967        WriteAsOperand(O, C, false, false, &M);
968        O << "\n";
969        emitGlobalConstant(C);
970      }
971    }
972
973  delete Mang;
974  return false; // success
975}
976
977} // End llvm namespace
978