1//===- InstCombineCompares.cpp --------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitICmp and visitFCmp functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombineInternal.h"
15#include "llvm/ADT/APSInt.h"
16#include "llvm/ADT/Statistic.h"
17#include "llvm/Analysis/ConstantFolding.h"
18#include "llvm/Analysis/InstructionSimplify.h"
19#include "llvm/Analysis/MemoryBuiltins.h"
20#include "llvm/IR/ConstantRange.h"
21#include "llvm/IR/DataLayout.h"
22#include "llvm/IR/GetElementPtrTypeIterator.h"
23#include "llvm/IR/IntrinsicInst.h"
24#include "llvm/IR/PatternMatch.h"
25#include "llvm/Support/CommandLine.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Analysis/TargetLibraryInfo.h"
28
29using namespace llvm;
30using namespace PatternMatch;
31
32#define DEBUG_TYPE "instcombine"
33
34// How many times is a select replaced by one of its operands?
35STATISTIC(NumSel, "Number of select opts");
36
37// Initialization Routines
38
39static ConstantInt *getOne(Constant *C) {
40  return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
41}
42
43static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
44  return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
45}
46
47static bool HasAddOverflow(ConstantInt *Result,
48                           ConstantInt *In1, ConstantInt *In2,
49                           bool IsSigned) {
50  if (!IsSigned)
51    return Result->getValue().ult(In1->getValue());
52
53  if (In2->isNegative())
54    return Result->getValue().sgt(In1->getValue());
55  return Result->getValue().slt(In1->getValue());
56}
57
58/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
59/// overflowed for this type.
60static bool AddWithOverflow(Constant *&Result, Constant *In1,
61                            Constant *In2, bool IsSigned = false) {
62  Result = ConstantExpr::getAdd(In1, In2);
63
64  if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
65    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
66      Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
67      if (HasAddOverflow(ExtractElement(Result, Idx),
68                         ExtractElement(In1, Idx),
69                         ExtractElement(In2, Idx),
70                         IsSigned))
71        return true;
72    }
73    return false;
74  }
75
76  return HasAddOverflow(cast<ConstantInt>(Result),
77                        cast<ConstantInt>(In1), cast<ConstantInt>(In2),
78                        IsSigned);
79}
80
81static bool HasSubOverflow(ConstantInt *Result,
82                           ConstantInt *In1, ConstantInt *In2,
83                           bool IsSigned) {
84  if (!IsSigned)
85    return Result->getValue().ugt(In1->getValue());
86
87  if (In2->isNegative())
88    return Result->getValue().slt(In1->getValue());
89
90  return Result->getValue().sgt(In1->getValue());
91}
92
93/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
94/// overflowed for this type.
95static bool SubWithOverflow(Constant *&Result, Constant *In1,
96                            Constant *In2, bool IsSigned = false) {
97  Result = ConstantExpr::getSub(In1, In2);
98
99  if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
100    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
101      Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
102      if (HasSubOverflow(ExtractElement(Result, Idx),
103                         ExtractElement(In1, Idx),
104                         ExtractElement(In2, Idx),
105                         IsSigned))
106        return true;
107    }
108    return false;
109  }
110
111  return HasSubOverflow(cast<ConstantInt>(Result),
112                        cast<ConstantInt>(In1), cast<ConstantInt>(In2),
113                        IsSigned);
114}
115
116/// isSignBitCheck - Given an exploded icmp instruction, return true if the
117/// comparison only checks the sign bit.  If it only checks the sign bit, set
118/// TrueIfSigned if the result of the comparison is true when the input value is
119/// signed.
120static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
121                           bool &TrueIfSigned) {
122  switch (pred) {
123  case ICmpInst::ICMP_SLT:   // True if LHS s< 0
124    TrueIfSigned = true;
125    return RHS->isZero();
126  case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
127    TrueIfSigned = true;
128    return RHS->isAllOnesValue();
129  case ICmpInst::ICMP_SGT:   // True if LHS s> -1
130    TrueIfSigned = false;
131    return RHS->isAllOnesValue();
132  case ICmpInst::ICMP_UGT:
133    // True if LHS u> RHS and RHS == high-bit-mask - 1
134    TrueIfSigned = true;
135    return RHS->isMaxValue(true);
136  case ICmpInst::ICMP_UGE:
137    // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
138    TrueIfSigned = true;
139    return RHS->getValue().isSignBit();
140  default:
141    return false;
142  }
143}
144
145/// Returns true if the exploded icmp can be expressed as a signed comparison
146/// to zero and updates the predicate accordingly.
147/// The signedness of the comparison is preserved.
148static bool isSignTest(ICmpInst::Predicate &pred, const ConstantInt *RHS) {
149  if (!ICmpInst::isSigned(pred))
150    return false;
151
152  if (RHS->isZero())
153    return ICmpInst::isRelational(pred);
154
155  if (RHS->isOne()) {
156    if (pred == ICmpInst::ICMP_SLT) {
157      pred = ICmpInst::ICMP_SLE;
158      return true;
159    }
160  } else if (RHS->isAllOnesValue()) {
161    if (pred == ICmpInst::ICMP_SGT) {
162      pred = ICmpInst::ICMP_SGE;
163      return true;
164    }
165  }
166
167  return false;
168}
169
170// isHighOnes - Return true if the constant is of the form 1+0+.
171// This is the same as lowones(~X).
172static bool isHighOnes(const ConstantInt *CI) {
173  return (~CI->getValue() + 1).isPowerOf2();
174}
175
176/// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
177/// set of known zero and one bits, compute the maximum and minimum values that
178/// could have the specified known zero and known one bits, returning them in
179/// min/max.
180static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
181                                                   const APInt& KnownOne,
182                                                   APInt& Min, APInt& Max) {
183  assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
184         KnownZero.getBitWidth() == Min.getBitWidth() &&
185         KnownZero.getBitWidth() == Max.getBitWidth() &&
186         "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
187  APInt UnknownBits = ~(KnownZero|KnownOne);
188
189  // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
190  // bit if it is unknown.
191  Min = KnownOne;
192  Max = KnownOne|UnknownBits;
193
194  if (UnknownBits.isNegative()) { // Sign bit is unknown
195    Min.setBit(Min.getBitWidth()-1);
196    Max.clearBit(Max.getBitWidth()-1);
197  }
198}
199
200// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
201// a set of known zero and one bits, compute the maximum and minimum values that
202// could have the specified known zero and known one bits, returning them in
203// min/max.
204static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
205                                                     const APInt &KnownOne,
206                                                     APInt &Min, APInt &Max) {
207  assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
208         KnownZero.getBitWidth() == Min.getBitWidth() &&
209         KnownZero.getBitWidth() == Max.getBitWidth() &&
210         "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
211  APInt UnknownBits = ~(KnownZero|KnownOne);
212
213  // The minimum value is when the unknown bits are all zeros.
214  Min = KnownOne;
215  // The maximum value is when the unknown bits are all ones.
216  Max = KnownOne|UnknownBits;
217}
218
219
220
221/// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
222///   cmp pred (load (gep GV, ...)), cmpcst
223/// where GV is a global variable with a constant initializer.  Try to simplify
224/// this into some simple computation that does not need the load.  For example
225/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
226///
227/// If AndCst is non-null, then the loaded value is masked with that constant
228/// before doing the comparison.  This handles cases like "A[i]&4 == 0".
229Instruction *InstCombiner::
230FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
231                             CmpInst &ICI, ConstantInt *AndCst) {
232  Constant *Init = GV->getInitializer();
233  if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
234    return nullptr;
235
236  uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
237  if (ArrayElementCount > 1024) return nullptr; // Don't blow up on huge arrays.
238
239  // There are many forms of this optimization we can handle, for now, just do
240  // the simple index into a single-dimensional array.
241  //
242  // Require: GEP GV, 0, i {{, constant indices}}
243  if (GEP->getNumOperands() < 3 ||
244      !isa<ConstantInt>(GEP->getOperand(1)) ||
245      !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
246      isa<Constant>(GEP->getOperand(2)))
247    return nullptr;
248
249  // Check that indices after the variable are constants and in-range for the
250  // type they index.  Collect the indices.  This is typically for arrays of
251  // structs.
252  SmallVector<unsigned, 4> LaterIndices;
253
254  Type *EltTy = Init->getType()->getArrayElementType();
255  for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
256    ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
257    if (!Idx) return nullptr;  // Variable index.
258
259    uint64_t IdxVal = Idx->getZExtValue();
260    if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
261
262    if (StructType *STy = dyn_cast<StructType>(EltTy))
263      EltTy = STy->getElementType(IdxVal);
264    else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
265      if (IdxVal >= ATy->getNumElements()) return nullptr;
266      EltTy = ATy->getElementType();
267    } else {
268      return nullptr; // Unknown type.
269    }
270
271    LaterIndices.push_back(IdxVal);
272  }
273
274  enum { Overdefined = -3, Undefined = -2 };
275
276  // Variables for our state machines.
277
278  // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
279  // "i == 47 | i == 87", where 47 is the first index the condition is true for,
280  // and 87 is the second (and last) index.  FirstTrueElement is -2 when
281  // undefined, otherwise set to the first true element.  SecondTrueElement is
282  // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
283  int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
284
285  // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
286  // form "i != 47 & i != 87".  Same state transitions as for true elements.
287  int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
288
289  /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
290  /// define a state machine that triggers for ranges of values that the index
291  /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
292  /// This is -2 when undefined, -3 when overdefined, and otherwise the last
293  /// index in the range (inclusive).  We use -2 for undefined here because we
294  /// use relative comparisons and don't want 0-1 to match -1.
295  int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
296
297  // MagicBitvector - This is a magic bitvector where we set a bit if the
298  // comparison is true for element 'i'.  If there are 64 elements or less in
299  // the array, this will fully represent all the comparison results.
300  uint64_t MagicBitvector = 0;
301
302  // Scan the array and see if one of our patterns matches.
303  Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
304  for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
305    Constant *Elt = Init->getAggregateElement(i);
306    if (!Elt) return nullptr;
307
308    // If this is indexing an array of structures, get the structure element.
309    if (!LaterIndices.empty())
310      Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
311
312    // If the element is masked, handle it.
313    if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
314
315    // Find out if the comparison would be true or false for the i'th element.
316    Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
317                                                  CompareRHS, DL, TLI);
318    // If the result is undef for this element, ignore it.
319    if (isa<UndefValue>(C)) {
320      // Extend range state machines to cover this element in case there is an
321      // undef in the middle of the range.
322      if (TrueRangeEnd == (int)i-1)
323        TrueRangeEnd = i;
324      if (FalseRangeEnd == (int)i-1)
325        FalseRangeEnd = i;
326      continue;
327    }
328
329    // If we can't compute the result for any of the elements, we have to give
330    // up evaluating the entire conditional.
331    if (!isa<ConstantInt>(C)) return nullptr;
332
333    // Otherwise, we know if the comparison is true or false for this element,
334    // update our state machines.
335    bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
336
337    // State machine for single/double/range index comparison.
338    if (IsTrueForElt) {
339      // Update the TrueElement state machine.
340      if (FirstTrueElement == Undefined)
341        FirstTrueElement = TrueRangeEnd = i;  // First true element.
342      else {
343        // Update double-compare state machine.
344        if (SecondTrueElement == Undefined)
345          SecondTrueElement = i;
346        else
347          SecondTrueElement = Overdefined;
348
349        // Update range state machine.
350        if (TrueRangeEnd == (int)i-1)
351          TrueRangeEnd = i;
352        else
353          TrueRangeEnd = Overdefined;
354      }
355    } else {
356      // Update the FalseElement state machine.
357      if (FirstFalseElement == Undefined)
358        FirstFalseElement = FalseRangeEnd = i; // First false element.
359      else {
360        // Update double-compare state machine.
361        if (SecondFalseElement == Undefined)
362          SecondFalseElement = i;
363        else
364          SecondFalseElement = Overdefined;
365
366        // Update range state machine.
367        if (FalseRangeEnd == (int)i-1)
368          FalseRangeEnd = i;
369        else
370          FalseRangeEnd = Overdefined;
371      }
372    }
373
374
375    // If this element is in range, update our magic bitvector.
376    if (i < 64 && IsTrueForElt)
377      MagicBitvector |= 1ULL << i;
378
379    // If all of our states become overdefined, bail out early.  Since the
380    // predicate is expensive, only check it every 8 elements.  This is only
381    // really useful for really huge arrays.
382    if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
383        SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
384        FalseRangeEnd == Overdefined)
385      return nullptr;
386  }
387
388  // Now that we've scanned the entire array, emit our new comparison(s).  We
389  // order the state machines in complexity of the generated code.
390  Value *Idx = GEP->getOperand(2);
391
392  // If the index is larger than the pointer size of the target, truncate the
393  // index down like the GEP would do implicitly.  We don't have to do this for
394  // an inbounds GEP because the index can't be out of range.
395  if (!GEP->isInBounds()) {
396    Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
397    unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
398    if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
399      Idx = Builder->CreateTrunc(Idx, IntPtrTy);
400  }
401
402  // If the comparison is only true for one or two elements, emit direct
403  // comparisons.
404  if (SecondTrueElement != Overdefined) {
405    // None true -> false.
406    if (FirstTrueElement == Undefined)
407      return ReplaceInstUsesWith(ICI, Builder->getFalse());
408
409    Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
410
411    // True for one element -> 'i == 47'.
412    if (SecondTrueElement == Undefined)
413      return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
414
415    // True for two elements -> 'i == 47 | i == 72'.
416    Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
417    Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
418    Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
419    return BinaryOperator::CreateOr(C1, C2);
420  }
421
422  // If the comparison is only false for one or two elements, emit direct
423  // comparisons.
424  if (SecondFalseElement != Overdefined) {
425    // None false -> true.
426    if (FirstFalseElement == Undefined)
427      return ReplaceInstUsesWith(ICI, Builder->getTrue());
428
429    Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
430
431    // False for one element -> 'i != 47'.
432    if (SecondFalseElement == Undefined)
433      return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
434
435    // False for two elements -> 'i != 47 & i != 72'.
436    Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
437    Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
438    Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
439    return BinaryOperator::CreateAnd(C1, C2);
440  }
441
442  // If the comparison can be replaced with a range comparison for the elements
443  // where it is true, emit the range check.
444  if (TrueRangeEnd != Overdefined) {
445    assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
446
447    // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
448    if (FirstTrueElement) {
449      Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
450      Idx = Builder->CreateAdd(Idx, Offs);
451    }
452
453    Value *End = ConstantInt::get(Idx->getType(),
454                                  TrueRangeEnd-FirstTrueElement+1);
455    return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
456  }
457
458  // False range check.
459  if (FalseRangeEnd != Overdefined) {
460    assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
461    // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
462    if (FirstFalseElement) {
463      Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
464      Idx = Builder->CreateAdd(Idx, Offs);
465    }
466
467    Value *End = ConstantInt::get(Idx->getType(),
468                                  FalseRangeEnd-FirstFalseElement);
469    return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
470  }
471
472
473  // If a magic bitvector captures the entire comparison state
474  // of this load, replace it with computation that does:
475  //   ((magic_cst >> i) & 1) != 0
476  {
477    Type *Ty = nullptr;
478
479    // Look for an appropriate type:
480    // - The type of Idx if the magic fits
481    // - The smallest fitting legal type if we have a DataLayout
482    // - Default to i32
483    if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
484      Ty = Idx->getType();
485    else
486      Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
487
488    if (Ty) {
489      Value *V = Builder->CreateIntCast(Idx, Ty, false);
490      V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
491      V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
492      return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
493    }
494  }
495
496  return nullptr;
497}
498
499
500/// EvaluateGEPOffsetExpression - Return a value that can be used to compare
501/// the *offset* implied by a GEP to zero.  For example, if we have &A[i], we
502/// want to return 'i' for "icmp ne i, 0".  Note that, in general, indices can
503/// be complex, and scales are involved.  The above expression would also be
504/// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
505/// This later form is less amenable to optimization though, and we are allowed
506/// to generate the first by knowing that pointer arithmetic doesn't overflow.
507///
508/// If we can't emit an optimized form for this expression, this returns null.
509///
510static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC,
511                                          const DataLayout &DL) {
512  gep_type_iterator GTI = gep_type_begin(GEP);
513
514  // Check to see if this gep only has a single variable index.  If so, and if
515  // any constant indices are a multiple of its scale, then we can compute this
516  // in terms of the scale of the variable index.  For example, if the GEP
517  // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
518  // because the expression will cross zero at the same point.
519  unsigned i, e = GEP->getNumOperands();
520  int64_t Offset = 0;
521  for (i = 1; i != e; ++i, ++GTI) {
522    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
523      // Compute the aggregate offset of constant indices.
524      if (CI->isZero()) continue;
525
526      // Handle a struct index, which adds its field offset to the pointer.
527      if (StructType *STy = dyn_cast<StructType>(*GTI)) {
528        Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
529      } else {
530        uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
531        Offset += Size*CI->getSExtValue();
532      }
533    } else {
534      // Found our variable index.
535      break;
536    }
537  }
538
539  // If there are no variable indices, we must have a constant offset, just
540  // evaluate it the general way.
541  if (i == e) return nullptr;
542
543  Value *VariableIdx = GEP->getOperand(i);
544  // Determine the scale factor of the variable element.  For example, this is
545  // 4 if the variable index is into an array of i32.
546  uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
547
548  // Verify that there are no other variable indices.  If so, emit the hard way.
549  for (++i, ++GTI; i != e; ++i, ++GTI) {
550    ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
551    if (!CI) return nullptr;
552
553    // Compute the aggregate offset of constant indices.
554    if (CI->isZero()) continue;
555
556    // Handle a struct index, which adds its field offset to the pointer.
557    if (StructType *STy = dyn_cast<StructType>(*GTI)) {
558      Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
559    } else {
560      uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
561      Offset += Size*CI->getSExtValue();
562    }
563  }
564
565
566
567  // Okay, we know we have a single variable index, which must be a
568  // pointer/array/vector index.  If there is no offset, life is simple, return
569  // the index.
570  Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
571  unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
572  if (Offset == 0) {
573    // Cast to intptrty in case a truncation occurs.  If an extension is needed,
574    // we don't need to bother extending: the extension won't affect where the
575    // computation crosses zero.
576    if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
577      VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
578    }
579    return VariableIdx;
580  }
581
582  // Otherwise, there is an index.  The computation we will do will be modulo
583  // the pointer size, so get it.
584  uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
585
586  Offset &= PtrSizeMask;
587  VariableScale &= PtrSizeMask;
588
589  // To do this transformation, any constant index must be a multiple of the
590  // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
591  // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
592  // multiple of the variable scale.
593  int64_t NewOffs = Offset / (int64_t)VariableScale;
594  if (Offset != NewOffs*(int64_t)VariableScale)
595    return nullptr;
596
597  // Okay, we can do this evaluation.  Start by converting the index to intptr.
598  if (VariableIdx->getType() != IntPtrTy)
599    VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
600                                            true /*Signed*/);
601  Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
602  return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
603}
604
605/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
606/// else.  At this point we know that the GEP is on the LHS of the comparison.
607Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
608                                       ICmpInst::Predicate Cond,
609                                       Instruction &I) {
610  // Don't transform signed compares of GEPs into index compares. Even if the
611  // GEP is inbounds, the final add of the base pointer can have signed overflow
612  // and would change the result of the icmp.
613  // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
614  // the maximum signed value for the pointer type.
615  if (ICmpInst::isSigned(Cond))
616    return nullptr;
617
618  // Look through bitcasts and addrspacecasts. We do not however want to remove
619  // 0 GEPs.
620  if (!isa<GetElementPtrInst>(RHS))
621    RHS = RHS->stripPointerCasts();
622
623  Value *PtrBase = GEPLHS->getOperand(0);
624  if (PtrBase == RHS && GEPLHS->isInBounds()) {
625    // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
626    // This transformation (ignoring the base and scales) is valid because we
627    // know pointers can't overflow since the gep is inbounds.  See if we can
628    // output an optimized form.
629    Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this, DL);
630
631    // If not, synthesize the offset the hard way.
632    if (!Offset)
633      Offset = EmitGEPOffset(GEPLHS);
634    return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
635                        Constant::getNullValue(Offset->getType()));
636  } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
637    // If the base pointers are different, but the indices are the same, just
638    // compare the base pointer.
639    if (PtrBase != GEPRHS->getOperand(0)) {
640      bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
641      IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
642                        GEPRHS->getOperand(0)->getType();
643      if (IndicesTheSame)
644        for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
645          if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
646            IndicesTheSame = false;
647            break;
648          }
649
650      // If all indices are the same, just compare the base pointers.
651      if (IndicesTheSame)
652        return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
653
654      // If we're comparing GEPs with two base pointers that only differ in type
655      // and both GEPs have only constant indices or just one use, then fold
656      // the compare with the adjusted indices.
657      if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
658          (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
659          (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
660          PtrBase->stripPointerCasts() ==
661              GEPRHS->getOperand(0)->stripPointerCasts()) {
662        Value *LOffset = EmitGEPOffset(GEPLHS);
663        Value *ROffset = EmitGEPOffset(GEPRHS);
664
665        // If we looked through an addrspacecast between different sized address
666        // spaces, the LHS and RHS pointers are different sized
667        // integers. Truncate to the smaller one.
668        Type *LHSIndexTy = LOffset->getType();
669        Type *RHSIndexTy = ROffset->getType();
670        if (LHSIndexTy != RHSIndexTy) {
671          if (LHSIndexTy->getPrimitiveSizeInBits() <
672              RHSIndexTy->getPrimitiveSizeInBits()) {
673            ROffset = Builder->CreateTrunc(ROffset, LHSIndexTy);
674          } else
675            LOffset = Builder->CreateTrunc(LOffset, RHSIndexTy);
676        }
677
678        Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond),
679                                         LOffset, ROffset);
680        return ReplaceInstUsesWith(I, Cmp);
681      }
682
683      // Otherwise, the base pointers are different and the indices are
684      // different, bail out.
685      return nullptr;
686    }
687
688    // If one of the GEPs has all zero indices, recurse.
689    if (GEPLHS->hasAllZeroIndices())
690      return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
691                         ICmpInst::getSwappedPredicate(Cond), I);
692
693    // If the other GEP has all zero indices, recurse.
694    if (GEPRHS->hasAllZeroIndices())
695      return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
696
697    bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
698    if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
699      // If the GEPs only differ by one index, compare it.
700      unsigned NumDifferences = 0;  // Keep track of # differences.
701      unsigned DiffOperand = 0;     // The operand that differs.
702      for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
703        if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
704          if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
705                   GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
706            // Irreconcilable differences.
707            NumDifferences = 2;
708            break;
709          } else {
710            if (NumDifferences++) break;
711            DiffOperand = i;
712          }
713        }
714
715      if (NumDifferences == 0)   // SAME GEP?
716        return ReplaceInstUsesWith(I, // No comparison is needed here.
717                             Builder->getInt1(ICmpInst::isTrueWhenEqual(Cond)));
718
719      else if (NumDifferences == 1 && GEPsInBounds) {
720        Value *LHSV = GEPLHS->getOperand(DiffOperand);
721        Value *RHSV = GEPRHS->getOperand(DiffOperand);
722        // Make sure we do a signed comparison here.
723        return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
724      }
725    }
726
727    // Only lower this if the icmp is the only user of the GEP or if we expect
728    // the result to fold to a constant!
729    if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
730        (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
731      // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
732      Value *L = EmitGEPOffset(GEPLHS);
733      Value *R = EmitGEPOffset(GEPRHS);
734      return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
735    }
736  }
737  return nullptr;
738}
739
740/// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
741Instruction *InstCombiner::FoldICmpAddOpCst(Instruction &ICI,
742                                            Value *X, ConstantInt *CI,
743                                            ICmpInst::Predicate Pred) {
744  // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
745  // so the values can never be equal.  Similarly for all other "or equals"
746  // operators.
747
748  // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
749  // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
750  // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
751  if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
752    Value *R =
753      ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
754    return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
755  }
756
757  // (X+1) >u X        --> X <u (0-1)        --> X != 255
758  // (X+2) >u X        --> X <u (0-2)        --> X <u 254
759  // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
760  if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
761    return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
762
763  unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
764  ConstantInt *SMax = ConstantInt::get(X->getContext(),
765                                       APInt::getSignedMaxValue(BitWidth));
766
767  // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
768  // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
769  // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
770  // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
771  // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
772  // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
773  if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
774    return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
775
776  // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
777  // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
778  // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
779  // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
780  // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
781  // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
782
783  assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
784  Constant *C = Builder->getInt(CI->getValue()-1);
785  return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
786}
787
788/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
789/// and CmpRHS are both known to be integer constants.
790Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
791                                          ConstantInt *DivRHS) {
792  ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
793  const APInt &CmpRHSV = CmpRHS->getValue();
794
795  // FIXME: If the operand types don't match the type of the divide
796  // then don't attempt this transform. The code below doesn't have the
797  // logic to deal with a signed divide and an unsigned compare (and
798  // vice versa). This is because (x /s C1) <s C2  produces different
799  // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
800  // (x /u C1) <u C2.  Simply casting the operands and result won't
801  // work. :(  The if statement below tests that condition and bails
802  // if it finds it.
803  bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
804  if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
805    return nullptr;
806  if (DivRHS->isZero())
807    return nullptr; // The ProdOV computation fails on divide by zero.
808  if (DivIsSigned && DivRHS->isAllOnesValue())
809    return nullptr; // The overflow computation also screws up here
810  if (DivRHS->isOne()) {
811    // This eliminates some funny cases with INT_MIN.
812    ICI.setOperand(0, DivI->getOperand(0));   // X/1 == X.
813    return &ICI;
814  }
815
816  // Compute Prod = CI * DivRHS. We are essentially solving an equation
817  // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
818  // C2 (CI). By solving for X we can turn this into a range check
819  // instead of computing a divide.
820  Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
821
822  // Determine if the product overflows by seeing if the product is
823  // not equal to the divide. Make sure we do the same kind of divide
824  // as in the LHS instruction that we're folding.
825  bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
826                 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
827
828  // Get the ICmp opcode
829  ICmpInst::Predicate Pred = ICI.getPredicate();
830
831  /// If the division is known to be exact, then there is no remainder from the
832  /// divide, so the covered range size is unit, otherwise it is the divisor.
833  ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
834
835  // Figure out the interval that is being checked.  For example, a comparison
836  // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
837  // Compute this interval based on the constants involved and the signedness of
838  // the compare/divide.  This computes a half-open interval, keeping track of
839  // whether either value in the interval overflows.  After analysis each
840  // overflow variable is set to 0 if it's corresponding bound variable is valid
841  // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
842  int LoOverflow = 0, HiOverflow = 0;
843  Constant *LoBound = nullptr, *HiBound = nullptr;
844
845  if (!DivIsSigned) {  // udiv
846    // e.g. X/5 op 3  --> [15, 20)
847    LoBound = Prod;
848    HiOverflow = LoOverflow = ProdOV;
849    if (!HiOverflow) {
850      // If this is not an exact divide, then many values in the range collapse
851      // to the same result value.
852      HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
853    }
854
855  } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
856    if (CmpRHSV == 0) {       // (X / pos) op 0
857      // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
858      LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
859      HiBound = RangeSize;
860    } else if (CmpRHSV.isStrictlyPositive()) {   // (X / pos) op pos
861      LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
862      HiOverflow = LoOverflow = ProdOV;
863      if (!HiOverflow)
864        HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
865    } else {                       // (X / pos) op neg
866      // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
867      HiBound = AddOne(Prod);
868      LoOverflow = HiOverflow = ProdOV ? -1 : 0;
869      if (!LoOverflow) {
870        ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
871        LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
872      }
873    }
874  } else if (DivRHS->isNegative()) { // Divisor is < 0.
875    if (DivI->isExact())
876      RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
877    if (CmpRHSV == 0) {       // (X / neg) op 0
878      // e.g. X/-5 op 0  --> [-4, 5)
879      LoBound = AddOne(RangeSize);
880      HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
881      if (HiBound == DivRHS) {     // -INTMIN = INTMIN
882        HiOverflow = 1;            // [INTMIN+1, overflow)
883        HiBound = nullptr;         // e.g. X/INTMIN = 0 --> X > INTMIN
884      }
885    } else if (CmpRHSV.isStrictlyPositive()) {   // (X / neg) op pos
886      // e.g. X/-5 op 3  --> [-19, -14)
887      HiBound = AddOne(Prod);
888      HiOverflow = LoOverflow = ProdOV ? -1 : 0;
889      if (!LoOverflow)
890        LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
891    } else {                       // (X / neg) op neg
892      LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
893      LoOverflow = HiOverflow = ProdOV;
894      if (!HiOverflow)
895        HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
896    }
897
898    // Dividing by a negative swaps the condition.  LT <-> GT
899    Pred = ICmpInst::getSwappedPredicate(Pred);
900  }
901
902  Value *X = DivI->getOperand(0);
903  switch (Pred) {
904  default: llvm_unreachable("Unhandled icmp opcode!");
905  case ICmpInst::ICMP_EQ:
906    if (LoOverflow && HiOverflow)
907      return ReplaceInstUsesWith(ICI, Builder->getFalse());
908    if (HiOverflow)
909      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
910                          ICmpInst::ICMP_UGE, X, LoBound);
911    if (LoOverflow)
912      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
913                          ICmpInst::ICMP_ULT, X, HiBound);
914    return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
915                                                    DivIsSigned, true));
916  case ICmpInst::ICMP_NE:
917    if (LoOverflow && HiOverflow)
918      return ReplaceInstUsesWith(ICI, Builder->getTrue());
919    if (HiOverflow)
920      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
921                          ICmpInst::ICMP_ULT, X, LoBound);
922    if (LoOverflow)
923      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
924                          ICmpInst::ICMP_UGE, X, HiBound);
925    return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
926                                                    DivIsSigned, false));
927  case ICmpInst::ICMP_ULT:
928  case ICmpInst::ICMP_SLT:
929    if (LoOverflow == +1)   // Low bound is greater than input range.
930      return ReplaceInstUsesWith(ICI, Builder->getTrue());
931    if (LoOverflow == -1)   // Low bound is less than input range.
932      return ReplaceInstUsesWith(ICI, Builder->getFalse());
933    return new ICmpInst(Pred, X, LoBound);
934  case ICmpInst::ICMP_UGT:
935  case ICmpInst::ICMP_SGT:
936    if (HiOverflow == +1)       // High bound greater than input range.
937      return ReplaceInstUsesWith(ICI, Builder->getFalse());
938    if (HiOverflow == -1)       // High bound less than input range.
939      return ReplaceInstUsesWith(ICI, Builder->getTrue());
940    if (Pred == ICmpInst::ICMP_UGT)
941      return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
942    return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
943  }
944}
945
946/// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
947Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
948                                          ConstantInt *ShAmt) {
949  const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
950
951  // Check that the shift amount is in range.  If not, don't perform
952  // undefined shifts.  When the shift is visited it will be
953  // simplified.
954  uint32_t TypeBits = CmpRHSV.getBitWidth();
955  uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
956  if (ShAmtVal >= TypeBits || ShAmtVal == 0)
957    return nullptr;
958
959  if (!ICI.isEquality()) {
960    // If we have an unsigned comparison and an ashr, we can't simplify this.
961    // Similarly for signed comparisons with lshr.
962    if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
963      return nullptr;
964
965    // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
966    // by a power of 2.  Since we already have logic to simplify these,
967    // transform to div and then simplify the resultant comparison.
968    if (Shr->getOpcode() == Instruction::AShr &&
969        (!Shr->isExact() || ShAmtVal == TypeBits - 1))
970      return nullptr;
971
972    // Revisit the shift (to delete it).
973    Worklist.Add(Shr);
974
975    Constant *DivCst =
976      ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
977
978    Value *Tmp =
979      Shr->getOpcode() == Instruction::AShr ?
980      Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :
981      Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact());
982
983    ICI.setOperand(0, Tmp);
984
985    // If the builder folded the binop, just return it.
986    BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
987    if (!TheDiv)
988      return &ICI;
989
990    // Otherwise, fold this div/compare.
991    assert(TheDiv->getOpcode() == Instruction::SDiv ||
992           TheDiv->getOpcode() == Instruction::UDiv);
993
994    Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));
995    assert(Res && "This div/cst should have folded!");
996    return Res;
997  }
998
999
1000  // If we are comparing against bits always shifted out, the
1001  // comparison cannot succeed.
1002  APInt Comp = CmpRHSV << ShAmtVal;
1003  ConstantInt *ShiftedCmpRHS = Builder->getInt(Comp);
1004  if (Shr->getOpcode() == Instruction::LShr)
1005    Comp = Comp.lshr(ShAmtVal);
1006  else
1007    Comp = Comp.ashr(ShAmtVal);
1008
1009  if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
1010    bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1011    Constant *Cst = Builder->getInt1(IsICMP_NE);
1012    return ReplaceInstUsesWith(ICI, Cst);
1013  }
1014
1015  // Otherwise, check to see if the bits shifted out are known to be zero.
1016  // If so, we can compare against the unshifted value:
1017  //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
1018  if (Shr->hasOneUse() && Shr->isExact())
1019    return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS);
1020
1021  if (Shr->hasOneUse()) {
1022    // Otherwise strength reduce the shift into an and.
1023    APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
1024    Constant *Mask = Builder->getInt(Val);
1025
1026    Value *And = Builder->CreateAnd(Shr->getOperand(0),
1027                                    Mask, Shr->getName()+".mask");
1028    return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS);
1029  }
1030  return nullptr;
1031}
1032
1033/// FoldICmpCstShrCst - Handle "(icmp eq/ne (ashr/lshr const2, A), const1)" ->
1034/// (icmp eq/ne A, Log2(const2/const1)) ->
1035/// (icmp eq/ne A, Log2(const2) - Log2(const1)).
1036Instruction *InstCombiner::FoldICmpCstShrCst(ICmpInst &I, Value *Op, Value *A,
1037                                             ConstantInt *CI1,
1038                                             ConstantInt *CI2) {
1039  assert(I.isEquality() && "Cannot fold icmp gt/lt");
1040
1041  auto getConstant = [&I, this](bool IsTrue) {
1042    if (I.getPredicate() == I.ICMP_NE)
1043      IsTrue = !IsTrue;
1044    return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue));
1045  };
1046
1047  auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1048    if (I.getPredicate() == I.ICMP_NE)
1049      Pred = CmpInst::getInversePredicate(Pred);
1050    return new ICmpInst(Pred, LHS, RHS);
1051  };
1052
1053  APInt AP1 = CI1->getValue();
1054  APInt AP2 = CI2->getValue();
1055
1056  // Don't bother doing any work for cases which InstSimplify handles.
1057  if (AP2 == 0)
1058    return nullptr;
1059  bool IsAShr = isa<AShrOperator>(Op);
1060  if (IsAShr) {
1061    if (AP2.isAllOnesValue())
1062      return nullptr;
1063    if (AP2.isNegative() != AP1.isNegative())
1064      return nullptr;
1065    if (AP2.sgt(AP1))
1066      return nullptr;
1067  }
1068
1069  if (!AP1)
1070    // 'A' must be large enough to shift out the highest set bit.
1071    return getICmp(I.ICMP_UGT, A,
1072                   ConstantInt::get(A->getType(), AP2.logBase2()));
1073
1074  if (AP1 == AP2)
1075    return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1076
1077  // Get the distance between the highest bit that's set.
1078  int Shift;
1079  // Both the constants are negative, take their positive to calculate log.
1080  if (IsAShr && AP1.isNegative())
1081    // Get the ones' complement of AP2 and AP1 when computing the distance.
1082    Shift = (~AP2).logBase2() - (~AP1).logBase2();
1083  else
1084    Shift = AP2.logBase2() - AP1.logBase2();
1085
1086  if (Shift > 0) {
1087    if (IsAShr ? AP1 == AP2.ashr(Shift) : AP1 == AP2.lshr(Shift))
1088      return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1089  }
1090  // Shifting const2 will never be equal to const1.
1091  return getConstant(false);
1092}
1093
1094/// FoldICmpCstShlCst - Handle "(icmp eq/ne (shl const2, A), const1)" ->
1095/// (icmp eq/ne A, TrailingZeros(const1) - TrailingZeros(const2)).
1096Instruction *InstCombiner::FoldICmpCstShlCst(ICmpInst &I, Value *Op, Value *A,
1097                                             ConstantInt *CI1,
1098                                             ConstantInt *CI2) {
1099  assert(I.isEquality() && "Cannot fold icmp gt/lt");
1100
1101  auto getConstant = [&I, this](bool IsTrue) {
1102    if (I.getPredicate() == I.ICMP_NE)
1103      IsTrue = !IsTrue;
1104    return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue));
1105  };
1106
1107  auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1108    if (I.getPredicate() == I.ICMP_NE)
1109      Pred = CmpInst::getInversePredicate(Pred);
1110    return new ICmpInst(Pred, LHS, RHS);
1111  };
1112
1113  APInt AP1 = CI1->getValue();
1114  APInt AP2 = CI2->getValue();
1115
1116  // Don't bother doing any work for cases which InstSimplify handles.
1117  if (AP2 == 0)
1118    return nullptr;
1119
1120  unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1121
1122  if (!AP1 && AP2TrailingZeros != 0)
1123    return getICmp(I.ICMP_UGE, A,
1124                   ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1125
1126  if (AP1 == AP2)
1127    return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1128
1129  // Get the distance between the lowest bits that are set.
1130  int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1131
1132  if (Shift > 0 && AP2.shl(Shift) == AP1)
1133    return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1134
1135  // Shifting const2 will never be equal to const1.
1136  return getConstant(false);
1137}
1138
1139/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
1140///
1141Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
1142                                                          Instruction *LHSI,
1143                                                          ConstantInt *RHS) {
1144  const APInt &RHSV = RHS->getValue();
1145
1146  switch (LHSI->getOpcode()) {
1147  case Instruction::Trunc:
1148    if (ICI.isEquality() && LHSI->hasOneUse()) {
1149      // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1150      // of the high bits truncated out of x are known.
1151      unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
1152             SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
1153      APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
1154      computeKnownBits(LHSI->getOperand(0), KnownZero, KnownOne, 0, &ICI);
1155
1156      // If all the high bits are known, we can do this xform.
1157      if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
1158        // Pull in the high bits from known-ones set.
1159        APInt NewRHS = RHS->getValue().zext(SrcBits);
1160        NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits-DstBits);
1161        return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1162                            Builder->getInt(NewRHS));
1163      }
1164    }
1165    break;
1166
1167  case Instruction::Xor:         // (icmp pred (xor X, XorCst), CI)
1168    if (ConstantInt *XorCst = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1169      // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1170      // fold the xor.
1171      if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
1172          (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
1173        Value *CompareVal = LHSI->getOperand(0);
1174
1175        // If the sign bit of the XorCst is not set, there is no change to
1176        // the operation, just stop using the Xor.
1177        if (!XorCst->isNegative()) {
1178          ICI.setOperand(0, CompareVal);
1179          Worklist.Add(LHSI);
1180          return &ICI;
1181        }
1182
1183        // Was the old condition true if the operand is positive?
1184        bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
1185
1186        // If so, the new one isn't.
1187        isTrueIfPositive ^= true;
1188
1189        if (isTrueIfPositive)
1190          return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
1191                              SubOne(RHS));
1192        else
1193          return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
1194                              AddOne(RHS));
1195      }
1196
1197      if (LHSI->hasOneUse()) {
1198        // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
1199        if (!ICI.isEquality() && XorCst->getValue().isSignBit()) {
1200          const APInt &SignBit = XorCst->getValue();
1201          ICmpInst::Predicate Pred = ICI.isSigned()
1202                                         ? ICI.getUnsignedPredicate()
1203                                         : ICI.getSignedPredicate();
1204          return new ICmpInst(Pred, LHSI->getOperand(0),
1205                              Builder->getInt(RHSV ^ SignBit));
1206        }
1207
1208        // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
1209        if (!ICI.isEquality() && XorCst->isMaxValue(true)) {
1210          const APInt &NotSignBit = XorCst->getValue();
1211          ICmpInst::Predicate Pred = ICI.isSigned()
1212                                         ? ICI.getUnsignedPredicate()
1213                                         : ICI.getSignedPredicate();
1214          Pred = ICI.getSwappedPredicate(Pred);
1215          return new ICmpInst(Pred, LHSI->getOperand(0),
1216                              Builder->getInt(RHSV ^ NotSignBit));
1217        }
1218      }
1219
1220      // (icmp ugt (xor X, C), ~C) -> (icmp ult X, C)
1221      //   iff -C is a power of 2
1222      if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
1223          XorCst->getValue() == ~RHSV && (RHSV + 1).isPowerOf2())
1224        return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), XorCst);
1225
1226      // (icmp ult (xor X, C), -C) -> (icmp uge X, C)
1227      //   iff -C is a power of 2
1228      if (ICI.getPredicate() == ICmpInst::ICMP_ULT &&
1229          XorCst->getValue() == -RHSV && RHSV.isPowerOf2())
1230        return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), XorCst);
1231    }
1232    break;
1233  case Instruction::And:         // (icmp pred (and X, AndCst), RHS)
1234    if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
1235        LHSI->getOperand(0)->hasOneUse()) {
1236      ConstantInt *AndCst = cast<ConstantInt>(LHSI->getOperand(1));
1237
1238      // If the LHS is an AND of a truncating cast, we can widen the
1239      // and/compare to be the input width without changing the value
1240      // produced, eliminating a cast.
1241      if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
1242        // We can do this transformation if either the AND constant does not
1243        // have its sign bit set or if it is an equality comparison.
1244        // Extending a relational comparison when we're checking the sign
1245        // bit would not work.
1246        if (ICI.isEquality() ||
1247            (!AndCst->isNegative() && RHSV.isNonNegative())) {
1248          Value *NewAnd =
1249            Builder->CreateAnd(Cast->getOperand(0),
1250                               ConstantExpr::getZExt(AndCst, Cast->getSrcTy()));
1251          NewAnd->takeName(LHSI);
1252          return new ICmpInst(ICI.getPredicate(), NewAnd,
1253                              ConstantExpr::getZExt(RHS, Cast->getSrcTy()));
1254        }
1255      }
1256
1257      // If the LHS is an AND of a zext, and we have an equality compare, we can
1258      // shrink the and/compare to the smaller type, eliminating the cast.
1259      if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) {
1260        IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy());
1261        // Make sure we don't compare the upper bits, SimplifyDemandedBits
1262        // should fold the icmp to true/false in that case.
1263        if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) {
1264          Value *NewAnd =
1265            Builder->CreateAnd(Cast->getOperand(0),
1266                               ConstantExpr::getTrunc(AndCst, Ty));
1267          NewAnd->takeName(LHSI);
1268          return new ICmpInst(ICI.getPredicate(), NewAnd,
1269                              ConstantExpr::getTrunc(RHS, Ty));
1270        }
1271      }
1272
1273      // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
1274      // could exist), turn it into (X & (C2 << C1)) != (C3 << C1).  This
1275      // happens a LOT in code produced by the C front-end, for bitfield
1276      // access.
1277      BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
1278      if (Shift && !Shift->isShift())
1279        Shift = nullptr;
1280
1281      ConstantInt *ShAmt;
1282      ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : nullptr;
1283
1284      // This seemingly simple opportunity to fold away a shift turns out to
1285      // be rather complicated. See PR17827
1286      // ( http://llvm.org/bugs/show_bug.cgi?id=17827 ) for details.
1287      if (ShAmt) {
1288        bool CanFold = false;
1289        unsigned ShiftOpcode = Shift->getOpcode();
1290        if (ShiftOpcode == Instruction::AShr) {
1291          // There may be some constraints that make this possible,
1292          // but nothing simple has been discovered yet.
1293          CanFold = false;
1294        } else if (ShiftOpcode == Instruction::Shl) {
1295          // For a left shift, we can fold if the comparison is not signed.
1296          // We can also fold a signed comparison if the mask value and
1297          // comparison value are not negative. These constraints may not be
1298          // obvious, but we can prove that they are correct using an SMT
1299          // solver.
1300          if (!ICI.isSigned() || (!AndCst->isNegative() && !RHS->isNegative()))
1301            CanFold = true;
1302        } else if (ShiftOpcode == Instruction::LShr) {
1303          // For a logical right shift, we can fold if the comparison is not
1304          // signed. We can also fold a signed comparison if the shifted mask
1305          // value and the shifted comparison value are not negative.
1306          // These constraints may not be obvious, but we can prove that they
1307          // are correct using an SMT solver.
1308          if (!ICI.isSigned())
1309            CanFold = true;
1310          else {
1311            ConstantInt *ShiftedAndCst =
1312              cast<ConstantInt>(ConstantExpr::getShl(AndCst, ShAmt));
1313            ConstantInt *ShiftedRHSCst =
1314              cast<ConstantInt>(ConstantExpr::getShl(RHS, ShAmt));
1315
1316            if (!ShiftedAndCst->isNegative() && !ShiftedRHSCst->isNegative())
1317              CanFold = true;
1318          }
1319        }
1320
1321        if (CanFold) {
1322          Constant *NewCst;
1323          if (ShiftOpcode == Instruction::Shl)
1324            NewCst = ConstantExpr::getLShr(RHS, ShAmt);
1325          else
1326            NewCst = ConstantExpr::getShl(RHS, ShAmt);
1327
1328          // Check to see if we are shifting out any of the bits being
1329          // compared.
1330          if (ConstantExpr::get(ShiftOpcode, NewCst, ShAmt) != RHS) {
1331            // If we shifted bits out, the fold is not going to work out.
1332            // As a special case, check to see if this means that the
1333            // result is always true or false now.
1334            if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1335              return ReplaceInstUsesWith(ICI, Builder->getFalse());
1336            if (ICI.getPredicate() == ICmpInst::ICMP_NE)
1337              return ReplaceInstUsesWith(ICI, Builder->getTrue());
1338          } else {
1339            ICI.setOperand(1, NewCst);
1340            Constant *NewAndCst;
1341            if (ShiftOpcode == Instruction::Shl)
1342              NewAndCst = ConstantExpr::getLShr(AndCst, ShAmt);
1343            else
1344              NewAndCst = ConstantExpr::getShl(AndCst, ShAmt);
1345            LHSI->setOperand(1, NewAndCst);
1346            LHSI->setOperand(0, Shift->getOperand(0));
1347            Worklist.Add(Shift); // Shift is dead.
1348            return &ICI;
1349          }
1350        }
1351      }
1352
1353      // Turn ((X >> Y) & C) == 0  into  (X & (C << Y)) == 0.  The later is
1354      // preferable because it allows the C<<Y expression to be hoisted out
1355      // of a loop if Y is invariant and X is not.
1356      if (Shift && Shift->hasOneUse() && RHSV == 0 &&
1357          ICI.isEquality() && !Shift->isArithmeticShift() &&
1358          !isa<Constant>(Shift->getOperand(0))) {
1359        // Compute C << Y.
1360        Value *NS;
1361        if (Shift->getOpcode() == Instruction::LShr) {
1362          NS = Builder->CreateShl(AndCst, Shift->getOperand(1));
1363        } else {
1364          // Insert a logical shift.
1365          NS = Builder->CreateLShr(AndCst, Shift->getOperand(1));
1366        }
1367
1368        // Compute X & (C << Y).
1369        Value *NewAnd =
1370          Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
1371
1372        ICI.setOperand(0, NewAnd);
1373        return &ICI;
1374      }
1375
1376      // (icmp pred (and (or (lshr X, Y), X), 1), 0) -->
1377      //    (icmp pred (and X, (or (shl 1, Y), 1), 0))
1378      //
1379      // iff pred isn't signed
1380      {
1381        Value *X, *Y, *LShr;
1382        if (!ICI.isSigned() && RHSV == 0) {
1383          if (match(LHSI->getOperand(1), m_One())) {
1384            Constant *One = cast<Constant>(LHSI->getOperand(1));
1385            Value *Or = LHSI->getOperand(0);
1386            if (match(Or, m_Or(m_Value(LShr), m_Value(X))) &&
1387                match(LShr, m_LShr(m_Specific(X), m_Value(Y)))) {
1388              unsigned UsesRemoved = 0;
1389              if (LHSI->hasOneUse())
1390                ++UsesRemoved;
1391              if (Or->hasOneUse())
1392                ++UsesRemoved;
1393              if (LShr->hasOneUse())
1394                ++UsesRemoved;
1395              Value *NewOr = nullptr;
1396              // Compute X & ((1 << Y) | 1)
1397              if (auto *C = dyn_cast<Constant>(Y)) {
1398                if (UsesRemoved >= 1)
1399                  NewOr =
1400                      ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1401              } else {
1402                if (UsesRemoved >= 3)
1403                  NewOr = Builder->CreateOr(Builder->CreateShl(One, Y,
1404                                                               LShr->getName(),
1405                                                               /*HasNUW=*/true),
1406                                            One, Or->getName());
1407              }
1408              if (NewOr) {
1409                Value *NewAnd = Builder->CreateAnd(X, NewOr, LHSI->getName());
1410                ICI.setOperand(0, NewAnd);
1411                return &ICI;
1412              }
1413            }
1414          }
1415        }
1416      }
1417
1418      // Replace ((X & AndCst) > RHSV) with ((X & AndCst) != 0), if any
1419      // bit set in (X & AndCst) will produce a result greater than RHSV.
1420      if (ICI.getPredicate() == ICmpInst::ICMP_UGT) {
1421        unsigned NTZ = AndCst->getValue().countTrailingZeros();
1422        if ((NTZ < AndCst->getBitWidth()) &&
1423            APInt::getOneBitSet(AndCst->getBitWidth(), NTZ).ugt(RHSV))
1424          return new ICmpInst(ICmpInst::ICMP_NE, LHSI,
1425                              Constant::getNullValue(RHS->getType()));
1426      }
1427    }
1428
1429    // Try to optimize things like "A[i]&42 == 0" to index computations.
1430    if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
1431      if (GetElementPtrInst *GEP =
1432          dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1433        if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1434          if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1435              !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
1436            ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
1437            if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
1438              return Res;
1439          }
1440    }
1441
1442    // X & -C == -C -> X >  u ~C
1443    // X & -C != -C -> X <= u ~C
1444    //   iff C is a power of 2
1445    if (ICI.isEquality() && RHS == LHSI->getOperand(1) && (-RHSV).isPowerOf2())
1446      return new ICmpInst(
1447          ICI.getPredicate() == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_UGT
1448                                                  : ICmpInst::ICMP_ULE,
1449          LHSI->getOperand(0), SubOne(RHS));
1450    break;
1451
1452  case Instruction::Or: {
1453    if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
1454      break;
1455    Value *P, *Q;
1456    if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1457      // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1458      // -> and (icmp eq P, null), (icmp eq Q, null).
1459      Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
1460                                        Constant::getNullValue(P->getType()));
1461      Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
1462                                        Constant::getNullValue(Q->getType()));
1463      Instruction *Op;
1464      if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1465        Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
1466      else
1467        Op = BinaryOperator::CreateOr(ICIP, ICIQ);
1468      return Op;
1469    }
1470    break;
1471  }
1472
1473  case Instruction::Mul: {       // (icmp pred (mul X, Val), CI)
1474    ConstantInt *Val = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1475    if (!Val) break;
1476
1477    // If this is a signed comparison to 0 and the mul is sign preserving,
1478    // use the mul LHS operand instead.
1479    ICmpInst::Predicate pred = ICI.getPredicate();
1480    if (isSignTest(pred, RHS) && !Val->isZero() &&
1481        cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
1482      return new ICmpInst(Val->isNegative() ?
1483                          ICmpInst::getSwappedPredicate(pred) : pred,
1484                          LHSI->getOperand(0),
1485                          Constant::getNullValue(RHS->getType()));
1486
1487    break;
1488  }
1489
1490  case Instruction::Shl: {       // (icmp pred (shl X, ShAmt), CI)
1491    uint32_t TypeBits = RHSV.getBitWidth();
1492    ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1493    if (!ShAmt) {
1494      Value *X;
1495      // (1 << X) pred P2 -> X pred Log2(P2)
1496      if (match(LHSI, m_Shl(m_One(), m_Value(X)))) {
1497        bool RHSVIsPowerOf2 = RHSV.isPowerOf2();
1498        ICmpInst::Predicate Pred = ICI.getPredicate();
1499        if (ICI.isUnsigned()) {
1500          if (!RHSVIsPowerOf2) {
1501            // (1 << X) <  30 -> X <= 4
1502            // (1 << X) <= 30 -> X <= 4
1503            // (1 << X) >= 30 -> X >  4
1504            // (1 << X) >  30 -> X >  4
1505            if (Pred == ICmpInst::ICMP_ULT)
1506              Pred = ICmpInst::ICMP_ULE;
1507            else if (Pred == ICmpInst::ICMP_UGE)
1508              Pred = ICmpInst::ICMP_UGT;
1509          }
1510          unsigned RHSLog2 = RHSV.logBase2();
1511
1512          // (1 << X) >= 2147483648 -> X >= 31 -> X == 31
1513          // (1 << X) <  2147483648 -> X <  31 -> X != 31
1514          if (RHSLog2 == TypeBits-1) {
1515            if (Pred == ICmpInst::ICMP_UGE)
1516              Pred = ICmpInst::ICMP_EQ;
1517            else if (Pred == ICmpInst::ICMP_ULT)
1518              Pred = ICmpInst::ICMP_NE;
1519          }
1520
1521          return new ICmpInst(Pred, X,
1522                              ConstantInt::get(RHS->getType(), RHSLog2));
1523        } else if (ICI.isSigned()) {
1524          if (RHSV.isAllOnesValue()) {
1525            // (1 << X) <= -1 -> X == 31
1526            if (Pred == ICmpInst::ICMP_SLE)
1527              return new ICmpInst(ICmpInst::ICMP_EQ, X,
1528                                  ConstantInt::get(RHS->getType(), TypeBits-1));
1529
1530            // (1 << X) >  -1 -> X != 31
1531            if (Pred == ICmpInst::ICMP_SGT)
1532              return new ICmpInst(ICmpInst::ICMP_NE, X,
1533                                  ConstantInt::get(RHS->getType(), TypeBits-1));
1534          } else if (!RHSV) {
1535            // (1 << X) <  0 -> X == 31
1536            // (1 << X) <= 0 -> X == 31
1537            if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1538              return new ICmpInst(ICmpInst::ICMP_EQ, X,
1539                                  ConstantInt::get(RHS->getType(), TypeBits-1));
1540
1541            // (1 << X) >= 0 -> X != 31
1542            // (1 << X) >  0 -> X != 31
1543            if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
1544              return new ICmpInst(ICmpInst::ICMP_NE, X,
1545                                  ConstantInt::get(RHS->getType(), TypeBits-1));
1546          }
1547        } else if (ICI.isEquality()) {
1548          if (RHSVIsPowerOf2)
1549            return new ICmpInst(
1550                Pred, X, ConstantInt::get(RHS->getType(), RHSV.logBase2()));
1551        }
1552      }
1553      break;
1554    }
1555
1556    // Check that the shift amount is in range.  If not, don't perform
1557    // undefined shifts.  When the shift is visited it will be
1558    // simplified.
1559    if (ShAmt->uge(TypeBits))
1560      break;
1561
1562    if (ICI.isEquality()) {
1563      // If we are comparing against bits always shifted out, the
1564      // comparison cannot succeed.
1565      Constant *Comp =
1566        ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
1567                                                                 ShAmt);
1568      if (Comp != RHS) {// Comparing against a bit that we know is zero.
1569        bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1570        Constant *Cst = Builder->getInt1(IsICMP_NE);
1571        return ReplaceInstUsesWith(ICI, Cst);
1572      }
1573
1574      // If the shift is NUW, then it is just shifting out zeros, no need for an
1575      // AND.
1576      if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
1577        return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1578                            ConstantExpr::getLShr(RHS, ShAmt));
1579
1580      // If the shift is NSW and we compare to 0, then it is just shifting out
1581      // sign bits, no need for an AND either.
1582      if (cast<BinaryOperator>(LHSI)->hasNoSignedWrap() && RHSV == 0)
1583        return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1584                            ConstantExpr::getLShr(RHS, ShAmt));
1585
1586      if (LHSI->hasOneUse()) {
1587        // Otherwise strength reduce the shift into an and.
1588        uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
1589        Constant *Mask = Builder->getInt(APInt::getLowBitsSet(TypeBits,
1590                                                          TypeBits - ShAmtVal));
1591
1592        Value *And =
1593          Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
1594        return new ICmpInst(ICI.getPredicate(), And,
1595                            ConstantExpr::getLShr(RHS, ShAmt));
1596      }
1597    }
1598
1599    // If this is a signed comparison to 0 and the shift is sign preserving,
1600    // use the shift LHS operand instead.
1601    ICmpInst::Predicate pred = ICI.getPredicate();
1602    if (isSignTest(pred, RHS) &&
1603        cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
1604      return new ICmpInst(pred,
1605                          LHSI->getOperand(0),
1606                          Constant::getNullValue(RHS->getType()));
1607
1608    // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
1609    bool TrueIfSigned = false;
1610    if (LHSI->hasOneUse() &&
1611        isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
1612      // (X << 31) <s 0  --> (X&1) != 0
1613      Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(),
1614                                        APInt::getOneBitSet(TypeBits,
1615                                            TypeBits-ShAmt->getZExtValue()-1));
1616      Value *And =
1617        Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
1618      return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
1619                          And, Constant::getNullValue(And->getType()));
1620    }
1621
1622    // Transform (icmp pred iM (shl iM %v, N), CI)
1623    // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (CI>>N))
1624    // Transform the shl to a trunc if (trunc (CI>>N)) has no loss and M-N.
1625    // This enables to get rid of the shift in favor of a trunc which can be
1626    // free on the target. It has the additional benefit of comparing to a
1627    // smaller constant, which will be target friendly.
1628    unsigned Amt = ShAmt->getLimitedValue(TypeBits-1);
1629    if (LHSI->hasOneUse() &&
1630        Amt != 0 && RHSV.countTrailingZeros() >= Amt) {
1631      Type *NTy = IntegerType::get(ICI.getContext(), TypeBits - Amt);
1632      Constant *NCI = ConstantExpr::getTrunc(
1633                        ConstantExpr::getAShr(RHS,
1634                          ConstantInt::get(RHS->getType(), Amt)),
1635                        NTy);
1636      return new ICmpInst(ICI.getPredicate(),
1637                          Builder->CreateTrunc(LHSI->getOperand(0), NTy),
1638                          NCI);
1639    }
1640
1641    break;
1642  }
1643
1644  case Instruction::LShr:         // (icmp pred (shr X, ShAmt), CI)
1645  case Instruction::AShr: {
1646    // Handle equality comparisons of shift-by-constant.
1647    BinaryOperator *BO = cast<BinaryOperator>(LHSI);
1648    if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1649      if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt))
1650        return Res;
1651    }
1652
1653    // Handle exact shr's.
1654    if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) {
1655      if (RHSV.isMinValue())
1656        return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS);
1657    }
1658    break;
1659  }
1660
1661  case Instruction::SDiv:
1662  case Instruction::UDiv:
1663    // Fold: icmp pred ([us]div X, C1), C2 -> range test
1664    // Fold this div into the comparison, producing a range check.
1665    // Determine, based on the divide type, what the range is being
1666    // checked.  If there is an overflow on the low or high side, remember
1667    // it, otherwise compute the range [low, hi) bounding the new value.
1668    // See: InsertRangeTest above for the kinds of replacements possible.
1669    if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
1670      if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
1671                                          DivRHS))
1672        return R;
1673    break;
1674
1675  case Instruction::Sub: {
1676    ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(0));
1677    if (!LHSC) break;
1678    const APInt &LHSV = LHSC->getValue();
1679
1680    // C1-X <u C2 -> (X|(C2-1)) == C1
1681    //   iff C1 & (C2-1) == C2-1
1682    //       C2 is a power of 2
1683    if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
1684        RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == (RHSV - 1))
1685      return new ICmpInst(ICmpInst::ICMP_EQ,
1686                          Builder->CreateOr(LHSI->getOperand(1), RHSV - 1),
1687                          LHSC);
1688
1689    // C1-X >u C2 -> (X|C2) != C1
1690    //   iff C1 & C2 == C2
1691    //       C2+1 is a power of 2
1692    if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
1693        (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == RHSV)
1694      return new ICmpInst(ICmpInst::ICMP_NE,
1695                          Builder->CreateOr(LHSI->getOperand(1), RHSV), LHSC);
1696    break;
1697  }
1698
1699  case Instruction::Add:
1700    // Fold: icmp pred (add X, C1), C2
1701    if (!ICI.isEquality()) {
1702      ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1703      if (!LHSC) break;
1704      const APInt &LHSV = LHSC->getValue();
1705
1706      ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
1707                            .subtract(LHSV);
1708
1709      if (ICI.isSigned()) {
1710        if (CR.getLower().isSignBit()) {
1711          return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
1712                              Builder->getInt(CR.getUpper()));
1713        } else if (CR.getUpper().isSignBit()) {
1714          return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
1715                              Builder->getInt(CR.getLower()));
1716        }
1717      } else {
1718        if (CR.getLower().isMinValue()) {
1719          return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
1720                              Builder->getInt(CR.getUpper()));
1721        } else if (CR.getUpper().isMinValue()) {
1722          return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
1723                              Builder->getInt(CR.getLower()));
1724        }
1725      }
1726
1727      // X-C1 <u C2 -> (X & -C2) == C1
1728      //   iff C1 & (C2-1) == 0
1729      //       C2 is a power of 2
1730      if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
1731          RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == 0)
1732        return new ICmpInst(ICmpInst::ICMP_EQ,
1733                            Builder->CreateAnd(LHSI->getOperand(0), -RHSV),
1734                            ConstantExpr::getNeg(LHSC));
1735
1736      // X-C1 >u C2 -> (X & ~C2) != C1
1737      //   iff C1 & C2 == 0
1738      //       C2+1 is a power of 2
1739      if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
1740          (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == 0)
1741        return new ICmpInst(ICmpInst::ICMP_NE,
1742                            Builder->CreateAnd(LHSI->getOperand(0), ~RHSV),
1743                            ConstantExpr::getNeg(LHSC));
1744    }
1745    break;
1746  }
1747
1748  // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
1749  if (ICI.isEquality()) {
1750    bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1751
1752    // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
1753    // the second operand is a constant, simplify a bit.
1754    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
1755      switch (BO->getOpcode()) {
1756      case Instruction::SRem:
1757        // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
1758        if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
1759          const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
1760          if (V.sgt(1) && V.isPowerOf2()) {
1761            Value *NewRem =
1762              Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
1763                                  BO->getName());
1764            return new ICmpInst(ICI.getPredicate(), NewRem,
1765                                Constant::getNullValue(BO->getType()));
1766          }
1767        }
1768        break;
1769      case Instruction::Add:
1770        // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
1771        if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1772          if (BO->hasOneUse())
1773            return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1774                                ConstantExpr::getSub(RHS, BOp1C));
1775        } else if (RHSV == 0) {
1776          // Replace ((add A, B) != 0) with (A != -B) if A or B is
1777          // efficiently invertible, or if the add has just this one use.
1778          Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
1779
1780          if (Value *NegVal = dyn_castNegVal(BOp1))
1781            return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
1782          if (Value *NegVal = dyn_castNegVal(BOp0))
1783            return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
1784          if (BO->hasOneUse()) {
1785            Value *Neg = Builder->CreateNeg(BOp1);
1786            Neg->takeName(BO);
1787            return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
1788          }
1789        }
1790        break;
1791      case Instruction::Xor:
1792        // For the xor case, we can xor two constants together, eliminating
1793        // the explicit xor.
1794        if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
1795          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1796                              ConstantExpr::getXor(RHS, BOC));
1797        } else if (RHSV == 0) {
1798          // Replace ((xor A, B) != 0) with (A != B)
1799          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1800                              BO->getOperand(1));
1801        }
1802        break;
1803      case Instruction::Sub:
1804        // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
1805        if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) {
1806          if (BO->hasOneUse())
1807            return new ICmpInst(ICI.getPredicate(), BO->getOperand(1),
1808                                ConstantExpr::getSub(BOp0C, RHS));
1809        } else if (RHSV == 0) {
1810          // Replace ((sub A, B) != 0) with (A != B)
1811          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1812                              BO->getOperand(1));
1813        }
1814        break;
1815      case Instruction::Or:
1816        // If bits are being or'd in that are not present in the constant we
1817        // are comparing against, then the comparison could never succeed!
1818        if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1819          Constant *NotCI = ConstantExpr::getNot(RHS);
1820          if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
1821            return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
1822        }
1823        break;
1824
1825      case Instruction::And:
1826        if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1827          // If bits are being compared against that are and'd out, then the
1828          // comparison can never succeed!
1829          if ((RHSV & ~BOC->getValue()) != 0)
1830            return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
1831
1832          // If we have ((X & C) == C), turn it into ((X & C) != 0).
1833          if (RHS == BOC && RHSV.isPowerOf2())
1834            return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
1835                                ICmpInst::ICMP_NE, LHSI,
1836                                Constant::getNullValue(RHS->getType()));
1837
1838          // Don't perform the following transforms if the AND has multiple uses
1839          if (!BO->hasOneUse())
1840            break;
1841
1842          // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
1843          if (BOC->getValue().isSignBit()) {
1844            Value *X = BO->getOperand(0);
1845            Constant *Zero = Constant::getNullValue(X->getType());
1846            ICmpInst::Predicate pred = isICMP_NE ?
1847              ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1848            return new ICmpInst(pred, X, Zero);
1849          }
1850
1851          // ((X & ~7) == 0) --> X < 8
1852          if (RHSV == 0 && isHighOnes(BOC)) {
1853            Value *X = BO->getOperand(0);
1854            Constant *NegX = ConstantExpr::getNeg(BOC);
1855            ICmpInst::Predicate pred = isICMP_NE ?
1856              ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1857            return new ICmpInst(pred, X, NegX);
1858          }
1859        }
1860        break;
1861      case Instruction::Mul:
1862        if (RHSV == 0 && BO->hasNoSignedWrap()) {
1863          if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1864            // The trivial case (mul X, 0) is handled by InstSimplify
1865            // General case : (mul X, C) != 0 iff X != 0
1866            //                (mul X, C) == 0 iff X == 0
1867            if (!BOC->isZero())
1868              return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1869                                  Constant::getNullValue(RHS->getType()));
1870          }
1871        }
1872        break;
1873      default: break;
1874      }
1875    } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
1876      // Handle icmp {eq|ne} <intrinsic>, intcst.
1877      switch (II->getIntrinsicID()) {
1878      case Intrinsic::bswap:
1879        Worklist.Add(II);
1880        ICI.setOperand(0, II->getArgOperand(0));
1881        ICI.setOperand(1, Builder->getInt(RHSV.byteSwap()));
1882        return &ICI;
1883      case Intrinsic::ctlz:
1884      case Intrinsic::cttz:
1885        // ctz(A) == bitwidth(a)  ->  A == 0 and likewise for !=
1886        if (RHSV == RHS->getType()->getBitWidth()) {
1887          Worklist.Add(II);
1888          ICI.setOperand(0, II->getArgOperand(0));
1889          ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
1890          return &ICI;
1891        }
1892        break;
1893      case Intrinsic::ctpop:
1894        // popcount(A) == 0  ->  A == 0 and likewise for !=
1895        if (RHS->isZero()) {
1896          Worklist.Add(II);
1897          ICI.setOperand(0, II->getArgOperand(0));
1898          ICI.setOperand(1, RHS);
1899          return &ICI;
1900        }
1901        break;
1902      default:
1903        break;
1904      }
1905    }
1906  }
1907  return nullptr;
1908}
1909
1910/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
1911/// We only handle extending casts so far.
1912///
1913Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
1914  const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
1915  Value *LHSCIOp        = LHSCI->getOperand(0);
1916  Type *SrcTy     = LHSCIOp->getType();
1917  Type *DestTy    = LHSCI->getType();
1918  Value *RHSCIOp;
1919
1920  // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
1921  // integer type is the same size as the pointer type.
1922  if (LHSCI->getOpcode() == Instruction::PtrToInt &&
1923      DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) {
1924    Value *RHSOp = nullptr;
1925    if (PtrToIntOperator *RHSC = dyn_cast<PtrToIntOperator>(ICI.getOperand(1))) {
1926      Value *RHSCIOp = RHSC->getOperand(0);
1927      if (RHSCIOp->getType()->getPointerAddressSpace() ==
1928          LHSCIOp->getType()->getPointerAddressSpace()) {
1929        RHSOp = RHSC->getOperand(0);
1930        // If the pointer types don't match, insert a bitcast.
1931        if (LHSCIOp->getType() != RHSOp->getType())
1932          RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
1933      }
1934    } else if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1)))
1935      RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
1936
1937    if (RHSOp)
1938      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
1939  }
1940
1941  // The code below only handles extension cast instructions, so far.
1942  // Enforce this.
1943  if (LHSCI->getOpcode() != Instruction::ZExt &&
1944      LHSCI->getOpcode() != Instruction::SExt)
1945    return nullptr;
1946
1947  bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
1948  bool isSignedCmp = ICI.isSigned();
1949
1950  if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
1951    // Not an extension from the same type?
1952    RHSCIOp = CI->getOperand(0);
1953    if (RHSCIOp->getType() != LHSCIOp->getType())
1954      return nullptr;
1955
1956    // If the signedness of the two casts doesn't agree (i.e. one is a sext
1957    // and the other is a zext), then we can't handle this.
1958    if (CI->getOpcode() != LHSCI->getOpcode())
1959      return nullptr;
1960
1961    // Deal with equality cases early.
1962    if (ICI.isEquality())
1963      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1964
1965    // A signed comparison of sign extended values simplifies into a
1966    // signed comparison.
1967    if (isSignedCmp && isSignedExt)
1968      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1969
1970    // The other three cases all fold into an unsigned comparison.
1971    return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
1972  }
1973
1974  // If we aren't dealing with a constant on the RHS, exit early
1975  ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
1976  if (!CI)
1977    return nullptr;
1978
1979  // Compute the constant that would happen if we truncated to SrcTy then
1980  // reextended to DestTy.
1981  Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
1982  Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
1983                                                Res1, DestTy);
1984
1985  // If the re-extended constant didn't change...
1986  if (Res2 == CI) {
1987    // Deal with equality cases early.
1988    if (ICI.isEquality())
1989      return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1990
1991    // A signed comparison of sign extended values simplifies into a
1992    // signed comparison.
1993    if (isSignedExt && isSignedCmp)
1994      return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1995
1996    // The other three cases all fold into an unsigned comparison.
1997    return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
1998  }
1999
2000  // The re-extended constant changed so the constant cannot be represented
2001  // in the shorter type. Consequently, we cannot emit a simple comparison.
2002  // All the cases that fold to true or false will have already been handled
2003  // by SimplifyICmpInst, so only deal with the tricky case.
2004
2005  if (isSignedCmp || !isSignedExt)
2006    return nullptr;
2007
2008  // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
2009  // should have been folded away previously and not enter in here.
2010
2011  // We're performing an unsigned comp with a sign extended value.
2012  // This is true if the input is >= 0. [aka >s -1]
2013  Constant *NegOne = Constant::getAllOnesValue(SrcTy);
2014  Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
2015
2016  // Finally, return the value computed.
2017  if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
2018    return ReplaceInstUsesWith(ICI, Result);
2019
2020  assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
2021  return BinaryOperator::CreateNot(Result);
2022}
2023
2024/// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
2025///   I = icmp ugt (add (add A, B), CI2), CI1
2026/// If this is of the form:
2027///   sum = a + b
2028///   if (sum+128 >u 255)
2029/// Then replace it with llvm.sadd.with.overflow.i8.
2030///
2031static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
2032                                          ConstantInt *CI2, ConstantInt *CI1,
2033                                          InstCombiner &IC) {
2034  // The transformation we're trying to do here is to transform this into an
2035  // llvm.sadd.with.overflow.  To do this, we have to replace the original add
2036  // with a narrower add, and discard the add-with-constant that is part of the
2037  // range check (if we can't eliminate it, this isn't profitable).
2038
2039  // In order to eliminate the add-with-constant, the compare can be its only
2040  // use.
2041  Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
2042  if (!AddWithCst->hasOneUse()) return nullptr;
2043
2044  // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
2045  if (!CI2->getValue().isPowerOf2()) return nullptr;
2046  unsigned NewWidth = CI2->getValue().countTrailingZeros();
2047  if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return nullptr;
2048
2049  // The width of the new add formed is 1 more than the bias.
2050  ++NewWidth;
2051
2052  // Check to see that CI1 is an all-ones value with NewWidth bits.
2053  if (CI1->getBitWidth() == NewWidth ||
2054      CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
2055    return nullptr;
2056
2057  // This is only really a signed overflow check if the inputs have been
2058  // sign-extended; check for that condition. For example, if CI2 is 2^31 and
2059  // the operands of the add are 64 bits wide, we need at least 33 sign bits.
2060  unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
2061  if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
2062      IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
2063    return nullptr;
2064
2065  // In order to replace the original add with a narrower
2066  // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
2067  // and truncates that discard the high bits of the add.  Verify that this is
2068  // the case.
2069  Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
2070  for (User *U : OrigAdd->users()) {
2071    if (U == AddWithCst) continue;
2072
2073    // Only accept truncates for now.  We would really like a nice recursive
2074    // predicate like SimplifyDemandedBits, but which goes downwards the use-def
2075    // chain to see which bits of a value are actually demanded.  If the
2076    // original add had another add which was then immediately truncated, we
2077    // could still do the transformation.
2078    TruncInst *TI = dyn_cast<TruncInst>(U);
2079    if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
2080      return nullptr;
2081  }
2082
2083  // If the pattern matches, truncate the inputs to the narrower type and
2084  // use the sadd_with_overflow intrinsic to efficiently compute both the
2085  // result and the overflow bit.
2086  Module *M = I.getParent()->getParent()->getParent();
2087
2088  Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
2089  Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
2090                                       NewType);
2091
2092  InstCombiner::BuilderTy *Builder = IC.Builder;
2093
2094  // Put the new code above the original add, in case there are any uses of the
2095  // add between the add and the compare.
2096  Builder->SetInsertPoint(OrigAdd);
2097
2098  Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
2099  Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
2100  CallInst *Call = Builder->CreateCall2(F, TruncA, TruncB, "sadd");
2101  Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
2102  Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
2103
2104  // The inner add was the result of the narrow add, zero extended to the
2105  // wider type.  Replace it with the result computed by the intrinsic.
2106  IC.ReplaceInstUsesWith(*OrigAdd, ZExt);
2107
2108  // The original icmp gets replaced with the overflow value.
2109  return ExtractValueInst::Create(Call, 1, "sadd.overflow");
2110}
2111
2112bool InstCombiner::OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS,
2113                                         Value *RHS, Instruction &OrigI,
2114                                         Value *&Result, Constant *&Overflow) {
2115  assert((!OrigI.isCommutative() ||
2116          !(isa<Constant>(LHS) && !isa<Constant>(RHS))) &&
2117         "call with a constant RHS if possible!");
2118
2119  auto SetResult = [&](Value *OpResult, Constant *OverflowVal, bool ReuseName) {
2120    Result = OpResult;
2121    Overflow = OverflowVal;
2122    if (ReuseName)
2123      Result->takeName(&OrigI);
2124    return true;
2125  };
2126
2127  switch (OCF) {
2128  case OCF_INVALID:
2129    llvm_unreachable("bad overflow check kind!");
2130
2131  case OCF_UNSIGNED_ADD: {
2132    OverflowResult OR = computeOverflowForUnsignedAdd(LHS, RHS, &OrigI);
2133    if (OR == OverflowResult::NeverOverflows)
2134      return SetResult(Builder->CreateNUWAdd(LHS, RHS), Builder->getFalse(),
2135                       true);
2136
2137    if (OR == OverflowResult::AlwaysOverflows)
2138      return SetResult(Builder->CreateAdd(LHS, RHS), Builder->getTrue(), true);
2139  }
2140  // FALL THROUGH uadd into sadd
2141  case OCF_SIGNED_ADD: {
2142    // X + undef -> undef
2143    if (isa<UndefValue>(RHS))
2144      return SetResult(UndefValue::get(RHS->getType()),
2145                       UndefValue::get(Builder->getInt1Ty()), false);
2146
2147    if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(RHS))
2148      // X + 0 -> {X, false}
2149      if (ConstRHS->isZero())
2150        return SetResult(LHS, Builder->getFalse(), false);
2151
2152    // We can strength reduce this signed add into a regular add if we can prove
2153    // that it will never overflow.
2154    if (OCF == OCF_SIGNED_ADD)
2155      if (WillNotOverflowSignedAdd(LHS, RHS, OrigI))
2156        return SetResult(Builder->CreateNSWAdd(LHS, RHS), Builder->getFalse(),
2157                         true);
2158  }
2159
2160  case OCF_UNSIGNED_SUB:
2161  case OCF_SIGNED_SUB: {
2162    // undef - X -> undef
2163    // X - undef -> undef
2164    if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
2165      return SetResult(UndefValue::get(LHS->getType()),
2166                       UndefValue::get(Builder->getInt1Ty()), false);
2167
2168    if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(RHS))
2169      // X - 0 -> {X, false}
2170      if (ConstRHS->isZero())
2171        return SetResult(UndefValue::get(LHS->getType()), Builder->getFalse(),
2172                         false);
2173
2174    if (OCF == OCF_SIGNED_SUB) {
2175      if (WillNotOverflowSignedSub(LHS, RHS, OrigI))
2176        return SetResult(Builder->CreateNSWSub(LHS, RHS), Builder->getFalse(),
2177                         true);
2178    } else {
2179      if (WillNotOverflowUnsignedSub(LHS, RHS, OrigI))
2180        return SetResult(Builder->CreateNUWSub(LHS, RHS), Builder->getFalse(),
2181                         true);
2182    }
2183    break;
2184  }
2185
2186  case OCF_UNSIGNED_MUL: {
2187    OverflowResult OR = computeOverflowForUnsignedMul(LHS, RHS, &OrigI);
2188    if (OR == OverflowResult::NeverOverflows)
2189      return SetResult(Builder->CreateNUWMul(LHS, RHS), Builder->getFalse(),
2190                       true);
2191    if (OR == OverflowResult::AlwaysOverflows)
2192      return SetResult(Builder->CreateMul(LHS, RHS), Builder->getTrue(), true);
2193  } // FALL THROUGH
2194  case OCF_SIGNED_MUL:
2195    // X * undef -> undef
2196    if (isa<UndefValue>(RHS))
2197      return SetResult(UndefValue::get(LHS->getType()),
2198                       UndefValue::get(Builder->getInt1Ty()), false);
2199
2200    if (ConstantInt *RHSI = dyn_cast<ConstantInt>(RHS)) {
2201      // X * 0 -> {0, false}
2202      if (RHSI->isZero())
2203        return SetResult(Constant::getNullValue(RHS->getType()),
2204                         Builder->getFalse(), false);
2205
2206      // X * 1 -> {X, false}
2207      if (RHSI->equalsInt(1))
2208        return SetResult(LHS, Builder->getFalse(), false);
2209    }
2210
2211    if (OCF == OCF_SIGNED_MUL)
2212      if (WillNotOverflowSignedMul(LHS, RHS, OrigI))
2213        return SetResult(Builder->CreateNSWMul(LHS, RHS), Builder->getFalse(),
2214                         true);
2215  }
2216
2217  return false;
2218}
2219
2220/// \brief Recognize and process idiom involving test for multiplication
2221/// overflow.
2222///
2223/// The caller has matched a pattern of the form:
2224///   I = cmp u (mul(zext A, zext B), V
2225/// The function checks if this is a test for overflow and if so replaces
2226/// multiplication with call to 'mul.with.overflow' intrinsic.
2227///
2228/// \param I Compare instruction.
2229/// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
2230///               the compare instruction.  Must be of integer type.
2231/// \param OtherVal The other argument of compare instruction.
2232/// \returns Instruction which must replace the compare instruction, NULL if no
2233///          replacement required.
2234static Instruction *ProcessUMulZExtIdiom(ICmpInst &I, Value *MulVal,
2235                                         Value *OtherVal, InstCombiner &IC) {
2236  // Don't bother doing this transformation for pointers, don't do it for
2237  // vectors.
2238  if (!isa<IntegerType>(MulVal->getType()))
2239    return nullptr;
2240
2241  assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
2242  assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
2243  Instruction *MulInstr = cast<Instruction>(MulVal);
2244  assert(MulInstr->getOpcode() == Instruction::Mul);
2245
2246  auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
2247       *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
2248  assert(LHS->getOpcode() == Instruction::ZExt);
2249  assert(RHS->getOpcode() == Instruction::ZExt);
2250  Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
2251
2252  // Calculate type and width of the result produced by mul.with.overflow.
2253  Type *TyA = A->getType(), *TyB = B->getType();
2254  unsigned WidthA = TyA->getPrimitiveSizeInBits(),
2255           WidthB = TyB->getPrimitiveSizeInBits();
2256  unsigned MulWidth;
2257  Type *MulType;
2258  if (WidthB > WidthA) {
2259    MulWidth = WidthB;
2260    MulType = TyB;
2261  } else {
2262    MulWidth = WidthA;
2263    MulType = TyA;
2264  }
2265
2266  // In order to replace the original mul with a narrower mul.with.overflow,
2267  // all uses must ignore upper bits of the product.  The number of used low
2268  // bits must be not greater than the width of mul.with.overflow.
2269  if (MulVal->hasNUsesOrMore(2))
2270    for (User *U : MulVal->users()) {
2271      if (U == &I)
2272        continue;
2273      if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
2274        // Check if truncation ignores bits above MulWidth.
2275        unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
2276        if (TruncWidth > MulWidth)
2277          return nullptr;
2278      } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
2279        // Check if AND ignores bits above MulWidth.
2280        if (BO->getOpcode() != Instruction::And)
2281          return nullptr;
2282        if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
2283          const APInt &CVal = CI->getValue();
2284          if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
2285            return nullptr;
2286        }
2287      } else {
2288        // Other uses prohibit this transformation.
2289        return nullptr;
2290      }
2291    }
2292
2293  // Recognize patterns
2294  switch (I.getPredicate()) {
2295  case ICmpInst::ICMP_EQ:
2296  case ICmpInst::ICMP_NE:
2297    // Recognize pattern:
2298    //   mulval = mul(zext A, zext B)
2299    //   cmp eq/neq mulval, zext trunc mulval
2300    if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal))
2301      if (Zext->hasOneUse()) {
2302        Value *ZextArg = Zext->getOperand(0);
2303        if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg))
2304          if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth)
2305            break; //Recognized
2306      }
2307
2308    // Recognize pattern:
2309    //   mulval = mul(zext A, zext B)
2310    //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
2311    ConstantInt *CI;
2312    Value *ValToMask;
2313    if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
2314      if (ValToMask != MulVal)
2315        return nullptr;
2316      const APInt &CVal = CI->getValue() + 1;
2317      if (CVal.isPowerOf2()) {
2318        unsigned MaskWidth = CVal.logBase2();
2319        if (MaskWidth == MulWidth)
2320          break; // Recognized
2321      }
2322    }
2323    return nullptr;
2324
2325  case ICmpInst::ICMP_UGT:
2326    // Recognize pattern:
2327    //   mulval = mul(zext A, zext B)
2328    //   cmp ugt mulval, max
2329    if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
2330      APInt MaxVal = APInt::getMaxValue(MulWidth);
2331      MaxVal = MaxVal.zext(CI->getBitWidth());
2332      if (MaxVal.eq(CI->getValue()))
2333        break; // Recognized
2334    }
2335    return nullptr;
2336
2337  case ICmpInst::ICMP_UGE:
2338    // Recognize pattern:
2339    //   mulval = mul(zext A, zext B)
2340    //   cmp uge mulval, max+1
2341    if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
2342      APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
2343      if (MaxVal.eq(CI->getValue()))
2344        break; // Recognized
2345    }
2346    return nullptr;
2347
2348  case ICmpInst::ICMP_ULE:
2349    // Recognize pattern:
2350    //   mulval = mul(zext A, zext B)
2351    //   cmp ule mulval, max
2352    if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
2353      APInt MaxVal = APInt::getMaxValue(MulWidth);
2354      MaxVal = MaxVal.zext(CI->getBitWidth());
2355      if (MaxVal.eq(CI->getValue()))
2356        break; // Recognized
2357    }
2358    return nullptr;
2359
2360  case ICmpInst::ICMP_ULT:
2361    // Recognize pattern:
2362    //   mulval = mul(zext A, zext B)
2363    //   cmp ule mulval, max + 1
2364    if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
2365      APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
2366      if (MaxVal.eq(CI->getValue()))
2367        break; // Recognized
2368    }
2369    return nullptr;
2370
2371  default:
2372    return nullptr;
2373  }
2374
2375  InstCombiner::BuilderTy *Builder = IC.Builder;
2376  Builder->SetInsertPoint(MulInstr);
2377  Module *M = I.getParent()->getParent()->getParent();
2378
2379  // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
2380  Value *MulA = A, *MulB = B;
2381  if (WidthA < MulWidth)
2382    MulA = Builder->CreateZExt(A, MulType);
2383  if (WidthB < MulWidth)
2384    MulB = Builder->CreateZExt(B, MulType);
2385  Value *F =
2386      Intrinsic::getDeclaration(M, Intrinsic::umul_with_overflow, MulType);
2387  CallInst *Call = Builder->CreateCall2(F, MulA, MulB, "umul");
2388  IC.Worklist.Add(MulInstr);
2389
2390  // If there are uses of mul result other than the comparison, we know that
2391  // they are truncation or binary AND. Change them to use result of
2392  // mul.with.overflow and adjust properly mask/size.
2393  if (MulVal->hasNUsesOrMore(2)) {
2394    Value *Mul = Builder->CreateExtractValue(Call, 0, "umul.value");
2395    for (User *U : MulVal->users()) {
2396      if (U == &I || U == OtherVal)
2397        continue;
2398      if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
2399        if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
2400          IC.ReplaceInstUsesWith(*TI, Mul);
2401        else
2402          TI->setOperand(0, Mul);
2403      } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
2404        assert(BO->getOpcode() == Instruction::And);
2405        // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
2406        ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
2407        APInt ShortMask = CI->getValue().trunc(MulWidth);
2408        Value *ShortAnd = Builder->CreateAnd(Mul, ShortMask);
2409        Instruction *Zext =
2410            cast<Instruction>(Builder->CreateZExt(ShortAnd, BO->getType()));
2411        IC.Worklist.Add(Zext);
2412        IC.ReplaceInstUsesWith(*BO, Zext);
2413      } else {
2414        llvm_unreachable("Unexpected Binary operation");
2415      }
2416      IC.Worklist.Add(cast<Instruction>(U));
2417    }
2418  }
2419  if (isa<Instruction>(OtherVal))
2420    IC.Worklist.Add(cast<Instruction>(OtherVal));
2421
2422  // The original icmp gets replaced with the overflow value, maybe inverted
2423  // depending on predicate.
2424  bool Inverse = false;
2425  switch (I.getPredicate()) {
2426  case ICmpInst::ICMP_NE:
2427    break;
2428  case ICmpInst::ICMP_EQ:
2429    Inverse = true;
2430    break;
2431  case ICmpInst::ICMP_UGT:
2432  case ICmpInst::ICMP_UGE:
2433    if (I.getOperand(0) == MulVal)
2434      break;
2435    Inverse = true;
2436    break;
2437  case ICmpInst::ICMP_ULT:
2438  case ICmpInst::ICMP_ULE:
2439    if (I.getOperand(1) == MulVal)
2440      break;
2441    Inverse = true;
2442    break;
2443  default:
2444    llvm_unreachable("Unexpected predicate");
2445  }
2446  if (Inverse) {
2447    Value *Res = Builder->CreateExtractValue(Call, 1);
2448    return BinaryOperator::CreateNot(Res);
2449  }
2450
2451  return ExtractValueInst::Create(Call, 1);
2452}
2453
2454// DemandedBitsLHSMask - When performing a comparison against a constant,
2455// it is possible that not all the bits in the LHS are demanded.  This helper
2456// method computes the mask that IS demanded.
2457static APInt DemandedBitsLHSMask(ICmpInst &I,
2458                                 unsigned BitWidth, bool isSignCheck) {
2459  if (isSignCheck)
2460    return APInt::getSignBit(BitWidth);
2461
2462  ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
2463  if (!CI) return APInt::getAllOnesValue(BitWidth);
2464  const APInt &RHS = CI->getValue();
2465
2466  switch (I.getPredicate()) {
2467  // For a UGT comparison, we don't care about any bits that
2468  // correspond to the trailing ones of the comparand.  The value of these
2469  // bits doesn't impact the outcome of the comparison, because any value
2470  // greater than the RHS must differ in a bit higher than these due to carry.
2471  case ICmpInst::ICMP_UGT: {
2472    unsigned trailingOnes = RHS.countTrailingOnes();
2473    APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
2474    return ~lowBitsSet;
2475  }
2476
2477  // Similarly, for a ULT comparison, we don't care about the trailing zeros.
2478  // Any value less than the RHS must differ in a higher bit because of carries.
2479  case ICmpInst::ICMP_ULT: {
2480    unsigned trailingZeros = RHS.countTrailingZeros();
2481    APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
2482    return ~lowBitsSet;
2483  }
2484
2485  default:
2486    return APInt::getAllOnesValue(BitWidth);
2487  }
2488
2489}
2490
2491/// \brief Check if the order of \p Op0 and \p Op1 as operand in an ICmpInst
2492/// should be swapped.
2493/// The decision is based on how many times these two operands are reused
2494/// as subtract operands and their positions in those instructions.
2495/// The rational is that several architectures use the same instruction for
2496/// both subtract and cmp, thus it is better if the order of those operands
2497/// match.
2498/// \return true if Op0 and Op1 should be swapped.
2499static bool swapMayExposeCSEOpportunities(const Value * Op0,
2500                                          const Value * Op1) {
2501  // Filter out pointer value as those cannot appears directly in subtract.
2502  // FIXME: we may want to go through inttoptrs or bitcasts.
2503  if (Op0->getType()->isPointerTy())
2504    return false;
2505  // Count every uses of both Op0 and Op1 in a subtract.
2506  // Each time Op0 is the first operand, count -1: swapping is bad, the
2507  // subtract has already the same layout as the compare.
2508  // Each time Op0 is the second operand, count +1: swapping is good, the
2509  // subtract has a different layout as the compare.
2510  // At the end, if the benefit is greater than 0, Op0 should come second to
2511  // expose more CSE opportunities.
2512  int GlobalSwapBenefits = 0;
2513  for (const User *U : Op0->users()) {
2514    const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(U);
2515    if (!BinOp || BinOp->getOpcode() != Instruction::Sub)
2516      continue;
2517    // If Op0 is the first argument, this is not beneficial to swap the
2518    // arguments.
2519    int LocalSwapBenefits = -1;
2520    unsigned Op1Idx = 1;
2521    if (BinOp->getOperand(Op1Idx) == Op0) {
2522      Op1Idx = 0;
2523      LocalSwapBenefits = 1;
2524    }
2525    if (BinOp->getOperand(Op1Idx) != Op1)
2526      continue;
2527    GlobalSwapBenefits += LocalSwapBenefits;
2528  }
2529  return GlobalSwapBenefits > 0;
2530}
2531
2532/// \brief Check that one use is in the same block as the definition and all
2533/// other uses are in blocks dominated by a given block
2534///
2535/// \param DI Definition
2536/// \param UI Use
2537/// \param DB Block that must dominate all uses of \p DI outside
2538///           the parent block
2539/// \return true when \p UI is the only use of \p DI in the parent block
2540/// and all other uses of \p DI are in blocks dominated by \p DB.
2541///
2542bool InstCombiner::dominatesAllUses(const Instruction *DI,
2543                                    const Instruction *UI,
2544                                    const BasicBlock *DB) const {
2545  assert(DI && UI && "Instruction not defined\n");
2546  // ignore incomplete definitions
2547  if (!DI->getParent())
2548    return false;
2549  // DI and UI must be in the same block
2550  if (DI->getParent() != UI->getParent())
2551    return false;
2552  // Protect from self-referencing blocks
2553  if (DI->getParent() == DB)
2554    return false;
2555  // DominatorTree available?
2556  if (!DT)
2557    return false;
2558  for (const User *U : DI->users()) {
2559    auto *Usr = cast<Instruction>(U);
2560    if (Usr != UI && !DT->dominates(DB, Usr->getParent()))
2561      return false;
2562  }
2563  return true;
2564}
2565
2566///
2567/// true when the instruction sequence within a block is select-cmp-br.
2568///
2569static bool isChainSelectCmpBranch(const SelectInst *SI) {
2570  const BasicBlock *BB = SI->getParent();
2571  if (!BB)
2572    return false;
2573  auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
2574  if (!BI || BI->getNumSuccessors() != 2)
2575    return false;
2576  auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
2577  if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
2578    return false;
2579  return true;
2580}
2581
2582///
2583/// \brief True when a select result is replaced by one of its operands
2584/// in select-icmp sequence. This will eventually result in the elimination
2585/// of the select.
2586///
2587/// \param SI    Select instruction
2588/// \param Icmp  Compare instruction
2589/// \param SIOpd Operand that replaces the select
2590///
2591/// Notes:
2592/// - The replacement is global and requires dominator information
2593/// - The caller is responsible for the actual replacement
2594///
2595/// Example:
2596///
2597/// entry:
2598///  %4 = select i1 %3, %C* %0, %C* null
2599///  %5 = icmp eq %C* %4, null
2600///  br i1 %5, label %9, label %7
2601///  ...
2602///  ; <label>:7                                       ; preds = %entry
2603///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
2604///  ...
2605///
2606/// can be transformed to
2607///
2608///  %5 = icmp eq %C* %0, null
2609///  %6 = select i1 %3, i1 %5, i1 true
2610///  br i1 %6, label %9, label %7
2611///  ...
2612///  ; <label>:7                                       ; preds = %entry
2613///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
2614///
2615/// Similar when the first operand of the select is a constant or/and
2616/// the compare is for not equal rather than equal.
2617///
2618/// NOTE: The function is only called when the select and compare constants
2619/// are equal, the optimization can work only for EQ predicates. This is not a
2620/// major restriction since a NE compare should be 'normalized' to an equal
2621/// compare, which usually happens in the combiner and test case
2622/// select-cmp-br.ll
2623/// checks for it.
2624bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
2625                                             const ICmpInst *Icmp,
2626                                             const unsigned SIOpd) {
2627  assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
2628  if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
2629    BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
2630    // The check for the unique predecessor is not the best that can be
2631    // done. But it protects efficiently against cases like  when SI's
2632    // home block has two successors, Succ and Succ1, and Succ1 predecessor
2633    // of Succ. Then SI can't be replaced by SIOpd because the use that gets
2634    // replaced can be reached on either path. So the uniqueness check
2635    // guarantees that the path all uses of SI (outside SI's parent) are on
2636    // is disjoint from all other paths out of SI. But that information
2637    // is more expensive to compute, and the trade-off here is in favor
2638    // of compile-time.
2639    if (Succ->getUniquePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
2640      NumSel++;
2641      SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
2642      return true;
2643    }
2644  }
2645  return false;
2646}
2647
2648Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
2649  bool Changed = false;
2650  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2651  unsigned Op0Cplxity = getComplexity(Op0);
2652  unsigned Op1Cplxity = getComplexity(Op1);
2653
2654  /// Orders the operands of the compare so that they are listed from most
2655  /// complex to least complex.  This puts constants before unary operators,
2656  /// before binary operators.
2657  if (Op0Cplxity < Op1Cplxity ||
2658        (Op0Cplxity == Op1Cplxity &&
2659         swapMayExposeCSEOpportunities(Op0, Op1))) {
2660    I.swapOperands();
2661    std::swap(Op0, Op1);
2662    Changed = true;
2663  }
2664
2665  if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, DL, TLI, DT, AC))
2666    return ReplaceInstUsesWith(I, V);
2667
2668  // comparing -val or val with non-zero is the same as just comparing val
2669  // ie, abs(val) != 0 -> val != 0
2670  if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero()))
2671  {
2672    Value *Cond, *SelectTrue, *SelectFalse;
2673    if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
2674                            m_Value(SelectFalse)))) {
2675      if (Value *V = dyn_castNegVal(SelectTrue)) {
2676        if (V == SelectFalse)
2677          return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
2678      }
2679      else if (Value *V = dyn_castNegVal(SelectFalse)) {
2680        if (V == SelectTrue)
2681          return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
2682      }
2683    }
2684  }
2685
2686  Type *Ty = Op0->getType();
2687
2688  // icmp's with boolean values can always be turned into bitwise operations
2689  if (Ty->isIntegerTy(1)) {
2690    switch (I.getPredicate()) {
2691    default: llvm_unreachable("Invalid icmp instruction!");
2692    case ICmpInst::ICMP_EQ: {               // icmp eq i1 A, B -> ~(A^B)
2693      Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
2694      return BinaryOperator::CreateNot(Xor);
2695    }
2696    case ICmpInst::ICMP_NE:                  // icmp eq i1 A, B -> A^B
2697      return BinaryOperator::CreateXor(Op0, Op1);
2698
2699    case ICmpInst::ICMP_UGT:
2700      std::swap(Op0, Op1);                   // Change icmp ugt -> icmp ult
2701      // FALL THROUGH
2702    case ICmpInst::ICMP_ULT:{               // icmp ult i1 A, B -> ~A & B
2703      Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
2704      return BinaryOperator::CreateAnd(Not, Op1);
2705    }
2706    case ICmpInst::ICMP_SGT:
2707      std::swap(Op0, Op1);                   // Change icmp sgt -> icmp slt
2708      // FALL THROUGH
2709    case ICmpInst::ICMP_SLT: {               // icmp slt i1 A, B -> A & ~B
2710      Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
2711      return BinaryOperator::CreateAnd(Not, Op0);
2712    }
2713    case ICmpInst::ICMP_UGE:
2714      std::swap(Op0, Op1);                   // Change icmp uge -> icmp ule
2715      // FALL THROUGH
2716    case ICmpInst::ICMP_ULE: {               //  icmp ule i1 A, B -> ~A | B
2717      Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
2718      return BinaryOperator::CreateOr(Not, Op1);
2719    }
2720    case ICmpInst::ICMP_SGE:
2721      std::swap(Op0, Op1);                   // Change icmp sge -> icmp sle
2722      // FALL THROUGH
2723    case ICmpInst::ICMP_SLE: {               //  icmp sle i1 A, B -> A | ~B
2724      Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
2725      return BinaryOperator::CreateOr(Not, Op0);
2726    }
2727    }
2728  }
2729
2730  unsigned BitWidth = 0;
2731  if (Ty->isIntOrIntVectorTy())
2732    BitWidth = Ty->getScalarSizeInBits();
2733  else // Get pointer size.
2734    BitWidth = DL.getTypeSizeInBits(Ty->getScalarType());
2735
2736  bool isSignBit = false;
2737
2738  // See if we are doing a comparison with a constant.
2739  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2740    Value *A = nullptr, *B = nullptr;
2741
2742    // Match the following pattern, which is a common idiom when writing
2743    // overflow-safe integer arithmetic function.  The source performs an
2744    // addition in wider type, and explicitly checks for overflow using
2745    // comparisons against INT_MIN and INT_MAX.  Simplify this by using the
2746    // sadd_with_overflow intrinsic.
2747    //
2748    // TODO: This could probably be generalized to handle other overflow-safe
2749    // operations if we worked out the formulas to compute the appropriate
2750    // magic constants.
2751    //
2752    // sum = a + b
2753    // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
2754    {
2755    ConstantInt *CI2;    // I = icmp ugt (add (add A, B), CI2), CI
2756    if (I.getPredicate() == ICmpInst::ICMP_UGT &&
2757        match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
2758      if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
2759        return Res;
2760    }
2761
2762    // The following transforms are only 'worth it' if the only user of the
2763    // subtraction is the icmp.
2764    if (Op0->hasOneUse()) {
2765      // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
2766      if (I.isEquality() && CI->isZero() &&
2767          match(Op0, m_Sub(m_Value(A), m_Value(B))))
2768        return new ICmpInst(I.getPredicate(), A, B);
2769
2770      // (icmp sgt (sub nsw A B), -1) -> (icmp sge A, B)
2771      if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isAllOnesValue() &&
2772          match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
2773        return new ICmpInst(ICmpInst::ICMP_SGE, A, B);
2774
2775      // (icmp sgt (sub nsw A B), 0) -> (icmp sgt A, B)
2776      if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isZero() &&
2777          match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
2778        return new ICmpInst(ICmpInst::ICMP_SGT, A, B);
2779
2780      // (icmp slt (sub nsw A B), 0) -> (icmp slt A, B)
2781      if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isZero() &&
2782          match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
2783        return new ICmpInst(ICmpInst::ICMP_SLT, A, B);
2784
2785      // (icmp slt (sub nsw A B), 1) -> (icmp sle A, B)
2786      if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isOne() &&
2787          match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
2788        return new ICmpInst(ICmpInst::ICMP_SLE, A, B);
2789    }
2790
2791    // If we have an icmp le or icmp ge instruction, turn it into the
2792    // appropriate icmp lt or icmp gt instruction.  This allows us to rely on
2793    // them being folded in the code below.  The SimplifyICmpInst code has
2794    // already handled the edge cases for us, so we just assert on them.
2795    switch (I.getPredicate()) {
2796    default: break;
2797    case ICmpInst::ICMP_ULE:
2798      assert(!CI->isMaxValue(false));                 // A <=u MAX -> TRUE
2799      return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
2800                          Builder->getInt(CI->getValue()+1));
2801    case ICmpInst::ICMP_SLE:
2802      assert(!CI->isMaxValue(true));                  // A <=s MAX -> TRUE
2803      return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
2804                          Builder->getInt(CI->getValue()+1));
2805    case ICmpInst::ICMP_UGE:
2806      assert(!CI->isMinValue(false));                 // A >=u MIN -> TRUE
2807      return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
2808                          Builder->getInt(CI->getValue()-1));
2809    case ICmpInst::ICMP_SGE:
2810      assert(!CI->isMinValue(true));                  // A >=s MIN -> TRUE
2811      return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
2812                          Builder->getInt(CI->getValue()-1));
2813    }
2814
2815    if (I.isEquality()) {
2816      ConstantInt *CI2;
2817      if (match(Op0, m_AShr(m_ConstantInt(CI2), m_Value(A))) ||
2818          match(Op0, m_LShr(m_ConstantInt(CI2), m_Value(A)))) {
2819        // (icmp eq/ne (ashr/lshr const2, A), const1)
2820        if (Instruction *Inst = FoldICmpCstShrCst(I, Op0, A, CI, CI2))
2821          return Inst;
2822      }
2823      if (match(Op0, m_Shl(m_ConstantInt(CI2), m_Value(A)))) {
2824        // (icmp eq/ne (shl const2, A), const1)
2825        if (Instruction *Inst = FoldICmpCstShlCst(I, Op0, A, CI, CI2))
2826          return Inst;
2827      }
2828    }
2829
2830    // If this comparison is a normal comparison, it demands all
2831    // bits, if it is a sign bit comparison, it only demands the sign bit.
2832    bool UnusedBit;
2833    isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
2834  }
2835
2836  // See if we can fold the comparison based on range information we can get
2837  // by checking whether bits are known to be zero or one in the input.
2838  if (BitWidth != 0) {
2839    APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
2840    APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
2841
2842    if (SimplifyDemandedBits(I.getOperandUse(0),
2843                             DemandedBitsLHSMask(I, BitWidth, isSignBit),
2844                             Op0KnownZero, Op0KnownOne, 0))
2845      return &I;
2846    if (SimplifyDemandedBits(I.getOperandUse(1),
2847                             APInt::getAllOnesValue(BitWidth), Op1KnownZero,
2848                             Op1KnownOne, 0))
2849      return &I;
2850
2851    // Given the known and unknown bits, compute a range that the LHS could be
2852    // in.  Compute the Min, Max and RHS values based on the known bits. For the
2853    // EQ and NE we use unsigned values.
2854    APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
2855    APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
2856    if (I.isSigned()) {
2857      ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
2858                                             Op0Min, Op0Max);
2859      ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
2860                                             Op1Min, Op1Max);
2861    } else {
2862      ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
2863                                               Op0Min, Op0Max);
2864      ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
2865                                               Op1Min, Op1Max);
2866    }
2867
2868    // If Min and Max are known to be the same, then SimplifyDemandedBits
2869    // figured out that the LHS is a constant.  Just constant fold this now so
2870    // that code below can assume that Min != Max.
2871    if (!isa<Constant>(Op0) && Op0Min == Op0Max)
2872      return new ICmpInst(I.getPredicate(),
2873                          ConstantInt::get(Op0->getType(), Op0Min), Op1);
2874    if (!isa<Constant>(Op1) && Op1Min == Op1Max)
2875      return new ICmpInst(I.getPredicate(), Op0,
2876                          ConstantInt::get(Op1->getType(), Op1Min));
2877
2878    // Based on the range information we know about the LHS, see if we can
2879    // simplify this comparison.  For example, (x&4) < 8 is always true.
2880    switch (I.getPredicate()) {
2881    default: llvm_unreachable("Unknown icmp opcode!");
2882    case ICmpInst::ICMP_EQ: {
2883      if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
2884        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2885
2886      // If all bits are known zero except for one, then we know at most one
2887      // bit is set.   If the comparison is against zero, then this is a check
2888      // to see if *that* bit is set.
2889      APInt Op0KnownZeroInverted = ~Op0KnownZero;
2890      if (~Op1KnownZero == 0) {
2891        // If the LHS is an AND with the same constant, look through it.
2892        Value *LHS = nullptr;
2893        ConstantInt *LHSC = nullptr;
2894        if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
2895            LHSC->getValue() != Op0KnownZeroInverted)
2896          LHS = Op0;
2897
2898        // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
2899        // then turn "((1 << x)&8) == 0" into "x != 3".
2900        // or turn "((1 << x)&7) == 0" into "x > 2".
2901        Value *X = nullptr;
2902        if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
2903          APInt ValToCheck = Op0KnownZeroInverted;
2904          if (ValToCheck.isPowerOf2()) {
2905            unsigned CmpVal = ValToCheck.countTrailingZeros();
2906            return new ICmpInst(ICmpInst::ICMP_NE, X,
2907                                ConstantInt::get(X->getType(), CmpVal));
2908          } else if ((++ValToCheck).isPowerOf2()) {
2909            unsigned CmpVal = ValToCheck.countTrailingZeros() - 1;
2910            return new ICmpInst(ICmpInst::ICMP_UGT, X,
2911                                ConstantInt::get(X->getType(), CmpVal));
2912          }
2913        }
2914
2915        // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
2916        // then turn "((8 >>u x)&1) == 0" into "x != 3".
2917        const APInt *CI;
2918        if (Op0KnownZeroInverted == 1 &&
2919            match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
2920          return new ICmpInst(ICmpInst::ICMP_NE, X,
2921                              ConstantInt::get(X->getType(),
2922                                               CI->countTrailingZeros()));
2923      }
2924
2925      break;
2926    }
2927    case ICmpInst::ICMP_NE: {
2928      if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
2929        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2930
2931      // If all bits are known zero except for one, then we know at most one
2932      // bit is set.   If the comparison is against zero, then this is a check
2933      // to see if *that* bit is set.
2934      APInt Op0KnownZeroInverted = ~Op0KnownZero;
2935      if (~Op1KnownZero == 0) {
2936        // If the LHS is an AND with the same constant, look through it.
2937        Value *LHS = nullptr;
2938        ConstantInt *LHSC = nullptr;
2939        if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
2940            LHSC->getValue() != Op0KnownZeroInverted)
2941          LHS = Op0;
2942
2943        // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
2944        // then turn "((1 << x)&8) != 0" into "x == 3".
2945        // or turn "((1 << x)&7) != 0" into "x < 3".
2946        Value *X = nullptr;
2947        if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
2948          APInt ValToCheck = Op0KnownZeroInverted;
2949          if (ValToCheck.isPowerOf2()) {
2950            unsigned CmpVal = ValToCheck.countTrailingZeros();
2951            return new ICmpInst(ICmpInst::ICMP_EQ, X,
2952                                ConstantInt::get(X->getType(), CmpVal));
2953          } else if ((++ValToCheck).isPowerOf2()) {
2954            unsigned CmpVal = ValToCheck.countTrailingZeros();
2955            return new ICmpInst(ICmpInst::ICMP_ULT, X,
2956                                ConstantInt::get(X->getType(), CmpVal));
2957          }
2958        }
2959
2960        // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
2961        // then turn "((8 >>u x)&1) != 0" into "x == 3".
2962        const APInt *CI;
2963        if (Op0KnownZeroInverted == 1 &&
2964            match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
2965          return new ICmpInst(ICmpInst::ICMP_EQ, X,
2966                              ConstantInt::get(X->getType(),
2967                                               CI->countTrailingZeros()));
2968      }
2969
2970      break;
2971    }
2972    case ICmpInst::ICMP_ULT:
2973      if (Op0Max.ult(Op1Min))          // A <u B -> true if max(A) < min(B)
2974        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2975      if (Op0Min.uge(Op1Max))          // A <u B -> false if min(A) >= max(B)
2976        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2977      if (Op1Min == Op0Max)            // A <u B -> A != B if max(A) == min(B)
2978        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2979      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2980        if (Op1Max == Op0Min+1)        // A <u C -> A == C-1 if min(A)+1 == C
2981          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2982                              Builder->getInt(CI->getValue()-1));
2983
2984        // (x <u 2147483648) -> (x >s -1)  -> true if sign bit clear
2985        if (CI->isMinValue(true))
2986          return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
2987                           Constant::getAllOnesValue(Op0->getType()));
2988      }
2989      break;
2990    case ICmpInst::ICMP_UGT:
2991      if (Op0Min.ugt(Op1Max))          // A >u B -> true if min(A) > max(B)
2992        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2993      if (Op0Max.ule(Op1Min))          // A >u B -> false if max(A) <= max(B)
2994        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2995
2996      if (Op1Max == Op0Min)            // A >u B -> A != B if min(A) == max(B)
2997        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2998      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2999        if (Op1Min == Op0Max-1)        // A >u C -> A == C+1 if max(a)-1 == C
3000          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
3001                              Builder->getInt(CI->getValue()+1));
3002
3003        // (x >u 2147483647) -> (x <s 0)  -> true if sign bit set
3004        if (CI->isMaxValue(true))
3005          return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
3006                              Constant::getNullValue(Op0->getType()));
3007      }
3008      break;
3009    case ICmpInst::ICMP_SLT:
3010      if (Op0Max.slt(Op1Min))          // A <s B -> true if max(A) < min(C)
3011        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3012      if (Op0Min.sge(Op1Max))          // A <s B -> false if min(A) >= max(C)
3013        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3014      if (Op1Min == Op0Max)            // A <s B -> A != B if max(A) == min(B)
3015        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
3016      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
3017        if (Op1Max == Op0Min+1)        // A <s C -> A == C-1 if min(A)+1 == C
3018          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
3019                              Builder->getInt(CI->getValue()-1));
3020      }
3021      break;
3022    case ICmpInst::ICMP_SGT:
3023      if (Op0Min.sgt(Op1Max))          // A >s B -> true if min(A) > max(B)
3024        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3025      if (Op0Max.sle(Op1Min))          // A >s B -> false if max(A) <= min(B)
3026        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3027
3028      if (Op1Max == Op0Min)            // A >s B -> A != B if min(A) == max(B)
3029        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
3030      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
3031        if (Op1Min == Op0Max-1)        // A >s C -> A == C+1 if max(A)-1 == C
3032          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
3033                              Builder->getInt(CI->getValue()+1));
3034      }
3035      break;
3036    case ICmpInst::ICMP_SGE:
3037      assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
3038      if (Op0Min.sge(Op1Max))          // A >=s B -> true if min(A) >= max(B)
3039        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3040      if (Op0Max.slt(Op1Min))          // A >=s B -> false if max(A) < min(B)
3041        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3042      break;
3043    case ICmpInst::ICMP_SLE:
3044      assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
3045      if (Op0Max.sle(Op1Min))          // A <=s B -> true if max(A) <= min(B)
3046        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3047      if (Op0Min.sgt(Op1Max))          // A <=s B -> false if min(A) > max(B)
3048        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3049      break;
3050    case ICmpInst::ICMP_UGE:
3051      assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
3052      if (Op0Min.uge(Op1Max))          // A >=u B -> true if min(A) >= max(B)
3053        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3054      if (Op0Max.ult(Op1Min))          // A >=u B -> false if max(A) < min(B)
3055        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3056      break;
3057    case ICmpInst::ICMP_ULE:
3058      assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
3059      if (Op0Max.ule(Op1Min))          // A <=u B -> true if max(A) <= min(B)
3060        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3061      if (Op0Min.ugt(Op1Max))          // A <=u B -> false if min(A) > max(B)
3062        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3063      break;
3064    }
3065
3066    // Turn a signed comparison into an unsigned one if both operands
3067    // are known to have the same sign.
3068    if (I.isSigned() &&
3069        ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
3070         (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
3071      return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
3072  }
3073
3074  // Test if the ICmpInst instruction is used exclusively by a select as
3075  // part of a minimum or maximum operation. If so, refrain from doing
3076  // any other folding. This helps out other analyses which understand
3077  // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
3078  // and CodeGen. And in this case, at least one of the comparison
3079  // operands has at least one user besides the compare (the select),
3080  // which would often largely negate the benefit of folding anyway.
3081  if (I.hasOneUse())
3082    if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin()))
3083      if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
3084          (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
3085        return nullptr;
3086
3087  // See if we are doing a comparison between a constant and an instruction that
3088  // can be folded into the comparison.
3089  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
3090    // Since the RHS is a ConstantInt (CI), if the left hand side is an
3091    // instruction, see if that instruction also has constants so that the
3092    // instruction can be folded into the icmp
3093    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
3094      if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
3095        return Res;
3096  }
3097
3098  // Handle icmp with constant (but not simple integer constant) RHS
3099  if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
3100    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
3101      switch (LHSI->getOpcode()) {
3102      case Instruction::GetElementPtr:
3103          // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3104        if (RHSC->isNullValue() &&
3105            cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
3106          return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
3107                  Constant::getNullValue(LHSI->getOperand(0)->getType()));
3108        break;
3109      case Instruction::PHI:
3110        // Only fold icmp into the PHI if the phi and icmp are in the same
3111        // block.  If in the same block, we're encouraging jump threading.  If
3112        // not, we are just pessimizing the code by making an i1 phi.
3113        if (LHSI->getParent() == I.getParent())
3114          if (Instruction *NV = FoldOpIntoPhi(I))
3115            return NV;
3116        break;
3117      case Instruction::Select: {
3118        // If either operand of the select is a constant, we can fold the
3119        // comparison into the select arms, which will cause one to be
3120        // constant folded and the select turned into a bitwise or.
3121        Value *Op1 = nullptr, *Op2 = nullptr;
3122        ConstantInt *CI = 0;
3123        if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
3124          Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3125          CI = dyn_cast<ConstantInt>(Op1);
3126        }
3127        if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
3128          Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3129          CI = dyn_cast<ConstantInt>(Op2);
3130        }
3131
3132        // We only want to perform this transformation if it will not lead to
3133        // additional code. This is true if either both sides of the select
3134        // fold to a constant (in which case the icmp is replaced with a select
3135        // which will usually simplify) or this is the only user of the
3136        // select (in which case we are trading a select+icmp for a simpler
3137        // select+icmp) or all uses of the select can be replaced based on
3138        // dominance information ("Global cases").
3139        bool Transform = false;
3140        if (Op1 && Op2)
3141          Transform = true;
3142        else if (Op1 || Op2) {
3143          // Local case
3144          if (LHSI->hasOneUse())
3145            Transform = true;
3146          // Global cases
3147          else if (CI && !CI->isZero())
3148            // When Op1 is constant try replacing select with second operand.
3149            // Otherwise Op2 is constant and try replacing select with first
3150            // operand.
3151            Transform = replacedSelectWithOperand(cast<SelectInst>(LHSI), &I,
3152                                                  Op1 ? 2 : 1);
3153        }
3154        if (Transform) {
3155          if (!Op1)
3156            Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
3157                                      RHSC, I.getName());
3158          if (!Op2)
3159            Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
3160                                      RHSC, I.getName());
3161          return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3162        }
3163        break;
3164      }
3165      case Instruction::IntToPtr:
3166        // icmp pred inttoptr(X), null -> icmp pred X, 0
3167        if (RHSC->isNullValue() &&
3168            DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3169          return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
3170                        Constant::getNullValue(LHSI->getOperand(0)->getType()));
3171        break;
3172
3173      case Instruction::Load:
3174        // Try to optimize things like "A[i] > 4" to index computations.
3175        if (GetElementPtrInst *GEP =
3176              dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3177          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3178            if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3179                !cast<LoadInst>(LHSI)->isVolatile())
3180              if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
3181                return Res;
3182        }
3183        break;
3184      }
3185  }
3186
3187  // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
3188  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
3189    if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
3190      return NI;
3191  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
3192    if (Instruction *NI = FoldGEPICmp(GEP, Op0,
3193                           ICmpInst::getSwappedPredicate(I.getPredicate()), I))
3194      return NI;
3195
3196  // Test to see if the operands of the icmp are casted versions of other
3197  // values.  If the ptr->ptr cast can be stripped off both arguments, we do so
3198  // now.
3199  if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
3200    if (Op0->getType()->isPointerTy() &&
3201        (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
3202      // We keep moving the cast from the left operand over to the right
3203      // operand, where it can often be eliminated completely.
3204      Op0 = CI->getOperand(0);
3205
3206      // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
3207      // so eliminate it as well.
3208      if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
3209        Op1 = CI2->getOperand(0);
3210
3211      // If Op1 is a constant, we can fold the cast into the constant.
3212      if (Op0->getType() != Op1->getType()) {
3213        if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
3214          Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
3215        } else {
3216          // Otherwise, cast the RHS right before the icmp
3217          Op1 = Builder->CreateBitCast(Op1, Op0->getType());
3218        }
3219      }
3220      return new ICmpInst(I.getPredicate(), Op0, Op1);
3221    }
3222  }
3223
3224  if (isa<CastInst>(Op0)) {
3225    // Handle the special case of: icmp (cast bool to X), <cst>
3226    // This comes up when you have code like
3227    //   int X = A < B;
3228    //   if (X) ...
3229    // For generality, we handle any zero-extension of any operand comparison
3230    // with a constant or another cast from the same type.
3231    if (isa<Constant>(Op1) || isa<CastInst>(Op1))
3232      if (Instruction *R = visitICmpInstWithCastAndCast(I))
3233        return R;
3234  }
3235
3236  // Special logic for binary operators.
3237  BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
3238  BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
3239  if (BO0 || BO1) {
3240    CmpInst::Predicate Pred = I.getPredicate();
3241    bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
3242    if (BO0 && isa<OverflowingBinaryOperator>(BO0))
3243      NoOp0WrapProblem = ICmpInst::isEquality(Pred) ||
3244        (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
3245        (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
3246    if (BO1 && isa<OverflowingBinaryOperator>(BO1))
3247      NoOp1WrapProblem = ICmpInst::isEquality(Pred) ||
3248        (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
3249        (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
3250
3251    // Analyze the case when either Op0 or Op1 is an add instruction.
3252    // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
3253    Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3254    if (BO0 && BO0->getOpcode() == Instruction::Add)
3255      A = BO0->getOperand(0), B = BO0->getOperand(1);
3256    if (BO1 && BO1->getOpcode() == Instruction::Add)
3257      C = BO1->getOperand(0), D = BO1->getOperand(1);
3258
3259    // icmp (X+cst) < 0 --> X < -cst
3260    if (NoOp0WrapProblem && ICmpInst::isSigned(Pred) && match(Op1, m_Zero()))
3261      if (ConstantInt *RHSC = dyn_cast_or_null<ConstantInt>(B))
3262        if (!RHSC->isMinValue(/*isSigned=*/true))
3263          return new ICmpInst(Pred, A, ConstantExpr::getNeg(RHSC));
3264
3265    // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
3266    if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
3267      return new ICmpInst(Pred, A == Op1 ? B : A,
3268                          Constant::getNullValue(Op1->getType()));
3269
3270    // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
3271    if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
3272      return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
3273                          C == Op0 ? D : C);
3274
3275    // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
3276    if (A && C && (A == C || A == D || B == C || B == D) &&
3277        NoOp0WrapProblem && NoOp1WrapProblem &&
3278        // Try not to increase register pressure.
3279        BO0->hasOneUse() && BO1->hasOneUse()) {
3280      // Determine Y and Z in the form icmp (X+Y), (X+Z).
3281      Value *Y, *Z;
3282      if (A == C) {
3283        // C + B == C + D  ->  B == D
3284        Y = B;
3285        Z = D;
3286      } else if (A == D) {
3287        // D + B == C + D  ->  B == C
3288        Y = B;
3289        Z = C;
3290      } else if (B == C) {
3291        // A + C == C + D  ->  A == D
3292        Y = A;
3293        Z = D;
3294      } else {
3295        assert(B == D);
3296        // A + D == C + D  ->  A == C
3297        Y = A;
3298        Z = C;
3299      }
3300      return new ICmpInst(Pred, Y, Z);
3301    }
3302
3303    // icmp slt (X + -1), Y -> icmp sle X, Y
3304    if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
3305        match(B, m_AllOnes()))
3306      return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
3307
3308    // icmp sge (X + -1), Y -> icmp sgt X, Y
3309    if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
3310        match(B, m_AllOnes()))
3311      return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
3312
3313    // icmp sle (X + 1), Y -> icmp slt X, Y
3314    if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE &&
3315        match(B, m_One()))
3316      return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
3317
3318    // icmp sgt (X + 1), Y -> icmp sge X, Y
3319    if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT &&
3320        match(B, m_One()))
3321      return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
3322
3323    // if C1 has greater magnitude than C2:
3324    //  icmp (X + C1), (Y + C2) -> icmp (X + C3), Y
3325    //  s.t. C3 = C1 - C2
3326    //
3327    // if C2 has greater magnitude than C1:
3328    //  icmp (X + C1), (Y + C2) -> icmp X, (Y + C3)
3329    //  s.t. C3 = C2 - C1
3330    if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
3331        (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
3332      if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
3333        if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
3334          const APInt &AP1 = C1->getValue();
3335          const APInt &AP2 = C2->getValue();
3336          if (AP1.isNegative() == AP2.isNegative()) {
3337            APInt AP1Abs = C1->getValue().abs();
3338            APInt AP2Abs = C2->getValue().abs();
3339            if (AP1Abs.uge(AP2Abs)) {
3340              ConstantInt *C3 = Builder->getInt(AP1 - AP2);
3341              Value *NewAdd = Builder->CreateNSWAdd(A, C3);
3342              return new ICmpInst(Pred, NewAdd, C);
3343            } else {
3344              ConstantInt *C3 = Builder->getInt(AP2 - AP1);
3345              Value *NewAdd = Builder->CreateNSWAdd(C, C3);
3346              return new ICmpInst(Pred, A, NewAdd);
3347            }
3348          }
3349        }
3350
3351
3352    // Analyze the case when either Op0 or Op1 is a sub instruction.
3353    // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
3354    A = nullptr; B = nullptr; C = nullptr; D = nullptr;
3355    if (BO0 && BO0->getOpcode() == Instruction::Sub)
3356      A = BO0->getOperand(0), B = BO0->getOperand(1);
3357    if (BO1 && BO1->getOpcode() == Instruction::Sub)
3358      C = BO1->getOperand(0), D = BO1->getOperand(1);
3359
3360    // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
3361    if (A == Op1 && NoOp0WrapProblem)
3362      return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
3363
3364    // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
3365    if (C == Op0 && NoOp1WrapProblem)
3366      return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
3367
3368    // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
3369    if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
3370        // Try not to increase register pressure.
3371        BO0->hasOneUse() && BO1->hasOneUse())
3372      return new ICmpInst(Pred, A, C);
3373
3374    // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
3375    if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
3376        // Try not to increase register pressure.
3377        BO0->hasOneUse() && BO1->hasOneUse())
3378      return new ICmpInst(Pred, D, B);
3379
3380    // icmp (0-X) < cst --> x > -cst
3381    if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
3382      Value *X;
3383      if (match(BO0, m_Neg(m_Value(X))))
3384        if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
3385          if (!RHSC->isMinValue(/*isSigned=*/true))
3386            return new ICmpInst(I.getSwappedPredicate(), X,
3387                                ConstantExpr::getNeg(RHSC));
3388    }
3389
3390    BinaryOperator *SRem = nullptr;
3391    // icmp (srem X, Y), Y
3392    if (BO0 && BO0->getOpcode() == Instruction::SRem &&
3393        Op1 == BO0->getOperand(1))
3394      SRem = BO0;
3395    // icmp Y, (srem X, Y)
3396    else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
3397             Op0 == BO1->getOperand(1))
3398      SRem = BO1;
3399    if (SRem) {
3400      // We don't check hasOneUse to avoid increasing register pressure because
3401      // the value we use is the same value this instruction was already using.
3402      switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
3403        default: break;
3404        case ICmpInst::ICMP_EQ:
3405          return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3406        case ICmpInst::ICMP_NE:
3407          return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3408        case ICmpInst::ICMP_SGT:
3409        case ICmpInst::ICMP_SGE:
3410          return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
3411                              Constant::getAllOnesValue(SRem->getType()));
3412        case ICmpInst::ICMP_SLT:
3413        case ICmpInst::ICMP_SLE:
3414          return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
3415                              Constant::getNullValue(SRem->getType()));
3416      }
3417    }
3418
3419    if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
3420        BO0->hasOneUse() && BO1->hasOneUse() &&
3421        BO0->getOperand(1) == BO1->getOperand(1)) {
3422      switch (BO0->getOpcode()) {
3423      default: break;
3424      case Instruction::Add:
3425      case Instruction::Sub:
3426      case Instruction::Xor:
3427        if (I.isEquality())    // a+x icmp eq/ne b+x --> a icmp b
3428          return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
3429                              BO1->getOperand(0));
3430        // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
3431        if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
3432          if (CI->getValue().isSignBit()) {
3433            ICmpInst::Predicate Pred = I.isSigned()
3434                                           ? I.getUnsignedPredicate()
3435                                           : I.getSignedPredicate();
3436            return new ICmpInst(Pred, BO0->getOperand(0),
3437                                BO1->getOperand(0));
3438          }
3439
3440          if (CI->isMaxValue(true)) {
3441            ICmpInst::Predicate Pred = I.isSigned()
3442                                           ? I.getUnsignedPredicate()
3443                                           : I.getSignedPredicate();
3444            Pred = I.getSwappedPredicate(Pred);
3445            return new ICmpInst(Pred, BO0->getOperand(0),
3446                                BO1->getOperand(0));
3447          }
3448        }
3449        break;
3450      case Instruction::Mul:
3451        if (!I.isEquality())
3452          break;
3453
3454        if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
3455          // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
3456          // Mask = -1 >> count-trailing-zeros(Cst).
3457          if (!CI->isZero() && !CI->isOne()) {
3458            const APInt &AP = CI->getValue();
3459            ConstantInt *Mask = ConstantInt::get(I.getContext(),
3460                                    APInt::getLowBitsSet(AP.getBitWidth(),
3461                                                         AP.getBitWidth() -
3462                                                    AP.countTrailingZeros()));
3463            Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
3464            Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
3465            return new ICmpInst(I.getPredicate(), And1, And2);
3466          }
3467        }
3468        break;
3469      case Instruction::UDiv:
3470      case Instruction::LShr:
3471        if (I.isSigned())
3472          break;
3473        // fall-through
3474      case Instruction::SDiv:
3475      case Instruction::AShr:
3476        if (!BO0->isExact() || !BO1->isExact())
3477          break;
3478        return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
3479                            BO1->getOperand(0));
3480      case Instruction::Shl: {
3481        bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
3482        bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
3483        if (!NUW && !NSW)
3484          break;
3485        if (!NSW && I.isSigned())
3486          break;
3487        return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
3488                            BO1->getOperand(0));
3489      }
3490      }
3491    }
3492  }
3493
3494  { Value *A, *B;
3495    // Transform (A & ~B) == 0 --> (A & B) != 0
3496    // and       (A & ~B) != 0 --> (A & B) == 0
3497    // if A is a power of 2.
3498    if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
3499        match(Op1, m_Zero()) &&
3500        isKnownToBeAPowerOfTwo(A, DL, false, 0, AC, &I, DT) && I.isEquality())
3501      return new ICmpInst(I.getInversePredicate(),
3502                          Builder->CreateAnd(A, B),
3503                          Op1);
3504
3505    // ~x < ~y --> y < x
3506    // ~x < cst --> ~cst < x
3507    if (match(Op0, m_Not(m_Value(A)))) {
3508      if (match(Op1, m_Not(m_Value(B))))
3509        return new ICmpInst(I.getPredicate(), B, A);
3510      if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
3511        return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
3512    }
3513
3514    Instruction *AddI = nullptr;
3515    if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
3516                                     m_Instruction(AddI))) &&
3517        isa<IntegerType>(A->getType())) {
3518      Value *Result;
3519      Constant *Overflow;
3520      if (OptimizeOverflowCheck(OCF_UNSIGNED_ADD, A, B, *AddI, Result,
3521                                Overflow)) {
3522        ReplaceInstUsesWith(*AddI, Result);
3523        return ReplaceInstUsesWith(I, Overflow);
3524      }
3525    }
3526
3527    // (zext a) * (zext b)  --> llvm.umul.with.overflow.
3528    if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
3529      if (Instruction *R = ProcessUMulZExtIdiom(I, Op0, Op1, *this))
3530        return R;
3531    }
3532    if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
3533      if (Instruction *R = ProcessUMulZExtIdiom(I, Op1, Op0, *this))
3534        return R;
3535    }
3536  }
3537
3538  if (I.isEquality()) {
3539    Value *A, *B, *C, *D;
3540
3541    if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
3542      if (A == Op1 || B == Op1) {    // (A^B) == A  ->  B == 0
3543        Value *OtherVal = A == Op1 ? B : A;
3544        return new ICmpInst(I.getPredicate(), OtherVal,
3545                            Constant::getNullValue(A->getType()));
3546      }
3547
3548      if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
3549        // A^c1 == C^c2 --> A == C^(c1^c2)
3550        ConstantInt *C1, *C2;
3551        if (match(B, m_ConstantInt(C1)) &&
3552            match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
3553          Constant *NC = Builder->getInt(C1->getValue() ^ C2->getValue());
3554          Value *Xor = Builder->CreateXor(C, NC);
3555          return new ICmpInst(I.getPredicate(), A, Xor);
3556        }
3557
3558        // A^B == A^D -> B == D
3559        if (A == C) return new ICmpInst(I.getPredicate(), B, D);
3560        if (A == D) return new ICmpInst(I.getPredicate(), B, C);
3561        if (B == C) return new ICmpInst(I.getPredicate(), A, D);
3562        if (B == D) return new ICmpInst(I.getPredicate(), A, C);
3563      }
3564    }
3565
3566    if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
3567        (A == Op0 || B == Op0)) {
3568      // A == (A^B)  ->  B == 0
3569      Value *OtherVal = A == Op0 ? B : A;
3570      return new ICmpInst(I.getPredicate(), OtherVal,
3571                          Constant::getNullValue(A->getType()));
3572    }
3573
3574    // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
3575    if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
3576        match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
3577      Value *X = nullptr, *Y = nullptr, *Z = nullptr;
3578
3579      if (A == C) {
3580        X = B; Y = D; Z = A;
3581      } else if (A == D) {
3582        X = B; Y = C; Z = A;
3583      } else if (B == C) {
3584        X = A; Y = D; Z = B;
3585      } else if (B == D) {
3586        X = A; Y = C; Z = B;
3587      }
3588
3589      if (X) {   // Build (X^Y) & Z
3590        Op1 = Builder->CreateXor(X, Y);
3591        Op1 = Builder->CreateAnd(Op1, Z);
3592        I.setOperand(0, Op1);
3593        I.setOperand(1, Constant::getNullValue(Op1->getType()));
3594        return &I;
3595      }
3596    }
3597
3598    // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
3599    // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
3600    ConstantInt *Cst1;
3601    if ((Op0->hasOneUse() &&
3602         match(Op0, m_ZExt(m_Value(A))) &&
3603         match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
3604        (Op1->hasOneUse() &&
3605         match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
3606         match(Op1, m_ZExt(m_Value(A))))) {
3607      APInt Pow2 = Cst1->getValue() + 1;
3608      if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
3609          Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
3610        return new ICmpInst(I.getPredicate(), A,
3611                            Builder->CreateTrunc(B, A->getType()));
3612    }
3613
3614    // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
3615    // For lshr and ashr pairs.
3616    if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
3617         match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
3618        (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
3619         match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
3620      unsigned TypeBits = Cst1->getBitWidth();
3621      unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
3622      if (ShAmt < TypeBits && ShAmt != 0) {
3623        ICmpInst::Predicate Pred = I.getPredicate() == ICmpInst::ICMP_NE
3624                                       ? ICmpInst::ICMP_UGE
3625                                       : ICmpInst::ICMP_ULT;
3626        Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
3627        APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
3628        return new ICmpInst(Pred, Xor, Builder->getInt(CmpVal));
3629      }
3630    }
3631
3632    // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
3633    if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
3634        match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
3635      unsigned TypeBits = Cst1->getBitWidth();
3636      unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
3637      if (ShAmt < TypeBits && ShAmt != 0) {
3638        Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
3639        APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
3640        Value *And = Builder->CreateAnd(Xor, Builder->getInt(AndVal),
3641                                        I.getName() + ".mask");
3642        return new ICmpInst(I.getPredicate(), And,
3643                            Constant::getNullValue(Cst1->getType()));
3644      }
3645    }
3646
3647    // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
3648    // "icmp (and X, mask), cst"
3649    uint64_t ShAmt = 0;
3650    if (Op0->hasOneUse() &&
3651        match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A),
3652                                           m_ConstantInt(ShAmt))))) &&
3653        match(Op1, m_ConstantInt(Cst1)) &&
3654        // Only do this when A has multiple uses.  This is most important to do
3655        // when it exposes other optimizations.
3656        !A->hasOneUse()) {
3657      unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
3658
3659      if (ShAmt < ASize) {
3660        APInt MaskV =
3661          APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
3662        MaskV <<= ShAmt;
3663
3664        APInt CmpV = Cst1->getValue().zext(ASize);
3665        CmpV <<= ShAmt;
3666
3667        Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
3668        return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
3669      }
3670    }
3671  }
3672
3673  // The 'cmpxchg' instruction returns an aggregate containing the old value and
3674  // an i1 which indicates whether or not we successfully did the swap.
3675  //
3676  // Replace comparisons between the old value and the expected value with the
3677  // indicator that 'cmpxchg' returns.
3678  //
3679  // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
3680  // spuriously fail.  In those cases, the old value may equal the expected
3681  // value but it is possible for the swap to not occur.
3682  if (I.getPredicate() == ICmpInst::ICMP_EQ)
3683    if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
3684      if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
3685        if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
3686            !ACXI->isWeak())
3687          return ExtractValueInst::Create(ACXI, 1);
3688
3689  {
3690    Value *X; ConstantInt *Cst;
3691    // icmp X+Cst, X
3692    if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
3693      return FoldICmpAddOpCst(I, X, Cst, I.getPredicate());
3694
3695    // icmp X, X+Cst
3696    if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
3697      return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate());
3698  }
3699  return Changed ? &I : nullptr;
3700}
3701
3702/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
3703Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
3704                                                Instruction *LHSI,
3705                                                Constant *RHSC) {
3706  if (!isa<ConstantFP>(RHSC)) return nullptr;
3707  const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
3708
3709  // Get the width of the mantissa.  We don't want to hack on conversions that
3710  // might lose information from the integer, e.g. "i64 -> float"
3711  int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
3712  if (MantissaWidth == -1) return nullptr;  // Unknown.
3713
3714  IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
3715
3716  // Check to see that the input is converted from an integer type that is small
3717  // enough that preserves all bits.  TODO: check here for "known" sign bits.
3718  // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
3719  unsigned InputSize = IntTy->getScalarSizeInBits();
3720
3721  // If this is a uitofp instruction, we need an extra bit to hold the sign.
3722  bool LHSUnsigned = isa<UIToFPInst>(LHSI);
3723  if (LHSUnsigned)
3724    ++InputSize;
3725
3726  if (I.isEquality()) {
3727    FCmpInst::Predicate P = I.getPredicate();
3728    bool IsExact = false;
3729    APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
3730    RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
3731
3732    // If the floating point constant isn't an integer value, we know if we will
3733    // ever compare equal / not equal to it.
3734    if (!IsExact) {
3735      // TODO: Can never be -0.0 and other non-representable values
3736      APFloat RHSRoundInt(RHS);
3737      RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
3738      if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) {
3739        if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
3740          return ReplaceInstUsesWith(I, Builder->getFalse());
3741
3742        assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
3743        return ReplaceInstUsesWith(I, Builder->getTrue());
3744      }
3745    }
3746
3747    // TODO: If the constant is exactly representable, is it always OK to do
3748    // equality compares as integer?
3749  }
3750
3751  // Comparisons with zero are a special case where we know we won't lose
3752  // information.
3753  bool IsCmpZero = RHS.isPosZero();
3754
3755  // If the conversion would lose info, don't hack on this.
3756  if ((int)InputSize > MantissaWidth && !IsCmpZero)
3757    return nullptr;
3758
3759  // Otherwise, we can potentially simplify the comparison.  We know that it
3760  // will always come through as an integer value and we know the constant is
3761  // not a NAN (it would have been previously simplified).
3762  assert(!RHS.isNaN() && "NaN comparison not already folded!");
3763
3764  ICmpInst::Predicate Pred;
3765  switch (I.getPredicate()) {
3766  default: llvm_unreachable("Unexpected predicate!");
3767  case FCmpInst::FCMP_UEQ:
3768  case FCmpInst::FCMP_OEQ:
3769    Pred = ICmpInst::ICMP_EQ;
3770    break;
3771  case FCmpInst::FCMP_UGT:
3772  case FCmpInst::FCMP_OGT:
3773    Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
3774    break;
3775  case FCmpInst::FCMP_UGE:
3776  case FCmpInst::FCMP_OGE:
3777    Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
3778    break;
3779  case FCmpInst::FCMP_ULT:
3780  case FCmpInst::FCMP_OLT:
3781    Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
3782    break;
3783  case FCmpInst::FCMP_ULE:
3784  case FCmpInst::FCMP_OLE:
3785    Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
3786    break;
3787  case FCmpInst::FCMP_UNE:
3788  case FCmpInst::FCMP_ONE:
3789    Pred = ICmpInst::ICMP_NE;
3790    break;
3791  case FCmpInst::FCMP_ORD:
3792    return ReplaceInstUsesWith(I, Builder->getTrue());
3793  case FCmpInst::FCMP_UNO:
3794    return ReplaceInstUsesWith(I, Builder->getFalse());
3795  }
3796
3797  // Now we know that the APFloat is a normal number, zero or inf.
3798
3799  // See if the FP constant is too large for the integer.  For example,
3800  // comparing an i8 to 300.0.
3801  unsigned IntWidth = IntTy->getScalarSizeInBits();
3802
3803  if (!LHSUnsigned) {
3804    // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
3805    // and large values.
3806    APFloat SMax(RHS.getSemantics());
3807    SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
3808                          APFloat::rmNearestTiesToEven);
3809    if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
3810      if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
3811          Pred == ICmpInst::ICMP_SLE)
3812        return ReplaceInstUsesWith(I, Builder->getTrue());
3813      return ReplaceInstUsesWith(I, Builder->getFalse());
3814    }
3815  } else {
3816    // If the RHS value is > UnsignedMax, fold the comparison. This handles
3817    // +INF and large values.
3818    APFloat UMax(RHS.getSemantics());
3819    UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
3820                          APFloat::rmNearestTiesToEven);
3821    if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
3822      if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
3823          Pred == ICmpInst::ICMP_ULE)
3824        return ReplaceInstUsesWith(I, Builder->getTrue());
3825      return ReplaceInstUsesWith(I, Builder->getFalse());
3826    }
3827  }
3828
3829  if (!LHSUnsigned) {
3830    // See if the RHS value is < SignedMin.
3831    APFloat SMin(RHS.getSemantics());
3832    SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
3833                          APFloat::rmNearestTiesToEven);
3834    if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
3835      if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
3836          Pred == ICmpInst::ICMP_SGE)
3837        return ReplaceInstUsesWith(I, Builder->getTrue());
3838      return ReplaceInstUsesWith(I, Builder->getFalse());
3839    }
3840  } else {
3841    // See if the RHS value is < UnsignedMin.
3842    APFloat SMin(RHS.getSemantics());
3843    SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
3844                          APFloat::rmNearestTiesToEven);
3845    if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
3846      if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
3847          Pred == ICmpInst::ICMP_UGE)
3848        return ReplaceInstUsesWith(I, Builder->getTrue());
3849      return ReplaceInstUsesWith(I, Builder->getFalse());
3850    }
3851  }
3852
3853  // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
3854  // [0, UMAX], but it may still be fractional.  See if it is fractional by
3855  // casting the FP value to the integer value and back, checking for equality.
3856  // Don't do this for zero, because -0.0 is not fractional.
3857  Constant *RHSInt = LHSUnsigned
3858    ? ConstantExpr::getFPToUI(RHSC, IntTy)
3859    : ConstantExpr::getFPToSI(RHSC, IntTy);
3860  if (!RHS.isZero()) {
3861    bool Equal = LHSUnsigned
3862      ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
3863      : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
3864    if (!Equal) {
3865      // If we had a comparison against a fractional value, we have to adjust
3866      // the compare predicate and sometimes the value.  RHSC is rounded towards
3867      // zero at this point.
3868      switch (Pred) {
3869      default: llvm_unreachable("Unexpected integer comparison!");
3870      case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
3871        return ReplaceInstUsesWith(I, Builder->getTrue());
3872      case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
3873        return ReplaceInstUsesWith(I, Builder->getFalse());
3874      case ICmpInst::ICMP_ULE:
3875        // (float)int <= 4.4   --> int <= 4
3876        // (float)int <= -4.4  --> false
3877        if (RHS.isNegative())
3878          return ReplaceInstUsesWith(I, Builder->getFalse());
3879        break;
3880      case ICmpInst::ICMP_SLE:
3881        // (float)int <= 4.4   --> int <= 4
3882        // (float)int <= -4.4  --> int < -4
3883        if (RHS.isNegative())
3884          Pred = ICmpInst::ICMP_SLT;
3885        break;
3886      case ICmpInst::ICMP_ULT:
3887        // (float)int < -4.4   --> false
3888        // (float)int < 4.4    --> int <= 4
3889        if (RHS.isNegative())
3890          return ReplaceInstUsesWith(I, Builder->getFalse());
3891        Pred = ICmpInst::ICMP_ULE;
3892        break;
3893      case ICmpInst::ICMP_SLT:
3894        // (float)int < -4.4   --> int < -4
3895        // (float)int < 4.4    --> int <= 4
3896        if (!RHS.isNegative())
3897          Pred = ICmpInst::ICMP_SLE;
3898        break;
3899      case ICmpInst::ICMP_UGT:
3900        // (float)int > 4.4    --> int > 4
3901        // (float)int > -4.4   --> true
3902        if (RHS.isNegative())
3903          return ReplaceInstUsesWith(I, Builder->getTrue());
3904        break;
3905      case ICmpInst::ICMP_SGT:
3906        // (float)int > 4.4    --> int > 4
3907        // (float)int > -4.4   --> int >= -4
3908        if (RHS.isNegative())
3909          Pred = ICmpInst::ICMP_SGE;
3910        break;
3911      case ICmpInst::ICMP_UGE:
3912        // (float)int >= -4.4   --> true
3913        // (float)int >= 4.4    --> int > 4
3914        if (RHS.isNegative())
3915          return ReplaceInstUsesWith(I, Builder->getTrue());
3916        Pred = ICmpInst::ICMP_UGT;
3917        break;
3918      case ICmpInst::ICMP_SGE:
3919        // (float)int >= -4.4   --> int >= -4
3920        // (float)int >= 4.4    --> int > 4
3921        if (!RHS.isNegative())
3922          Pred = ICmpInst::ICMP_SGT;
3923        break;
3924      }
3925    }
3926  }
3927
3928  // Lower this FP comparison into an appropriate integer version of the
3929  // comparison.
3930  return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
3931}
3932
3933Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
3934  bool Changed = false;
3935
3936  /// Orders the operands of the compare so that they are listed from most
3937  /// complex to least complex.  This puts constants before unary operators,
3938  /// before binary operators.
3939  if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
3940    I.swapOperands();
3941    Changed = true;
3942  }
3943
3944  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3945
3946  if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, DL, TLI, DT, AC))
3947    return ReplaceInstUsesWith(I, V);
3948
3949  // Simplify 'fcmp pred X, X'
3950  if (Op0 == Op1) {
3951    switch (I.getPredicate()) {
3952    default: llvm_unreachable("Unknown predicate!");
3953    case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
3954    case FCmpInst::FCMP_ULT:    // True if unordered or less than
3955    case FCmpInst::FCMP_UGT:    // True if unordered or greater than
3956    case FCmpInst::FCMP_UNE:    // True if unordered or not equal
3957      // Canonicalize these to be 'fcmp uno %X, 0.0'.
3958      I.setPredicate(FCmpInst::FCMP_UNO);
3959      I.setOperand(1, Constant::getNullValue(Op0->getType()));
3960      return &I;
3961
3962    case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
3963    case FCmpInst::FCMP_OEQ:    // True if ordered and equal
3964    case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
3965    case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
3966      // Canonicalize these to be 'fcmp ord %X, 0.0'.
3967      I.setPredicate(FCmpInst::FCMP_ORD);
3968      I.setOperand(1, Constant::getNullValue(Op0->getType()));
3969      return &I;
3970    }
3971  }
3972
3973  // Handle fcmp with constant RHS
3974  if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
3975    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
3976      switch (LHSI->getOpcode()) {
3977      case Instruction::FPExt: {
3978        // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
3979        FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
3980        ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
3981        if (!RHSF)
3982          break;
3983
3984        const fltSemantics *Sem;
3985        // FIXME: This shouldn't be here.
3986        if (LHSExt->getSrcTy()->isHalfTy())
3987          Sem = &APFloat::IEEEhalf;
3988        else if (LHSExt->getSrcTy()->isFloatTy())
3989          Sem = &APFloat::IEEEsingle;
3990        else if (LHSExt->getSrcTy()->isDoubleTy())
3991          Sem = &APFloat::IEEEdouble;
3992        else if (LHSExt->getSrcTy()->isFP128Ty())
3993          Sem = &APFloat::IEEEquad;
3994        else if (LHSExt->getSrcTy()->isX86_FP80Ty())
3995          Sem = &APFloat::x87DoubleExtended;
3996        else if (LHSExt->getSrcTy()->isPPC_FP128Ty())
3997          Sem = &APFloat::PPCDoubleDouble;
3998        else
3999          break;
4000
4001        bool Lossy;
4002        APFloat F = RHSF->getValueAPF();
4003        F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
4004
4005        // Avoid lossy conversions and denormals. Zero is a special case
4006        // that's OK to convert.
4007        APFloat Fabs = F;
4008        Fabs.clearSign();
4009        if (!Lossy &&
4010            ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) !=
4011                 APFloat::cmpLessThan) || Fabs.isZero()))
4012
4013          return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
4014                              ConstantFP::get(RHSC->getContext(), F));
4015        break;
4016      }
4017      case Instruction::PHI:
4018        // Only fold fcmp into the PHI if the phi and fcmp are in the same
4019        // block.  If in the same block, we're encouraging jump threading.  If
4020        // not, we are just pessimizing the code by making an i1 phi.
4021        if (LHSI->getParent() == I.getParent())
4022          if (Instruction *NV = FoldOpIntoPhi(I))
4023            return NV;
4024        break;
4025      case Instruction::SIToFP:
4026      case Instruction::UIToFP:
4027        if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
4028          return NV;
4029        break;
4030      case Instruction::FSub: {
4031        // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
4032        Value *Op;
4033        if (match(LHSI, m_FNeg(m_Value(Op))))
4034          return new FCmpInst(I.getSwappedPredicate(), Op,
4035                              ConstantExpr::getFNeg(RHSC));
4036        break;
4037      }
4038      case Instruction::Load:
4039        if (GetElementPtrInst *GEP =
4040            dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
4041          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
4042            if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
4043                !cast<LoadInst>(LHSI)->isVolatile())
4044              if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
4045                return Res;
4046        }
4047        break;
4048      case Instruction::Call: {
4049        if (!RHSC->isNullValue())
4050          break;
4051
4052        CallInst *CI = cast<CallInst>(LHSI);
4053        const Function *F = CI->getCalledFunction();
4054        if (!F)
4055          break;
4056
4057        // Various optimization for fabs compared with zero.
4058        LibFunc::Func Func;
4059        if (F->getIntrinsicID() == Intrinsic::fabs ||
4060            (TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
4061             (Func == LibFunc::fabs || Func == LibFunc::fabsf ||
4062              Func == LibFunc::fabsl))) {
4063          switch (I.getPredicate()) {
4064          default:
4065            break;
4066            // fabs(x) < 0 --> false
4067          case FCmpInst::FCMP_OLT:
4068            return ReplaceInstUsesWith(I, Builder->getFalse());
4069            // fabs(x) > 0 --> x != 0
4070          case FCmpInst::FCMP_OGT:
4071            return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0), RHSC);
4072            // fabs(x) <= 0 --> x == 0
4073          case FCmpInst::FCMP_OLE:
4074            return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0), RHSC);
4075            // fabs(x) >= 0 --> !isnan(x)
4076          case FCmpInst::FCMP_OGE:
4077            return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0), RHSC);
4078            // fabs(x) == 0 --> x == 0
4079            // fabs(x) != 0 --> x != 0
4080          case FCmpInst::FCMP_OEQ:
4081          case FCmpInst::FCMP_UEQ:
4082          case FCmpInst::FCMP_ONE:
4083          case FCmpInst::FCMP_UNE:
4084            return new FCmpInst(I.getPredicate(), CI->getArgOperand(0), RHSC);
4085          }
4086        }
4087      }
4088      }
4089  }
4090
4091  // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
4092  Value *X, *Y;
4093  if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
4094    return new FCmpInst(I.getSwappedPredicate(), X, Y);
4095
4096  // fcmp (fpext x), (fpext y) -> fcmp x, y
4097  if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
4098    if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
4099      if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
4100        return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
4101                            RHSExt->getOperand(0));
4102
4103  return Changed ? &I : nullptr;
4104}
4105