InstCombineShifts.cpp revision 4c5e43da7792f75567b693105cc53e3f1992ad98
1//===- InstCombineShifts.cpp ----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitShl, visitLShr, and visitAShr functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombineInternal.h"
15#include "llvm/Analysis/ConstantFolding.h"
16#include "llvm/Analysis/InstructionSimplify.h"
17#include "llvm/IR/IntrinsicInst.h"
18#include "llvm/IR/PatternMatch.h"
19using namespace llvm;
20using namespace PatternMatch;
21
22#define DEBUG_TYPE "instcombine"
23
24Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
25  assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
26  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
27
28  // See if we can fold away this shift.
29  if (SimplifyDemandedInstructionBits(I))
30    return &I;
31
32  // Try to fold constant and into select arguments.
33  if (isa<Constant>(Op0))
34    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
35      if (Instruction *R = FoldOpIntoSelect(I, SI))
36        return R;
37
38  if (Constant *CUI = dyn_cast<Constant>(Op1))
39    if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
40      return Res;
41
42  // X shift (A srem B) -> X shift (A and B-1) iff B is a power of 2.
43  // Because shifts by negative values (which could occur if A were negative)
44  // are undefined.
45  Value *A; const APInt *B;
46  if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Power2(B)))) {
47    // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
48    // demand the sign bit (and many others) here??
49    Value *Rem = Builder->CreateAnd(A, ConstantInt::get(I.getType(), *B-1),
50                                    Op1->getName());
51    I.setOperand(1, Rem);
52    return &I;
53  }
54
55  return nullptr;
56}
57
58/// CanEvaluateShifted - See if we can compute the specified value, but shifted
59/// logically to the left or right by some number of bits.  This should return
60/// true if the expression can be computed for the same cost as the current
61/// expression tree.  This is used to eliminate extraneous shifting from things
62/// like:
63///      %C = shl i128 %A, 64
64///      %D = shl i128 %B, 96
65///      %E = or i128 %C, %D
66///      %F = lshr i128 %E, 64
67/// where the client will ask if E can be computed shifted right by 64-bits.  If
68/// this succeeds, the GetShiftedValue function will be called to produce the
69/// value.
70static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift,
71                               InstCombiner &IC, Instruction *CxtI) {
72  // We can always evaluate constants shifted.
73  if (isa<Constant>(V))
74    return true;
75
76  Instruction *I = dyn_cast<Instruction>(V);
77  if (!I) return false;
78
79  // If this is the opposite shift, we can directly reuse the input of the shift
80  // if the needed bits are already zero in the input.  This allows us to reuse
81  // the value which means that we don't care if the shift has multiple uses.
82  //  TODO:  Handle opposite shift by exact value.
83  ConstantInt *CI = nullptr;
84  if ((isLeftShift && match(I, m_LShr(m_Value(), m_ConstantInt(CI)))) ||
85      (!isLeftShift && match(I, m_Shl(m_Value(), m_ConstantInt(CI))))) {
86    if (CI->getZExtValue() == NumBits) {
87      // TODO: Check that the input bits are already zero with MaskedValueIsZero
88#if 0
89      // If this is a truncate of a logical shr, we can truncate it to a smaller
90      // lshr iff we know that the bits we would otherwise be shifting in are
91      // already zeros.
92      uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
93      uint32_t BitWidth = Ty->getScalarSizeInBits();
94      if (MaskedValueIsZero(I->getOperand(0),
95            APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
96          CI->getLimitedValue(BitWidth) < BitWidth) {
97        return CanEvaluateTruncated(I->getOperand(0), Ty);
98      }
99#endif
100
101    }
102  }
103
104  // We can't mutate something that has multiple uses: doing so would
105  // require duplicating the instruction in general, which isn't profitable.
106  if (!I->hasOneUse()) return false;
107
108  switch (I->getOpcode()) {
109  default: return false;
110  case Instruction::And:
111  case Instruction::Or:
112  case Instruction::Xor:
113    // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
114    return CanEvaluateShifted(I->getOperand(0), NumBits, isLeftShift, IC, I) &&
115           CanEvaluateShifted(I->getOperand(1), NumBits, isLeftShift, IC, I);
116
117  case Instruction::Shl: {
118    // We can often fold the shift into shifts-by-a-constant.
119    CI = dyn_cast<ConstantInt>(I->getOperand(1));
120    if (!CI) return false;
121
122    // We can always fold shl(c1)+shl(c2) -> shl(c1+c2).
123    if (isLeftShift) return true;
124
125    // We can always turn shl(c)+shr(c) -> and(c2).
126    if (CI->getValue() == NumBits) return true;
127
128    unsigned TypeWidth = I->getType()->getScalarSizeInBits();
129
130    // We can turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but it isn't
131    // profitable unless we know the and'd out bits are already zero.
132    if (CI->getZExtValue() > NumBits) {
133      unsigned LowBits = TypeWidth - CI->getZExtValue();
134      if (IC.MaskedValueIsZero(I->getOperand(0),
135                       APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits,
136                       0, CxtI))
137        return true;
138    }
139
140    return false;
141  }
142  case Instruction::LShr: {
143    // We can often fold the shift into shifts-by-a-constant.
144    CI = dyn_cast<ConstantInt>(I->getOperand(1));
145    if (!CI) return false;
146
147    // We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
148    if (!isLeftShift) return true;
149
150    // We can always turn lshr(c)+shl(c) -> and(c2).
151    if (CI->getValue() == NumBits) return true;
152
153    unsigned TypeWidth = I->getType()->getScalarSizeInBits();
154
155    // We can always turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but it isn't
156    // profitable unless we know the and'd out bits are already zero.
157    if (CI->getValue().ult(TypeWidth) && CI->getZExtValue() > NumBits) {
158      unsigned LowBits = CI->getZExtValue() - NumBits;
159      if (IC.MaskedValueIsZero(I->getOperand(0),
160                          APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits,
161                          0, CxtI))
162        return true;
163    }
164
165    return false;
166  }
167  case Instruction::Select: {
168    SelectInst *SI = cast<SelectInst>(I);
169    return CanEvaluateShifted(SI->getTrueValue(), NumBits, isLeftShift,
170                              IC, SI) &&
171           CanEvaluateShifted(SI->getFalseValue(), NumBits, isLeftShift, IC, SI);
172  }
173  case Instruction::PHI: {
174    // We can change a phi if we can change all operands.  Note that we never
175    // get into trouble with cyclic PHIs here because we only consider
176    // instructions with a single use.
177    PHINode *PN = cast<PHINode>(I);
178    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
179      if (!CanEvaluateShifted(PN->getIncomingValue(i), NumBits, isLeftShift,
180                              IC, PN))
181        return false;
182    return true;
183  }
184  }
185}
186
187/// GetShiftedValue - When CanEvaluateShifted returned true for an expression,
188/// this value inserts the new computation that produces the shifted value.
189static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
190                              InstCombiner &IC, const DataLayout &DL) {
191  // We can always evaluate constants shifted.
192  if (Constant *C = dyn_cast<Constant>(V)) {
193    if (isLeftShift)
194      V = IC.Builder->CreateShl(C, NumBits);
195    else
196      V = IC.Builder->CreateLShr(C, NumBits);
197    // If we got a constantexpr back, try to simplify it with TD info.
198    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
199      V = ConstantFoldConstantExpression(CE, DL, IC.getTargetLibraryInfo());
200    return V;
201  }
202
203  Instruction *I = cast<Instruction>(V);
204  IC.Worklist.Add(I);
205
206  switch (I->getOpcode()) {
207  default: llvm_unreachable("Inconsistency with CanEvaluateShifted");
208  case Instruction::And:
209  case Instruction::Or:
210  case Instruction::Xor:
211    // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
212    I->setOperand(
213        0, GetShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL));
214    I->setOperand(
215        1, GetShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
216    return I;
217
218  case Instruction::Shl: {
219    BinaryOperator *BO = cast<BinaryOperator>(I);
220    unsigned TypeWidth = BO->getType()->getScalarSizeInBits();
221
222    // We only accept shifts-by-a-constant in CanEvaluateShifted.
223    ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
224
225    // We can always fold shl(c1)+shl(c2) -> shl(c1+c2).
226    if (isLeftShift) {
227      // If this is oversized composite shift, then unsigned shifts get 0.
228      unsigned NewShAmt = NumBits+CI->getZExtValue();
229      if (NewShAmt >= TypeWidth)
230        return Constant::getNullValue(I->getType());
231
232      BO->setOperand(1, ConstantInt::get(BO->getType(), NewShAmt));
233      BO->setHasNoUnsignedWrap(false);
234      BO->setHasNoSignedWrap(false);
235      return I;
236    }
237
238    // We turn shl(c)+lshr(c) -> and(c2) if the input doesn't already have
239    // zeros.
240    if (CI->getValue() == NumBits) {
241      APInt Mask(APInt::getLowBitsSet(TypeWidth, TypeWidth - NumBits));
242      V = IC.Builder->CreateAnd(BO->getOperand(0),
243                                ConstantInt::get(BO->getContext(), Mask));
244      if (Instruction *VI = dyn_cast<Instruction>(V)) {
245        VI->moveBefore(BO);
246        VI->takeName(BO);
247      }
248      return V;
249    }
250
251    // We turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but only when we know that
252    // the and won't be needed.
253    assert(CI->getZExtValue() > NumBits);
254    BO->setOperand(1, ConstantInt::get(BO->getType(),
255                                       CI->getZExtValue() - NumBits));
256    BO->setHasNoUnsignedWrap(false);
257    BO->setHasNoSignedWrap(false);
258    return BO;
259  }
260  case Instruction::LShr: {
261    BinaryOperator *BO = cast<BinaryOperator>(I);
262    unsigned TypeWidth = BO->getType()->getScalarSizeInBits();
263    // We only accept shifts-by-a-constant in CanEvaluateShifted.
264    ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
265
266    // We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
267    if (!isLeftShift) {
268      // If this is oversized composite shift, then unsigned shifts get 0.
269      unsigned NewShAmt = NumBits+CI->getZExtValue();
270      if (NewShAmt >= TypeWidth)
271        return Constant::getNullValue(BO->getType());
272
273      BO->setOperand(1, ConstantInt::get(BO->getType(), NewShAmt));
274      BO->setIsExact(false);
275      return I;
276    }
277
278    // We turn lshr(c)+shl(c) -> and(c2) if the input doesn't already have
279    // zeros.
280    if (CI->getValue() == NumBits) {
281      APInt Mask(APInt::getHighBitsSet(TypeWidth, TypeWidth - NumBits));
282      V = IC.Builder->CreateAnd(I->getOperand(0),
283                                ConstantInt::get(BO->getContext(), Mask));
284      if (Instruction *VI = dyn_cast<Instruction>(V)) {
285        VI->moveBefore(I);
286        VI->takeName(I);
287      }
288      return V;
289    }
290
291    // We turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but only when we know that
292    // the and won't be needed.
293    assert(CI->getZExtValue() > NumBits);
294    BO->setOperand(1, ConstantInt::get(BO->getType(),
295                                       CI->getZExtValue() - NumBits));
296    BO->setIsExact(false);
297    return BO;
298  }
299
300  case Instruction::Select:
301    I->setOperand(
302        1, GetShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
303    I->setOperand(
304        2, GetShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL));
305    return I;
306  case Instruction::PHI: {
307    // We can change a phi if we can change all operands.  Note that we never
308    // get into trouble with cyclic PHIs here because we only consider
309    // instructions with a single use.
310    PHINode *PN = cast<PHINode>(I);
311    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
312      PN->setIncomingValue(i, GetShiftedValue(PN->getIncomingValue(i), NumBits,
313                                              isLeftShift, IC, DL));
314    return PN;
315  }
316  }
317}
318
319
320
321Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, Constant *Op1,
322                                               BinaryOperator &I) {
323  bool isLeftShift = I.getOpcode() == Instruction::Shl;
324
325  ConstantInt *COp1 = nullptr;
326  if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(Op1))
327    COp1 = dyn_cast_or_null<ConstantInt>(CV->getSplatValue());
328  else if (ConstantVector *CV = dyn_cast<ConstantVector>(Op1))
329    COp1 = dyn_cast_or_null<ConstantInt>(CV->getSplatValue());
330  else
331    COp1 = dyn_cast<ConstantInt>(Op1);
332
333  if (!COp1)
334    return nullptr;
335
336  // See if we can propagate this shift into the input, this covers the trivial
337  // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
338  if (I.getOpcode() != Instruction::AShr &&
339      CanEvaluateShifted(Op0, COp1->getZExtValue(), isLeftShift, *this, &I)) {
340    DEBUG(dbgs() << "ICE: GetShiftedValue propagating shift through expression"
341              " to eliminate shift:\n  IN: " << *Op0 << "\n  SH: " << I <<"\n");
342
343    return ReplaceInstUsesWith(
344        I, GetShiftedValue(Op0, COp1->getZExtValue(), isLeftShift, *this, DL));
345  }
346
347  // See if we can simplify any instructions used by the instruction whose sole
348  // purpose is to compute bits we don't care about.
349  uint32_t TypeBits = Op0->getType()->getScalarSizeInBits();
350
351  assert(!COp1->uge(TypeBits) &&
352         "Shift over the type width should have been removed already");
353
354  // ((X*C1) << C2) == (X * (C1 << C2))
355  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
356    if (BO->getOpcode() == Instruction::Mul && isLeftShift)
357      if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
358        return BinaryOperator::CreateMul(BO->getOperand(0),
359                                        ConstantExpr::getShl(BOOp, Op1));
360
361  // Try to fold constant and into select arguments.
362  if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
363    if (Instruction *R = FoldOpIntoSelect(I, SI))
364      return R;
365  if (isa<PHINode>(Op0))
366    if (Instruction *NV = FoldOpIntoPhi(I))
367      return NV;
368
369  // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
370  if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
371    Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
372    // If 'shift2' is an ashr, we would have to get the sign bit into a funny
373    // place.  Don't try to do this transformation in this case.  Also, we
374    // require that the input operand is a shift-by-constant so that we have
375    // confidence that the shifts will get folded together.  We could do this
376    // xform in more cases, but it is unlikely to be profitable.
377    if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
378        isa<ConstantInt>(TrOp->getOperand(1))) {
379      // Okay, we'll do this xform.  Make the shift of shift.
380      Constant *ShAmt = ConstantExpr::getZExt(COp1, TrOp->getType());
381      // (shift2 (shift1 & 0x00FF), c2)
382      Value *NSh = Builder->CreateBinOp(I.getOpcode(), TrOp, ShAmt,I.getName());
383
384      // For logical shifts, the truncation has the effect of making the high
385      // part of the register be zeros.  Emulate this by inserting an AND to
386      // clear the top bits as needed.  This 'and' will usually be zapped by
387      // other xforms later if dead.
388      unsigned SrcSize = TrOp->getType()->getScalarSizeInBits();
389      unsigned DstSize = TI->getType()->getScalarSizeInBits();
390      APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
391
392      // The mask we constructed says what the trunc would do if occurring
393      // between the shifts.  We want to know the effect *after* the second
394      // shift.  We know that it is a logical shift by a constant, so adjust the
395      // mask as appropriate.
396      if (I.getOpcode() == Instruction::Shl)
397        MaskV <<= COp1->getZExtValue();
398      else {
399        assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
400        MaskV = MaskV.lshr(COp1->getZExtValue());
401      }
402
403      // shift1 & 0x00FF
404      Value *And = Builder->CreateAnd(NSh,
405                                      ConstantInt::get(I.getContext(), MaskV),
406                                      TI->getName());
407
408      // Return the value truncated to the interesting size.
409      return new TruncInst(And, I.getType());
410    }
411  }
412
413  if (Op0->hasOneUse()) {
414    if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
415      // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
416      Value *V1, *V2;
417      ConstantInt *CC;
418      switch (Op0BO->getOpcode()) {
419      default: break;
420      case Instruction::Add:
421      case Instruction::And:
422      case Instruction::Or:
423      case Instruction::Xor: {
424        // These operators commute.
425        // Turn (Y + (X >> C)) << C  ->  (X + (Y << C)) & (~0 << C)
426        if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
427            match(Op0BO->getOperand(1), m_Shr(m_Value(V1),
428                  m_Specific(Op1)))) {
429          Value *YS =         // (Y << C)
430            Builder->CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
431          // (X + (Y << C))
432          Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), YS, V1,
433                                          Op0BO->getOperand(1)->getName());
434          uint32_t Op1Val = COp1->getLimitedValue(TypeBits);
435
436          APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
437          Constant *Mask = ConstantInt::get(I.getContext(), Bits);
438          if (VectorType *VT = dyn_cast<VectorType>(X->getType()))
439            Mask = ConstantVector::getSplat(VT->getNumElements(), Mask);
440          return BinaryOperator::CreateAnd(X, Mask);
441        }
442
443        // Turn (Y + ((X >> C) & CC)) << C  ->  ((X & (CC << C)) + (Y << C))
444        Value *Op0BOOp1 = Op0BO->getOperand(1);
445        if (isLeftShift && Op0BOOp1->hasOneUse() &&
446            match(Op0BOOp1,
447                  m_And(m_OneUse(m_Shr(m_Value(V1), m_Specific(Op1))),
448                        m_ConstantInt(CC)))) {
449          Value *YS =   // (Y << C)
450            Builder->CreateShl(Op0BO->getOperand(0), Op1,
451                                         Op0BO->getName());
452          // X & (CC << C)
453          Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
454                                         V1->getName()+".mask");
455          return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
456        }
457      }
458
459      // FALL THROUGH.
460      case Instruction::Sub: {
461        // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
462        if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
463            match(Op0BO->getOperand(0), m_Shr(m_Value(V1),
464                  m_Specific(Op1)))) {
465          Value *YS =  // (Y << C)
466            Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
467          // (X + (Y << C))
468          Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), V1, YS,
469                                          Op0BO->getOperand(0)->getName());
470          uint32_t Op1Val = COp1->getLimitedValue(TypeBits);
471
472          APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
473          Constant *Mask = ConstantInt::get(I.getContext(), Bits);
474          if (VectorType *VT = dyn_cast<VectorType>(X->getType()))
475            Mask = ConstantVector::getSplat(VT->getNumElements(), Mask);
476          return BinaryOperator::CreateAnd(X, Mask);
477        }
478
479        // Turn (((X >> C)&CC) + Y) << C  ->  (X + (Y << C)) & (CC << C)
480        if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
481            match(Op0BO->getOperand(0),
482                  m_And(m_OneUse(m_Shr(m_Value(V1), m_Value(V2))),
483                        m_ConstantInt(CC))) && V2 == Op1) {
484          Value *YS = // (Y << C)
485            Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
486          // X & (CC << C)
487          Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
488                                         V1->getName()+".mask");
489
490          return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
491        }
492
493        break;
494      }
495      }
496
497
498      // If the operand is a bitwise operator with a constant RHS, and the
499      // shift is the only use, we can pull it out of the shift.
500      if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
501        bool isValid = true;     // Valid only for And, Or, Xor
502        bool highBitSet = false; // Transform if high bit of constant set?
503
504        switch (Op0BO->getOpcode()) {
505        default: isValid = false; break;   // Do not perform transform!
506        case Instruction::Add:
507          isValid = isLeftShift;
508          break;
509        case Instruction::Or:
510        case Instruction::Xor:
511          highBitSet = false;
512          break;
513        case Instruction::And:
514          highBitSet = true;
515          break;
516        }
517
518        // If this is a signed shift right, and the high bit is modified
519        // by the logical operation, do not perform the transformation.
520        // The highBitSet boolean indicates the value of the high bit of
521        // the constant which would cause it to be modified for this
522        // operation.
523        //
524        if (isValid && I.getOpcode() == Instruction::AShr)
525          isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
526
527        if (isValid) {
528          Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
529
530          Value *NewShift =
531            Builder->CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
532          NewShift->takeName(Op0BO);
533
534          return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
535                                        NewRHS);
536        }
537      }
538    }
539  }
540
541  // Find out if this is a shift of a shift by a constant.
542  BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
543  if (ShiftOp && !ShiftOp->isShift())
544    ShiftOp = nullptr;
545
546  if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
547
548    // This is a constant shift of a constant shift. Be careful about hiding
549    // shl instructions behind bit masks. They are used to represent multiplies
550    // by a constant, and it is important that simple arithmetic expressions
551    // are still recognizable by scalar evolution.
552    //
553    // The transforms applied to shl are very similar to the transforms applied
554    // to mul by constant. We can be more aggressive about optimizing right
555    // shifts.
556    //
557    // Combinations of right and left shifts will still be optimized in
558    // DAGCombine where scalar evolution no longer applies.
559
560    ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
561    uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
562    uint32_t ShiftAmt2 = COp1->getLimitedValue(TypeBits);
563    assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
564    if (ShiftAmt1 == 0) return nullptr;  // Will be simplified in the future.
565    Value *X = ShiftOp->getOperand(0);
566
567    IntegerType *Ty = cast<IntegerType>(I.getType());
568
569    // Check for (X << c1) << c2  and  (X >> c1) >> c2
570    if (I.getOpcode() == ShiftOp->getOpcode()) {
571      uint32_t AmtSum = ShiftAmt1+ShiftAmt2;   // Fold into one big shift.
572      // If this is oversized composite shift, then unsigned shifts get 0, ashr
573      // saturates.
574      if (AmtSum >= TypeBits) {
575        if (I.getOpcode() != Instruction::AShr)
576          return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
577        AmtSum = TypeBits-1;  // Saturate to 31 for i32 ashr.
578      }
579
580      return BinaryOperator::Create(I.getOpcode(), X,
581                                    ConstantInt::get(Ty, AmtSum));
582    }
583
584    if (ShiftAmt1 == ShiftAmt2) {
585      // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
586      if (I.getOpcode() == Instruction::LShr &&
587          ShiftOp->getOpcode() == Instruction::Shl) {
588        APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
589        return BinaryOperator::CreateAnd(X,
590                                        ConstantInt::get(I.getContext(), Mask));
591      }
592    } else if (ShiftAmt1 < ShiftAmt2) {
593      uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
594
595      // (X >>?,exact C1) << C2 --> X << (C2-C1)
596      // The inexact version is deferred to DAGCombine so we don't hide shl
597      // behind a bit mask.
598      if (I.getOpcode() == Instruction::Shl &&
599          ShiftOp->getOpcode() != Instruction::Shl &&
600          ShiftOp->isExact()) {
601        assert(ShiftOp->getOpcode() == Instruction::LShr ||
602               ShiftOp->getOpcode() == Instruction::AShr);
603        ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
604        BinaryOperator *NewShl = BinaryOperator::Create(Instruction::Shl,
605                                                        X, ShiftDiffCst);
606        NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
607        NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
608        return NewShl;
609      }
610
611      // (X << C1) >>u C2  --> X >>u (C2-C1) & (-1 >> C2)
612      if (I.getOpcode() == Instruction::LShr &&
613          ShiftOp->getOpcode() == Instruction::Shl) {
614        ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
615        // (X <<nuw C1) >>u C2 --> X >>u (C2-C1)
616        if (ShiftOp->hasNoUnsignedWrap()) {
617          BinaryOperator *NewLShr = BinaryOperator::Create(Instruction::LShr,
618                                                           X, ShiftDiffCst);
619          NewLShr->setIsExact(I.isExact());
620          return NewLShr;
621        }
622        Value *Shift = Builder->CreateLShr(X, ShiftDiffCst);
623
624        APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
625        return BinaryOperator::CreateAnd(Shift,
626                                         ConstantInt::get(I.getContext(),Mask));
627      }
628
629      // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in. However,
630      // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
631      if (I.getOpcode() == Instruction::AShr &&
632          ShiftOp->getOpcode() == Instruction::Shl) {
633        if (ShiftOp->hasNoSignedWrap()) {
634          // (X <<nsw C1) >>s C2 --> X >>s (C2-C1)
635          ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
636          BinaryOperator *NewAShr = BinaryOperator::Create(Instruction::AShr,
637                                                           X, ShiftDiffCst);
638          NewAShr->setIsExact(I.isExact());
639          return NewAShr;
640        }
641      }
642    } else {
643      assert(ShiftAmt2 < ShiftAmt1);
644      uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
645
646      // (X >>?exact C1) << C2 --> X >>?exact (C1-C2)
647      // The inexact version is deferred to DAGCombine so we don't hide shl
648      // behind a bit mask.
649      if (I.getOpcode() == Instruction::Shl &&
650          ShiftOp->getOpcode() != Instruction::Shl &&
651          ShiftOp->isExact()) {
652        ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
653        BinaryOperator *NewShr = BinaryOperator::Create(ShiftOp->getOpcode(),
654                                                        X, ShiftDiffCst);
655        NewShr->setIsExact(true);
656        return NewShr;
657      }
658
659      // (X << C1) >>u C2  --> X << (C1-C2) & (-1 >> C2)
660      if (I.getOpcode() == Instruction::LShr &&
661          ShiftOp->getOpcode() == Instruction::Shl) {
662        ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
663        if (ShiftOp->hasNoUnsignedWrap()) {
664          // (X <<nuw C1) >>u C2 --> X <<nuw (C1-C2)
665          BinaryOperator *NewShl = BinaryOperator::Create(Instruction::Shl,
666                                                          X, ShiftDiffCst);
667          NewShl->setHasNoUnsignedWrap(true);
668          return NewShl;
669        }
670        Value *Shift = Builder->CreateShl(X, ShiftDiffCst);
671
672        APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
673        return BinaryOperator::CreateAnd(Shift,
674                                         ConstantInt::get(I.getContext(),Mask));
675      }
676
677      // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in. However,
678      // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
679      if (I.getOpcode() == Instruction::AShr &&
680          ShiftOp->getOpcode() == Instruction::Shl) {
681        if (ShiftOp->hasNoSignedWrap()) {
682          // (X <<nsw C1) >>s C2 --> X <<nsw (C1-C2)
683          ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
684          BinaryOperator *NewShl = BinaryOperator::Create(Instruction::Shl,
685                                                          X, ShiftDiffCst);
686          NewShl->setHasNoSignedWrap(true);
687          return NewShl;
688        }
689      }
690    }
691  }
692  return nullptr;
693}
694
695Instruction *InstCombiner::visitShl(BinaryOperator &I) {
696  if (Value *V = SimplifyVectorOp(I))
697    return ReplaceInstUsesWith(I, V);
698
699  if (Value *V =
700          SimplifyShlInst(I.getOperand(0), I.getOperand(1), I.hasNoSignedWrap(),
701                          I.hasNoUnsignedWrap(), DL, TLI, DT, AC))
702    return ReplaceInstUsesWith(I, V);
703
704  if (Instruction *V = commonShiftTransforms(I))
705    return V;
706
707  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(I.getOperand(1))) {
708    unsigned ShAmt = Op1C->getZExtValue();
709
710    // If the shifted-out value is known-zero, then this is a NUW shift.
711    if (!I.hasNoUnsignedWrap() &&
712        MaskedValueIsZero(I.getOperand(0),
713                          APInt::getHighBitsSet(Op1C->getBitWidth(), ShAmt),
714                          0, &I)) {
715          I.setHasNoUnsignedWrap();
716          return &I;
717        }
718
719    // If the shifted out value is all signbits, this is a NSW shift.
720    if (!I.hasNoSignedWrap() &&
721        ComputeNumSignBits(I.getOperand(0), 0, &I) > ShAmt) {
722      I.setHasNoSignedWrap();
723      return &I;
724    }
725  }
726
727  // (C1 << A) << C2 -> (C1 << C2) << A
728  Constant *C1, *C2;
729  Value *A;
730  if (match(I.getOperand(0), m_OneUse(m_Shl(m_Constant(C1), m_Value(A)))) &&
731      match(I.getOperand(1), m_Constant(C2)))
732    return BinaryOperator::CreateShl(ConstantExpr::getShl(C1, C2), A);
733
734  return nullptr;
735}
736
737Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
738  if (Value *V = SimplifyVectorOp(I))
739    return ReplaceInstUsesWith(I, V);
740
741  if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
742                                  DL, TLI, DT, AC))
743    return ReplaceInstUsesWith(I, V);
744
745  if (Instruction *R = commonShiftTransforms(I))
746    return R;
747
748  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
749
750  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
751    unsigned ShAmt = Op1C->getZExtValue();
752
753    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op0)) {
754      unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
755      // ctlz.i32(x)>>5  --> zext(x == 0)
756      // cttz.i32(x)>>5  --> zext(x == 0)
757      // ctpop.i32(x)>>5 --> zext(x == -1)
758      if ((II->getIntrinsicID() == Intrinsic::ctlz ||
759           II->getIntrinsicID() == Intrinsic::cttz ||
760           II->getIntrinsicID() == Intrinsic::ctpop) &&
761          isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmt) {
762        bool isCtPop = II->getIntrinsicID() == Intrinsic::ctpop;
763        Constant *RHS = ConstantInt::getSigned(Op0->getType(), isCtPop ? -1:0);
764        Value *Cmp = Builder->CreateICmpEQ(II->getArgOperand(0), RHS);
765        return new ZExtInst(Cmp, II->getType());
766      }
767    }
768
769    // If the shifted-out value is known-zero, then this is an exact shift.
770    if (!I.isExact() &&
771        MaskedValueIsZero(Op0, APInt::getLowBitsSet(Op1C->getBitWidth(), ShAmt),
772                          0, &I)){
773      I.setIsExact();
774      return &I;
775    }
776  }
777
778  return nullptr;
779}
780
781Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
782  if (Value *V = SimplifyVectorOp(I))
783    return ReplaceInstUsesWith(I, V);
784
785  if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
786                                  DL, TLI, DT, AC))
787    return ReplaceInstUsesWith(I, V);
788
789  if (Instruction *R = commonShiftTransforms(I))
790    return R;
791
792  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
793
794  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
795    unsigned ShAmt = Op1C->getZExtValue();
796
797    // If the input is a SHL by the same constant (ashr (shl X, C), C), then we
798    // have a sign-extend idiom.
799    Value *X;
800    if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1)))) {
801      // If the input is an extension from the shifted amount value, e.g.
802      //   %x = zext i8 %A to i32
803      //   %y = shl i32 %x, 24
804      //   %z = ashr %y, 24
805      // then turn this into "z = sext i8 A to i32".
806      if (ZExtInst *ZI = dyn_cast<ZExtInst>(X)) {
807        uint32_t SrcBits = ZI->getOperand(0)->getType()->getScalarSizeInBits();
808        uint32_t DestBits = ZI->getType()->getScalarSizeInBits();
809        if (Op1C->getZExtValue() == DestBits-SrcBits)
810          return new SExtInst(ZI->getOperand(0), ZI->getType());
811      }
812    }
813
814    // If the shifted-out value is known-zero, then this is an exact shift.
815    if (!I.isExact() &&
816        MaskedValueIsZero(Op0,APInt::getLowBitsSet(Op1C->getBitWidth(),ShAmt),
817                          0, &I)){
818      I.setIsExact();
819      return &I;
820    }
821  }
822
823  // See if we can turn a signed shr into an unsigned shr.
824  if (MaskedValueIsZero(Op0,
825                        APInt::getSignBit(I.getType()->getScalarSizeInBits()),
826                        0, &I))
827    return BinaryOperator::CreateLShr(Op0, Op1);
828
829  return nullptr;
830}
831