InstCombineShifts.cpp revision 747032522f9f3b2d9bae71aa303c1a0fd953eee9
1//===- InstCombineShifts.cpp ----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitShl, visitLShr, and visitAShr functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/IntrinsicInst.h"
16#include "llvm/Analysis/ConstantFolding.h"
17#include "llvm/Analysis/InstructionSimplify.h"
18#include "llvm/Support/PatternMatch.h"
19using namespace llvm;
20using namespace PatternMatch;
21
22Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
23  assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
24  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
25
26  // See if we can fold away this shift.
27  if (SimplifyDemandedInstructionBits(I))
28    return &I;
29
30  // Try to fold constant and into select arguments.
31  if (isa<Constant>(Op0))
32    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
33      if (Instruction *R = FoldOpIntoSelect(I, SI))
34        return R;
35
36  if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
37    if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
38      return Res;
39
40  // X shift (A srem B) -> X shift (A and B-1) iff B is a power of 2.
41  // Because shifts by negative values (which could occur if A were negative)
42  // are undefined.
43  Value *A; const APInt *B;
44  if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Power2(B)))) {
45    // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
46    // demand the sign bit (and many others) here??
47    Value *Rem = Builder->CreateAnd(A, ConstantInt::get(I.getType(), *B-1),
48                                    Op1->getName());
49    I.setOperand(1, Rem);
50    return &I;
51  }
52
53  return 0;
54}
55
56/// CanEvaluateShifted - See if we can compute the specified value, but shifted
57/// logically to the left or right by some number of bits.  This should return
58/// true if the expression can be computed for the same cost as the current
59/// expression tree.  This is used to eliminate extraneous shifting from things
60/// like:
61///      %C = shl i128 %A, 64
62///      %D = shl i128 %B, 96
63///      %E = or i128 %C, %D
64///      %F = lshr i128 %E, 64
65/// where the client will ask if E can be computed shifted right by 64-bits.  If
66/// this succeeds, the GetShiftedValue function will be called to produce the
67/// value.
68static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift,
69                               InstCombiner &IC) {
70  // We can always evaluate constants shifted.
71  if (isa<Constant>(V))
72    return true;
73
74  Instruction *I = dyn_cast<Instruction>(V);
75  if (!I) return false;
76
77  // If this is the opposite shift, we can directly reuse the input of the shift
78  // if the needed bits are already zero in the input.  This allows us to reuse
79  // the value which means that we don't care if the shift has multiple uses.
80  //  TODO:  Handle opposite shift by exact value.
81  ConstantInt *CI = 0;
82  if ((isLeftShift && match(I, m_LShr(m_Value(), m_ConstantInt(CI)))) ||
83      (!isLeftShift && match(I, m_Shl(m_Value(), m_ConstantInt(CI))))) {
84    if (CI->getZExtValue() == NumBits) {
85      // TODO: Check that the input bits are already zero with MaskedValueIsZero
86#if 0
87      // If this is a truncate of a logical shr, we can truncate it to a smaller
88      // lshr iff we know that the bits we would otherwise be shifting in are
89      // already zeros.
90      uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
91      uint32_t BitWidth = Ty->getScalarSizeInBits();
92      if (MaskedValueIsZero(I->getOperand(0),
93            APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
94          CI->getLimitedValue(BitWidth) < BitWidth) {
95        return CanEvaluateTruncated(I->getOperand(0), Ty);
96      }
97#endif
98
99    }
100  }
101
102  // We can't mutate something that has multiple uses: doing so would
103  // require duplicating the instruction in general, which isn't profitable.
104  if (!I->hasOneUse()) return false;
105
106  switch (I->getOpcode()) {
107  default: return false;
108  case Instruction::And:
109  case Instruction::Or:
110  case Instruction::Xor:
111    // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
112    return CanEvaluateShifted(I->getOperand(0), NumBits, isLeftShift, IC) &&
113           CanEvaluateShifted(I->getOperand(1), NumBits, isLeftShift, IC);
114
115  case Instruction::Shl: {
116    // We can often fold the shift into shifts-by-a-constant.
117    CI = dyn_cast<ConstantInt>(I->getOperand(1));
118    if (CI == 0) return false;
119
120    // We can always fold shl(c1)+shl(c2) -> shl(c1+c2).
121    if (isLeftShift) return true;
122
123    // We can always turn shl(c)+shr(c) -> and(c2).
124    if (CI->getValue() == NumBits) return true;
125
126    unsigned TypeWidth = I->getType()->getScalarSizeInBits();
127
128    // We can turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but it isn't
129    // profitable unless we know the and'd out bits are already zero.
130    if (CI->getZExtValue() > NumBits) {
131      unsigned LowBits = TypeWidth - CI->getZExtValue();
132      if (MaskedValueIsZero(I->getOperand(0),
133                       APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits))
134        return true;
135    }
136
137    return false;
138  }
139  case Instruction::LShr: {
140    // We can often fold the shift into shifts-by-a-constant.
141    CI = dyn_cast<ConstantInt>(I->getOperand(1));
142    if (CI == 0) return false;
143
144    // We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
145    if (!isLeftShift) return true;
146
147    // We can always turn lshr(c)+shl(c) -> and(c2).
148    if (CI->getValue() == NumBits) return true;
149
150    unsigned TypeWidth = I->getType()->getScalarSizeInBits();
151
152    // We can always turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but it isn't
153    // profitable unless we know the and'd out bits are already zero.
154    if (CI->getZExtValue() > NumBits) {
155      unsigned LowBits = CI->getZExtValue() - NumBits;
156      if (MaskedValueIsZero(I->getOperand(0),
157                          APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits))
158        return true;
159    }
160
161    return false;
162  }
163  case Instruction::Select: {
164    SelectInst *SI = cast<SelectInst>(I);
165    return CanEvaluateShifted(SI->getTrueValue(), NumBits, isLeftShift, IC) &&
166           CanEvaluateShifted(SI->getFalseValue(), NumBits, isLeftShift, IC);
167  }
168  case Instruction::PHI: {
169    // We can change a phi if we can change all operands.  Note that we never
170    // get into trouble with cyclic PHIs here because we only consider
171    // instructions with a single use.
172    PHINode *PN = cast<PHINode>(I);
173    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
174      if (!CanEvaluateShifted(PN->getIncomingValue(i), NumBits, isLeftShift,IC))
175        return false;
176    return true;
177  }
178  }
179}
180
181/// GetShiftedValue - When CanEvaluateShifted returned true for an expression,
182/// this value inserts the new computation that produces the shifted value.
183static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
184                              InstCombiner &IC) {
185  // We can always evaluate constants shifted.
186  if (Constant *C = dyn_cast<Constant>(V)) {
187    if (isLeftShift)
188      V = IC.Builder->CreateShl(C, NumBits);
189    else
190      V = IC.Builder->CreateLShr(C, NumBits);
191    // If we got a constantexpr back, try to simplify it with TD info.
192    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
193      V = ConstantFoldConstantExpression(CE, IC.getTargetData());
194    return V;
195  }
196
197  Instruction *I = cast<Instruction>(V);
198  IC.Worklist.Add(I);
199
200  switch (I->getOpcode()) {
201  default: assert(0 && "Inconsistency with CanEvaluateShifted");
202  case Instruction::And:
203  case Instruction::Or:
204  case Instruction::Xor:
205    // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
206    I->setOperand(0, GetShiftedValue(I->getOperand(0), NumBits,isLeftShift,IC));
207    I->setOperand(1, GetShiftedValue(I->getOperand(1), NumBits,isLeftShift,IC));
208    return I;
209
210  case Instruction::Shl: {
211    unsigned TypeWidth = I->getType()->getScalarSizeInBits();
212
213    // We only accept shifts-by-a-constant in CanEvaluateShifted.
214    ConstantInt *CI = cast<ConstantInt>(I->getOperand(1));
215
216    // We can always fold shl(c1)+shl(c2) -> shl(c1+c2).
217    if (isLeftShift) {
218      // If this is oversized composite shift, then unsigned shifts get 0.
219      unsigned NewShAmt = NumBits+CI->getZExtValue();
220      if (NewShAmt >= TypeWidth)
221        return Constant::getNullValue(I->getType());
222
223      I->setOperand(1, ConstantInt::get(I->getType(), NewShAmt));
224      return I;
225    }
226
227    // We turn shl(c)+lshr(c) -> and(c2) if the input doesn't already have
228    // zeros.
229    if (CI->getValue() == NumBits) {
230      APInt Mask(APInt::getLowBitsSet(TypeWidth, TypeWidth - NumBits));
231      V = IC.Builder->CreateAnd(I->getOperand(0),
232                                ConstantInt::get(I->getContext(), Mask));
233      if (Instruction *VI = dyn_cast<Instruction>(V)) {
234        VI->moveBefore(I);
235        VI->takeName(I);
236      }
237      return V;
238    }
239
240    // We turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but only when we know that
241    // the and won't be needed.
242    assert(CI->getZExtValue() > NumBits);
243    I->setOperand(1, ConstantInt::get(I->getType(),
244                                      CI->getZExtValue() - NumBits));
245    return I;
246  }
247  case Instruction::LShr: {
248    unsigned TypeWidth = I->getType()->getScalarSizeInBits();
249    // We only accept shifts-by-a-constant in CanEvaluateShifted.
250    ConstantInt *CI = cast<ConstantInt>(I->getOperand(1));
251
252    // We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
253    if (!isLeftShift) {
254      // If this is oversized composite shift, then unsigned shifts get 0.
255      unsigned NewShAmt = NumBits+CI->getZExtValue();
256      if (NewShAmt >= TypeWidth)
257        return Constant::getNullValue(I->getType());
258
259      I->setOperand(1, ConstantInt::get(I->getType(), NewShAmt));
260      return I;
261    }
262
263    // We turn lshr(c)+shl(c) -> and(c2) if the input doesn't already have
264    // zeros.
265    if (CI->getValue() == NumBits) {
266      APInt Mask(APInt::getHighBitsSet(TypeWidth, TypeWidth - NumBits));
267      V = IC.Builder->CreateAnd(I->getOperand(0),
268                                ConstantInt::get(I->getContext(), Mask));
269      if (Instruction *VI = dyn_cast<Instruction>(V)) {
270        VI->moveBefore(I);
271        VI->takeName(I);
272      }
273      return V;
274    }
275
276    // We turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but only when we know that
277    // the and won't be needed.
278    assert(CI->getZExtValue() > NumBits);
279    I->setOperand(1, ConstantInt::get(I->getType(),
280                                      CI->getZExtValue() - NumBits));
281    return I;
282  }
283
284  case Instruction::Select:
285    I->setOperand(1, GetShiftedValue(I->getOperand(1), NumBits,isLeftShift,IC));
286    I->setOperand(2, GetShiftedValue(I->getOperand(2), NumBits,isLeftShift,IC));
287    return I;
288  case Instruction::PHI: {
289    // We can change a phi if we can change all operands.  Note that we never
290    // get into trouble with cyclic PHIs here because we only consider
291    // instructions with a single use.
292    PHINode *PN = cast<PHINode>(I);
293    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
294      PN->setIncomingValue(i, GetShiftedValue(PN->getIncomingValue(i),
295                                              NumBits, isLeftShift, IC));
296    return PN;
297  }
298  }
299}
300
301
302
303Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
304                                               BinaryOperator &I) {
305  bool isLeftShift = I.getOpcode() == Instruction::Shl;
306
307
308  // See if we can propagate this shift into the input, this covers the trivial
309  // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
310  if (I.getOpcode() != Instruction::AShr &&
311      CanEvaluateShifted(Op0, Op1->getZExtValue(), isLeftShift, *this)) {
312    DEBUG(dbgs() << "ICE: GetShiftedValue propagating shift through expression"
313              " to eliminate shift:\n  IN: " << *Op0 << "\n  SH: " << I <<"\n");
314
315    return ReplaceInstUsesWith(I,
316                 GetShiftedValue(Op0, Op1->getZExtValue(), isLeftShift, *this));
317  }
318
319
320  // See if we can simplify any instructions used by the instruction whose sole
321  // purpose is to compute bits we don't care about.
322  uint32_t TypeBits = Op0->getType()->getScalarSizeInBits();
323
324  // shl i32 X, 32 = 0 and srl i8 Y, 9 = 0, ... just don't eliminate
325  // a signed shift.
326  //
327  if (Op1->uge(TypeBits)) {
328    if (I.getOpcode() != Instruction::AShr)
329      return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
330    // ashr i32 X, 32 --> ashr i32 X, 31
331    I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
332    return &I;
333  }
334
335  // ((X*C1) << C2) == (X * (C1 << C2))
336  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
337    if (BO->getOpcode() == Instruction::Mul && isLeftShift)
338      if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
339        return BinaryOperator::CreateMul(BO->getOperand(0),
340                                        ConstantExpr::getShl(BOOp, Op1));
341
342  // Try to fold constant and into select arguments.
343  if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
344    if (Instruction *R = FoldOpIntoSelect(I, SI))
345      return R;
346  if (isa<PHINode>(Op0))
347    if (Instruction *NV = FoldOpIntoPhi(I))
348      return NV;
349
350  // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
351  if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
352    Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
353    // If 'shift2' is an ashr, we would have to get the sign bit into a funny
354    // place.  Don't try to do this transformation in this case.  Also, we
355    // require that the input operand is a shift-by-constant so that we have
356    // confidence that the shifts will get folded together.  We could do this
357    // xform in more cases, but it is unlikely to be profitable.
358    if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
359        isa<ConstantInt>(TrOp->getOperand(1))) {
360      // Okay, we'll do this xform.  Make the shift of shift.
361      Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
362      // (shift2 (shift1 & 0x00FF), c2)
363      Value *NSh = Builder->CreateBinOp(I.getOpcode(), TrOp, ShAmt,I.getName());
364
365      // For logical shifts, the truncation has the effect of making the high
366      // part of the register be zeros.  Emulate this by inserting an AND to
367      // clear the top bits as needed.  This 'and' will usually be zapped by
368      // other xforms later if dead.
369      unsigned SrcSize = TrOp->getType()->getScalarSizeInBits();
370      unsigned DstSize = TI->getType()->getScalarSizeInBits();
371      APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
372
373      // The mask we constructed says what the trunc would do if occurring
374      // between the shifts.  We want to know the effect *after* the second
375      // shift.  We know that it is a logical shift by a constant, so adjust the
376      // mask as appropriate.
377      if (I.getOpcode() == Instruction::Shl)
378        MaskV <<= Op1->getZExtValue();
379      else {
380        assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
381        MaskV = MaskV.lshr(Op1->getZExtValue());
382      }
383
384      // shift1 & 0x00FF
385      Value *And = Builder->CreateAnd(NSh,
386                                      ConstantInt::get(I.getContext(), MaskV),
387                                      TI->getName());
388
389      // Return the value truncated to the interesting size.
390      return new TruncInst(And, I.getType());
391    }
392  }
393
394  if (Op0->hasOneUse()) {
395    if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
396      // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
397      Value *V1, *V2;
398      ConstantInt *CC;
399      switch (Op0BO->getOpcode()) {
400      default: break;
401      case Instruction::Add:
402      case Instruction::And:
403      case Instruction::Or:
404      case Instruction::Xor: {
405        // These operators commute.
406        // Turn (Y + (X >> C)) << C  ->  (X + (Y << C)) & (~0 << C)
407        if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
408            match(Op0BO->getOperand(1), m_Shr(m_Value(V1),
409                  m_Specific(Op1)))) {
410          Value *YS =         // (Y << C)
411            Builder->CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
412          // (X + (Y << C))
413          Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), YS, V1,
414                                          Op0BO->getOperand(1)->getName());
415          uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
416          return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(),
417                     APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
418        }
419
420        // Turn (Y + ((X >> C) & CC)) << C  ->  ((X & (CC << C)) + (Y << C))
421        Value *Op0BOOp1 = Op0BO->getOperand(1);
422        if (isLeftShift && Op0BOOp1->hasOneUse() &&
423            match(Op0BOOp1,
424                  m_And(m_Shr(m_Value(V1), m_Specific(Op1)),
425                        m_ConstantInt(CC))) &&
426            cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse()) {
427          Value *YS =   // (Y << C)
428            Builder->CreateShl(Op0BO->getOperand(0), Op1,
429                                         Op0BO->getName());
430          // X & (CC << C)
431          Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
432                                         V1->getName()+".mask");
433          return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
434        }
435      }
436
437      // FALL THROUGH.
438      case Instruction::Sub: {
439        // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
440        if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
441            match(Op0BO->getOperand(0), m_Shr(m_Value(V1),
442                  m_Specific(Op1)))) {
443          Value *YS =  // (Y << C)
444            Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
445          // (X + (Y << C))
446          Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), V1, YS,
447                                          Op0BO->getOperand(0)->getName());
448          uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
449          return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(),
450                     APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
451        }
452
453        // Turn (((X >> C)&CC) + Y) << C  ->  (X + (Y << C)) & (CC << C)
454        if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
455            match(Op0BO->getOperand(0),
456                  m_And(m_Shr(m_Value(V1), m_Value(V2)),
457                        m_ConstantInt(CC))) && V2 == Op1 &&
458            cast<BinaryOperator>(Op0BO->getOperand(0))
459                ->getOperand(0)->hasOneUse()) {
460          Value *YS = // (Y << C)
461            Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
462          // X & (CC << C)
463          Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
464                                         V1->getName()+".mask");
465
466          return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
467        }
468
469        break;
470      }
471      }
472
473
474      // If the operand is an bitwise operator with a constant RHS, and the
475      // shift is the only use, we can pull it out of the shift.
476      if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
477        bool isValid = true;     // Valid only for And, Or, Xor
478        bool highBitSet = false; // Transform if high bit of constant set?
479
480        switch (Op0BO->getOpcode()) {
481        default: isValid = false; break;   // Do not perform transform!
482        case Instruction::Add:
483          isValid = isLeftShift;
484          break;
485        case Instruction::Or:
486        case Instruction::Xor:
487          highBitSet = false;
488          break;
489        case Instruction::And:
490          highBitSet = true;
491          break;
492        }
493
494        // If this is a signed shift right, and the high bit is modified
495        // by the logical operation, do not perform the transformation.
496        // The highBitSet boolean indicates the value of the high bit of
497        // the constant which would cause it to be modified for this
498        // operation.
499        //
500        if (isValid && I.getOpcode() == Instruction::AShr)
501          isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
502
503        if (isValid) {
504          Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
505
506          Value *NewShift =
507            Builder->CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
508          NewShift->takeName(Op0BO);
509
510          return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
511                                        NewRHS);
512        }
513      }
514    }
515  }
516
517  // Find out if this is a shift of a shift by a constant.
518  BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
519  if (ShiftOp && !ShiftOp->isShift())
520    ShiftOp = 0;
521
522  if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
523    ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
524    uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
525    uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits);
526    assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
527    if (ShiftAmt1 == 0) return 0;  // Will be simplified in the future.
528    Value *X = ShiftOp->getOperand(0);
529
530    uint32_t AmtSum = ShiftAmt1+ShiftAmt2;   // Fold into one big shift.
531
532    IntegerType *Ty = cast<IntegerType>(I.getType());
533
534    // Check for (X << c1) << c2  and  (X >> c1) >> c2
535    if (I.getOpcode() == ShiftOp->getOpcode()) {
536      // If this is oversized composite shift, then unsigned shifts get 0, ashr
537      // saturates.
538      if (AmtSum >= TypeBits) {
539        if (I.getOpcode() != Instruction::AShr)
540          return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
541        AmtSum = TypeBits-1;  // Saturate to 31 for i32 ashr.
542      }
543
544      return BinaryOperator::Create(I.getOpcode(), X,
545                                    ConstantInt::get(Ty, AmtSum));
546    }
547
548    if (ShiftAmt1 == ShiftAmt2) {
549      // If we have ((X >>? C) << C), turn this into X & (-1 << C).
550      if (I.getOpcode() == Instruction::Shl &&
551          ShiftOp->getOpcode() != Instruction::Shl) {
552        APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1));
553        return BinaryOperator::CreateAnd(X,
554                                         ConstantInt::get(I.getContext(),Mask));
555      }
556      // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
557      if (I.getOpcode() == Instruction::LShr &&
558          ShiftOp->getOpcode() == Instruction::Shl) {
559        APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
560        return BinaryOperator::CreateAnd(X,
561                                        ConstantInt::get(I.getContext(), Mask));
562      }
563    } else if (ShiftAmt1 < ShiftAmt2) {
564      uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
565
566      // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
567      if (I.getOpcode() == Instruction::Shl &&
568          ShiftOp->getOpcode() != Instruction::Shl) {
569        assert(ShiftOp->getOpcode() == Instruction::LShr ||
570               ShiftOp->getOpcode() == Instruction::AShr);
571        Value *Shift = Builder->CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
572
573        APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
574        return BinaryOperator::CreateAnd(Shift,
575                                         ConstantInt::get(I.getContext(),Mask));
576      }
577
578      // (X << C1) >>u C2  --> X >>u (C2-C1) & (-1 >> C2)
579      if (I.getOpcode() == Instruction::LShr &&
580          ShiftOp->getOpcode() == Instruction::Shl) {
581        assert(ShiftOp->getOpcode() == Instruction::Shl);
582        Value *Shift = Builder->CreateLShr(X, ConstantInt::get(Ty, ShiftDiff));
583
584        APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
585        return BinaryOperator::CreateAnd(Shift,
586                                         ConstantInt::get(I.getContext(),Mask));
587      }
588
589      // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
590    } else {
591      assert(ShiftAmt2 < ShiftAmt1);
592      uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
593
594      // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
595      if (I.getOpcode() == Instruction::Shl &&
596          ShiftOp->getOpcode() != Instruction::Shl) {
597        Value *Shift = Builder->CreateBinOp(ShiftOp->getOpcode(), X,
598                                            ConstantInt::get(Ty, ShiftDiff));
599
600        APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
601        return BinaryOperator::CreateAnd(Shift,
602                                         ConstantInt::get(I.getContext(),Mask));
603      }
604
605      // (X << C1) >>u C2  --> X << (C1-C2) & (-1 >> C2)
606      if (I.getOpcode() == Instruction::LShr &&
607          ShiftOp->getOpcode() == Instruction::Shl) {
608        Value *Shift = Builder->CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
609
610        APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
611        return BinaryOperator::CreateAnd(Shift,
612                                         ConstantInt::get(I.getContext(),Mask));
613      }
614
615      // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
616    }
617  }
618  return 0;
619}
620
621Instruction *InstCombiner::visitShl(BinaryOperator &I) {
622  if (Value *V = SimplifyShlInst(I.getOperand(0), I.getOperand(1),
623                                 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
624                                 TD))
625    return ReplaceInstUsesWith(I, V);
626
627  if (Instruction *V = commonShiftTransforms(I))
628    return V;
629
630  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(I.getOperand(1))) {
631    unsigned ShAmt = Op1C->getZExtValue();
632
633    // If the shifted-out value is known-zero, then this is a NUW shift.
634    if (!I.hasNoUnsignedWrap() &&
635        MaskedValueIsZero(I.getOperand(0),
636                          APInt::getHighBitsSet(Op1C->getBitWidth(), ShAmt))) {
637          I.setHasNoUnsignedWrap();
638          return &I;
639        }
640
641    // If the shifted out value is all signbits, this is a NSW shift.
642    if (!I.hasNoSignedWrap() &&
643        ComputeNumSignBits(I.getOperand(0)) > ShAmt) {
644      I.setHasNoSignedWrap();
645      return &I;
646    }
647  }
648
649  // (C1 << A) << C2 -> (C1 << C2) << A
650  Constant *C1, *C2;
651  Value *A;
652  if (match(I.getOperand(0), m_OneUse(m_Shl(m_Constant(C1), m_Value(A)))) &&
653      match(I.getOperand(1), m_Constant(C2)))
654    return BinaryOperator::CreateShl(ConstantExpr::getShl(C1, C2), A);
655
656  return 0;
657}
658
659Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
660  if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1),
661                                  I.isExact(), TD))
662    return ReplaceInstUsesWith(I, V);
663
664  if (Instruction *R = commonShiftTransforms(I))
665    return R;
666
667  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
668
669  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
670    unsigned ShAmt = Op1C->getZExtValue();
671
672    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op0)) {
673      unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
674      // ctlz.i32(x)>>5  --> zext(x == 0)
675      // cttz.i32(x)>>5  --> zext(x == 0)
676      // ctpop.i32(x)>>5 --> zext(x == -1)
677      if ((II->getIntrinsicID() == Intrinsic::ctlz ||
678           II->getIntrinsicID() == Intrinsic::cttz ||
679           II->getIntrinsicID() == Intrinsic::ctpop) &&
680          isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmt) {
681        bool isCtPop = II->getIntrinsicID() == Intrinsic::ctpop;
682        Constant *RHS = ConstantInt::getSigned(Op0->getType(), isCtPop ? -1:0);
683        Value *Cmp = Builder->CreateICmpEQ(II->getArgOperand(0), RHS);
684        return new ZExtInst(Cmp, II->getType());
685      }
686    }
687
688    // If the shifted-out value is known-zero, then this is an exact shift.
689    if (!I.isExact() &&
690        MaskedValueIsZero(Op0,APInt::getLowBitsSet(Op1C->getBitWidth(),ShAmt))){
691      I.setIsExact();
692      return &I;
693    }
694  }
695
696  return 0;
697}
698
699Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
700  if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1),
701                                  I.isExact(), TD))
702    return ReplaceInstUsesWith(I, V);
703
704  if (Instruction *R = commonShiftTransforms(I))
705    return R;
706
707  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
708
709  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
710    unsigned ShAmt = Op1C->getZExtValue();
711
712    // If the input is a SHL by the same constant (ashr (shl X, C), C), then we
713    // have a sign-extend idiom.
714    Value *X;
715    if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1)))) {
716      // If the left shift is just shifting out partial signbits, delete the
717      // extension.
718      if (cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
719        return ReplaceInstUsesWith(I, X);
720
721      // If the input is an extension from the shifted amount value, e.g.
722      //   %x = zext i8 %A to i32
723      //   %y = shl i32 %x, 24
724      //   %z = ashr %y, 24
725      // then turn this into "z = sext i8 A to i32".
726      if (ZExtInst *ZI = dyn_cast<ZExtInst>(X)) {
727        uint32_t SrcBits = ZI->getOperand(0)->getType()->getScalarSizeInBits();
728        uint32_t DestBits = ZI->getType()->getScalarSizeInBits();
729        if (Op1C->getZExtValue() == DestBits-SrcBits)
730          return new SExtInst(ZI->getOperand(0), ZI->getType());
731      }
732    }
733
734    // If the shifted-out value is known-zero, then this is an exact shift.
735    if (!I.isExact() &&
736        MaskedValueIsZero(Op0,APInt::getLowBitsSet(Op1C->getBitWidth(),ShAmt))){
737      I.setIsExact();
738      return &I;
739    }
740  }
741
742  // See if we can turn a signed shr into an unsigned shr.
743  if (MaskedValueIsZero(Op0,
744                        APInt::getSignBit(I.getType()->getScalarSizeInBits())))
745    return BinaryOperator::CreateLShr(Op0, Op1);
746
747  // Arithmetic shifting an all-sign-bit value is a no-op.
748  unsigned NumSignBits = ComputeNumSignBits(Op0);
749  if (NumSignBits == Op0->getType()->getScalarSizeInBits())
750    return ReplaceInstUsesWith(I, Op0);
751
752  return 0;
753}
754
755