InstCombineShifts.cpp revision b70ebd2aa3b6f4546d4734e7bcdbed2017036b4d
1//===- InstCombineShifts.cpp ----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitShl, visitLShr, and visitAShr functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/IntrinsicInst.h"
16#include "llvm/Support/PatternMatch.h"
17using namespace llvm;
18using namespace PatternMatch;
19
20Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
21  assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
22  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
23
24  // shl X, 0 == X and shr X, 0 == X
25  // shl 0, X == 0 and shr 0, X == 0
26  if (Op1 == Constant::getNullValue(Op1->getType()) ||
27      Op0 == Constant::getNullValue(Op0->getType()))
28    return ReplaceInstUsesWith(I, Op0);
29
30  if (isa<UndefValue>(Op0)) {
31    if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef
32      return ReplaceInstUsesWith(I, Op0);
33    else                                    // undef << X -> 0, undef >>u X -> 0
34      return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
35  }
36  if (isa<UndefValue>(Op1)) {
37    if (I.getOpcode() == Instruction::AShr)  // X >>s undef -> X
38      return ReplaceInstUsesWith(I, Op0);
39    else                                     // X << undef, X >>u undef -> 0
40      return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
41  }
42
43  // See if we can fold away this shift.
44  if (SimplifyDemandedInstructionBits(I))
45    return &I;
46
47  // Try to fold constant and into select arguments.
48  if (isa<Constant>(Op0))
49    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
50      if (Instruction *R = FoldOpIntoSelect(I, SI))
51        return R;
52
53  if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
54    if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
55      return Res;
56
57  // X shift (A srem B) -> X shift (A urem B) iff B is positive.
58  // Because shifts by negative values are undefined.
59  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op1))
60    if (BO->getOpcode() == Instruction::SRem && BO->getType()->isIntegerTy()) {
61      // Make sure the divisor's sign bit is zero.
62      APInt Mask = APInt::getSignBit(BO->getType()->getPrimitiveSizeInBits());
63      if (MaskedValueIsZero(BO->getOperand(1), Mask)) {
64        Value *URem = Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
65                                          BO->getName());
66        I.setOperand(1, URem);
67        return &I;
68      }
69    }
70
71  return 0;
72}
73
74/// CanEvaluateShifted - See if we can compute the specified value, but shifted
75/// logically to the left or right by some number of bits.  This should return
76/// true if the expression can be computed for the same cost as the current
77/// expression tree.  This is used to eliminate extraneous shifting from things
78/// like:
79///      %C = shl i128 %A, 64
80///      %D = shl i128 %B, 96
81///      %E = or i128 %C, %D
82///      %F = lshr i128 %E, 64
83/// where the client will ask if E can be computed shifted right by 64-bits.  If
84/// this succeeds, the GetShiftedValue function will be called to produce the
85/// value.
86static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift,
87                               InstCombiner &IC) {
88  // We can always evaluate constants shifted.
89  if (isa<Constant>(V))
90    return true;
91
92  Instruction *I = dyn_cast<Instruction>(V);
93  if (!I) return false;
94
95  // If this is the opposite shift, we can directly reuse the input of the shift
96  // if the needed bits are already zero in the input.  This allows us to reuse
97  // the value which means that we don't care if the shift has multiple uses.
98  //  TODO:  Handle opposite shift by exact value.
99  ConstantInt *CI;
100  if ((isLeftShift && match(I, m_LShr(m_Value(), m_ConstantInt(CI)))) ||
101      (!isLeftShift && match(I, m_Shl(m_Value(), m_ConstantInt(CI))))) {
102    if (CI->getZExtValue() == NumBits) {
103      // TODO: Check that the input bits are already zero with MaskedValueIsZero
104#if 0
105      // If this is a truncate of a logical shr, we can truncate it to a smaller
106      // lshr iff we know that the bits we would otherwise be shifting in are
107      // already zeros.
108      uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
109      uint32_t BitWidth = Ty->getScalarSizeInBits();
110      if (MaskedValueIsZero(I->getOperand(0),
111            APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
112          CI->getLimitedValue(BitWidth) < BitWidth) {
113        return CanEvaluateTruncated(I->getOperand(0), Ty);
114      }
115#endif
116
117    }
118  }
119
120  // We can't mutate something that has multiple uses: doing so would
121  // require duplicating the instruction in general, which isn't profitable.
122  if (!I->hasOneUse()) return false;
123
124  switch (I->getOpcode()) {
125  default: return false;
126  case Instruction::And:
127  case Instruction::Or:
128  case Instruction::Xor:
129    // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
130    return CanEvaluateShifted(I->getOperand(0), NumBits, isLeftShift, IC) &&
131           CanEvaluateShifted(I->getOperand(1), NumBits, isLeftShift, IC);
132
133  case Instruction::Shl: {
134    // We can often fold the shift into shifts-by-a-constant.
135    CI = dyn_cast<ConstantInt>(I->getOperand(1));
136    if (CI == 0) return false;
137
138    // We can always fold shl(c1)+shl(c2) -> shl(c1+c2).
139    if (isLeftShift) return true;
140
141    // We can always turn shl(c)+shr(c) -> and(c2).
142    if (CI->getValue() == NumBits) return true;
143
144    unsigned TypeWidth = I->getType()->getScalarSizeInBits();
145
146    // We can turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but it isn't
147    // profitable unless we know the and'd out bits are already zero.
148    if (CI->getZExtValue() > NumBits) {
149      unsigned LowBits = TypeWidth - CI->getZExtValue();
150      if (MaskedValueIsZero(I->getOperand(0),
151                       APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits))
152        return true;
153    }
154
155    return false;
156  }
157  case Instruction::LShr: {
158    // We can often fold the shift into shifts-by-a-constant.
159    CI = dyn_cast<ConstantInt>(I->getOperand(1));
160    if (CI == 0) return false;
161
162    // We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
163    if (!isLeftShift) return true;
164
165    // We can always turn lshr(c)+shl(c) -> and(c2).
166    if (CI->getValue() == NumBits) return true;
167
168    unsigned TypeWidth = I->getType()->getScalarSizeInBits();
169
170    // We can always turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but it isn't
171    // profitable unless we know the and'd out bits are already zero.
172    if (CI->getZExtValue() > NumBits) {
173      unsigned LowBits = CI->getZExtValue() - NumBits;
174      if (MaskedValueIsZero(I->getOperand(0),
175                          APInt::getLowBitsSet(TypeWidth, LowBits) << NumBits))
176        return true;
177    }
178
179    return false;
180  }
181  case Instruction::Select: {
182    SelectInst *SI = cast<SelectInst>(I);
183    return CanEvaluateShifted(SI->getTrueValue(), NumBits, isLeftShift, IC) &&
184           CanEvaluateShifted(SI->getFalseValue(), NumBits, isLeftShift, IC);
185  }
186  case Instruction::PHI: {
187    // We can change a phi if we can change all operands.  Note that we never
188    // get into trouble with cyclic PHIs here because we only consider
189    // instructions with a single use.
190    PHINode *PN = cast<PHINode>(I);
191    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
192      if (!CanEvaluateShifted(PN->getIncomingValue(i), NumBits, isLeftShift,IC))
193        return false;
194    return true;
195  }
196  }
197}
198
199/// GetShiftedValue - When CanEvaluateShifted returned true for an expression,
200/// this value inserts the new computation that produces the shifted value.
201static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
202                              InstCombiner &IC) {
203  // We can always evaluate constants shifted.
204  if (Constant *C = dyn_cast<Constant>(V)) {
205    if (isLeftShift)
206      V = IC.Builder->CreateShl(C, NumBits);
207    else
208      V = IC.Builder->CreateLShr(C, NumBits);
209    // If we got a constantexpr back, try to simplify it with TD info.
210    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
211      V = ConstantFoldConstantExpression(CE, IC.getTargetData());
212    return V;
213  }
214
215  Instruction *I = cast<Instruction>(V);
216  IC.Worklist.Add(I);
217
218  switch (I->getOpcode()) {
219  default: assert(0 && "Inconsistency with CanEvaluateShifted");
220  case Instruction::And:
221  case Instruction::Or:
222  case Instruction::Xor:
223    // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
224    I->setOperand(0, GetShiftedValue(I->getOperand(0), NumBits,isLeftShift,IC));
225    I->setOperand(1, GetShiftedValue(I->getOperand(1), NumBits,isLeftShift,IC));
226    return I;
227
228  case Instruction::Shl: {
229    unsigned TypeWidth = I->getType()->getScalarSizeInBits();
230
231    // We only accept shifts-by-a-constant in CanEvaluateShifted.
232    ConstantInt *CI = cast<ConstantInt>(I->getOperand(1));
233
234    // We can always fold shl(c1)+shl(c2) -> shl(c1+c2).
235    if (isLeftShift) {
236      // If this is oversized composite shift, then unsigned shifts get 0.
237      unsigned NewShAmt = NumBits+CI->getZExtValue();
238      if (NewShAmt >= TypeWidth)
239        return Constant::getNullValue(I->getType());
240
241      I->setOperand(1, ConstantInt::get(I->getType(), NewShAmt));
242      return I;
243    }
244
245    // We turn shl(c)+lshr(c) -> and(c2) if the input doesn't already have
246    // zeros.
247    if (CI->getValue() == NumBits) {
248      APInt Mask(APInt::getLowBitsSet(TypeWidth, TypeWidth - NumBits));
249      V = IC.Builder->CreateAnd(I->getOperand(0),
250                                ConstantInt::get(I->getContext(), Mask));
251      if (Instruction *VI = dyn_cast<Instruction>(V)) {
252        VI->moveBefore(I);
253        VI->takeName(I);
254      }
255      return V;
256    }
257
258    // We turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but only when we know that
259    // the and won't be needed.
260    assert(CI->getZExtValue() > NumBits);
261    I->setOperand(1, ConstantInt::get(I->getType(),
262                                      CI->getZExtValue() - NumBits));
263    return I;
264  }
265  case Instruction::LShr: {
266    unsigned TypeWidth = I->getType()->getScalarSizeInBits();
267    // We only accept shifts-by-a-constant in CanEvaluateShifted.
268    ConstantInt *CI = cast<ConstantInt>(I->getOperand(1));
269
270    // We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
271    if (!isLeftShift) {
272      // If this is oversized composite shift, then unsigned shifts get 0.
273      unsigned NewShAmt = NumBits+CI->getZExtValue();
274      if (NewShAmt >= TypeWidth)
275        return Constant::getNullValue(I->getType());
276
277      I->setOperand(1, ConstantInt::get(I->getType(), NewShAmt));
278      return I;
279    }
280
281    // We turn lshr(c)+shl(c) -> and(c2) if the input doesn't already have
282    // zeros.
283    if (CI->getValue() == NumBits) {
284      APInt Mask(APInt::getHighBitsSet(TypeWidth, TypeWidth - NumBits));
285      V = IC.Builder->CreateAnd(I->getOperand(0),
286                                ConstantInt::get(I->getContext(), Mask));
287      if (Instruction *VI = dyn_cast<Instruction>(V)) {
288        VI->moveBefore(I);
289        VI->takeName(I);
290      }
291      return V;
292    }
293
294    // We turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but only when we know that
295    // the and won't be needed.
296    assert(CI->getZExtValue() > NumBits);
297    I->setOperand(1, ConstantInt::get(I->getType(),
298                                      CI->getZExtValue() - NumBits));
299    return I;
300  }
301
302  case Instruction::Select:
303    I->setOperand(1, GetShiftedValue(I->getOperand(1), NumBits,isLeftShift,IC));
304    I->setOperand(2, GetShiftedValue(I->getOperand(2), NumBits,isLeftShift,IC));
305    return I;
306  case Instruction::PHI: {
307    // We can change a phi if we can change all operands.  Note that we never
308    // get into trouble with cyclic PHIs here because we only consider
309    // instructions with a single use.
310    PHINode *PN = cast<PHINode>(I);
311    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
312      PN->setIncomingValue(i, GetShiftedValue(PN->getIncomingValue(i),
313                                              NumBits, isLeftShift, IC));
314    return PN;
315  }
316  }
317}
318
319
320
321Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
322                                               BinaryOperator &I) {
323  bool isLeftShift = I.getOpcode() == Instruction::Shl;
324
325
326  // See if we can propagate this shift into the input, this covers the trivial
327  // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
328  if (I.getOpcode() != Instruction::AShr &&
329      CanEvaluateShifted(Op0, Op1->getZExtValue(), isLeftShift, *this)) {
330    DEBUG(dbgs() << "ICE: GetShiftedValue propagating shift through expression"
331              " to eliminate shift:\n  IN: " << *Op0 << "\n  SH: " << I <<"\n");
332
333    return ReplaceInstUsesWith(I,
334                 GetShiftedValue(Op0, Op1->getZExtValue(), isLeftShift, *this));
335  }
336
337
338  // See if we can simplify any instructions used by the instruction whose sole
339  // purpose is to compute bits we don't care about.
340  uint32_t TypeBits = Op0->getType()->getScalarSizeInBits();
341
342  // shl i32 X, 32 = 0 and srl i8 Y, 9 = 0, ... just don't eliminate
343  // a signed shift.
344  //
345  if (Op1->uge(TypeBits)) {
346    if (I.getOpcode() != Instruction::AShr)
347      return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
348    // ashr i32 X, 32 --> ashr i32 X, 31
349    I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
350    return &I;
351  }
352
353  // ((X*C1) << C2) == (X * (C1 << C2))
354  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
355    if (BO->getOpcode() == Instruction::Mul && isLeftShift)
356      if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
357        return BinaryOperator::CreateMul(BO->getOperand(0),
358                                        ConstantExpr::getShl(BOOp, Op1));
359
360  // Try to fold constant and into select arguments.
361  if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
362    if (Instruction *R = FoldOpIntoSelect(I, SI))
363      return R;
364  if (isa<PHINode>(Op0))
365    if (Instruction *NV = FoldOpIntoPhi(I))
366      return NV;
367
368  // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
369  if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
370    Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
371    // If 'shift2' is an ashr, we would have to get the sign bit into a funny
372    // place.  Don't try to do this transformation in this case.  Also, we
373    // require that the input operand is a shift-by-constant so that we have
374    // confidence that the shifts will get folded together.  We could do this
375    // xform in more cases, but it is unlikely to be profitable.
376    if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
377        isa<ConstantInt>(TrOp->getOperand(1))) {
378      // Okay, we'll do this xform.  Make the shift of shift.
379      Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
380      // (shift2 (shift1 & 0x00FF), c2)
381      Value *NSh = Builder->CreateBinOp(I.getOpcode(), TrOp, ShAmt,I.getName());
382
383      // For logical shifts, the truncation has the effect of making the high
384      // part of the register be zeros.  Emulate this by inserting an AND to
385      // clear the top bits as needed.  This 'and' will usually be zapped by
386      // other xforms later if dead.
387      unsigned SrcSize = TrOp->getType()->getScalarSizeInBits();
388      unsigned DstSize = TI->getType()->getScalarSizeInBits();
389      APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
390
391      // The mask we constructed says what the trunc would do if occurring
392      // between the shifts.  We want to know the effect *after* the second
393      // shift.  We know that it is a logical shift by a constant, so adjust the
394      // mask as appropriate.
395      if (I.getOpcode() == Instruction::Shl)
396        MaskV <<= Op1->getZExtValue();
397      else {
398        assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
399        MaskV = MaskV.lshr(Op1->getZExtValue());
400      }
401
402      // shift1 & 0x00FF
403      Value *And = Builder->CreateAnd(NSh,
404                                      ConstantInt::get(I.getContext(), MaskV),
405                                      TI->getName());
406
407      // Return the value truncated to the interesting size.
408      return new TruncInst(And, I.getType());
409    }
410  }
411
412  if (Op0->hasOneUse()) {
413    if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
414      // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
415      Value *V1, *V2;
416      ConstantInt *CC;
417      switch (Op0BO->getOpcode()) {
418      default: break;
419      case Instruction::Add:
420      case Instruction::And:
421      case Instruction::Or:
422      case Instruction::Xor: {
423        // These operators commute.
424        // Turn (Y + (X >> C)) << C  ->  (X + (Y << C)) & (~0 << C)
425        if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
426            match(Op0BO->getOperand(1), m_Shr(m_Value(V1),
427                  m_Specific(Op1)))) {
428          Value *YS =         // (Y << C)
429            Builder->CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
430          // (X + (Y << C))
431          Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), YS, V1,
432                                          Op0BO->getOperand(1)->getName());
433          uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
434          return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(),
435                     APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
436        }
437
438        // Turn (Y + ((X >> C) & CC)) << C  ->  ((X & (CC << C)) + (Y << C))
439        Value *Op0BOOp1 = Op0BO->getOperand(1);
440        if (isLeftShift && Op0BOOp1->hasOneUse() &&
441            match(Op0BOOp1,
442                  m_And(m_Shr(m_Value(V1), m_Specific(Op1)),
443                        m_ConstantInt(CC))) &&
444            cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse()) {
445          Value *YS =   // (Y << C)
446            Builder->CreateShl(Op0BO->getOperand(0), Op1,
447                                         Op0BO->getName());
448          // X & (CC << C)
449          Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
450                                         V1->getName()+".mask");
451          return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
452        }
453      }
454
455      // FALL THROUGH.
456      case Instruction::Sub: {
457        // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
458        if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
459            match(Op0BO->getOperand(0), m_Shr(m_Value(V1),
460                  m_Specific(Op1)))) {
461          Value *YS =  // (Y << C)
462            Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
463          // (X + (Y << C))
464          Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), V1, YS,
465                                          Op0BO->getOperand(0)->getName());
466          uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
467          return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(),
468                     APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
469        }
470
471        // Turn (((X >> C)&CC) + Y) << C  ->  (X + (Y << C)) & (CC << C)
472        if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
473            match(Op0BO->getOperand(0),
474                  m_And(m_Shr(m_Value(V1), m_Value(V2)),
475                        m_ConstantInt(CC))) && V2 == Op1 &&
476            cast<BinaryOperator>(Op0BO->getOperand(0))
477                ->getOperand(0)->hasOneUse()) {
478          Value *YS = // (Y << C)
479            Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
480          // X & (CC << C)
481          Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
482                                         V1->getName()+".mask");
483
484          return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
485        }
486
487        break;
488      }
489      }
490
491
492      // If the operand is an bitwise operator with a constant RHS, and the
493      // shift is the only use, we can pull it out of the shift.
494      if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
495        bool isValid = true;     // Valid only for And, Or, Xor
496        bool highBitSet = false; // Transform if high bit of constant set?
497
498        switch (Op0BO->getOpcode()) {
499        default: isValid = false; break;   // Do not perform transform!
500        case Instruction::Add:
501          isValid = isLeftShift;
502          break;
503        case Instruction::Or:
504        case Instruction::Xor:
505          highBitSet = false;
506          break;
507        case Instruction::And:
508          highBitSet = true;
509          break;
510        }
511
512        // If this is a signed shift right, and the high bit is modified
513        // by the logical operation, do not perform the transformation.
514        // The highBitSet boolean indicates the value of the high bit of
515        // the constant which would cause it to be modified for this
516        // operation.
517        //
518        if (isValid && I.getOpcode() == Instruction::AShr)
519          isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
520
521        if (isValid) {
522          Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
523
524          Value *NewShift =
525            Builder->CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
526          NewShift->takeName(Op0BO);
527
528          return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
529                                        NewRHS);
530        }
531      }
532    }
533  }
534
535  // Find out if this is a shift of a shift by a constant.
536  BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
537  if (ShiftOp && !ShiftOp->isShift())
538    ShiftOp = 0;
539
540  if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
541    ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
542    uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
543    uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits);
544    assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
545    if (ShiftAmt1 == 0) return 0;  // Will be simplified in the future.
546    Value *X = ShiftOp->getOperand(0);
547
548    uint32_t AmtSum = ShiftAmt1+ShiftAmt2;   // Fold into one big shift.
549
550    const IntegerType *Ty = cast<IntegerType>(I.getType());
551
552    // Check for (X << c1) << c2  and  (X >> c1) >> c2
553    if (I.getOpcode() == ShiftOp->getOpcode()) {
554      // If this is oversized composite shift, then unsigned shifts get 0, ashr
555      // saturates.
556      if (AmtSum >= TypeBits) {
557        if (I.getOpcode() != Instruction::AShr)
558          return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
559        AmtSum = TypeBits-1;  // Saturate to 31 for i32 ashr.
560      }
561
562      return BinaryOperator::Create(I.getOpcode(), X,
563                                    ConstantInt::get(Ty, AmtSum));
564    }
565
566    if (ShiftAmt1 == ShiftAmt2) {
567      // If we have ((X >>? C) << C), turn this into X & (-1 << C).
568      if (I.getOpcode() == Instruction::Shl &&
569          ShiftOp->getOpcode() != Instruction::Shl) {
570        APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1));
571        return BinaryOperator::CreateAnd(X,
572                                         ConstantInt::get(I.getContext(),Mask));
573      }
574      // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
575      if (I.getOpcode() == Instruction::LShr &&
576          ShiftOp->getOpcode() == Instruction::Shl) {
577        APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
578        return BinaryOperator::CreateAnd(X,
579                                        ConstantInt::get(I.getContext(), Mask));
580      }
581    } else if (ShiftAmt1 < ShiftAmt2) {
582      uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
583
584      // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
585      if (I.getOpcode() == Instruction::Shl &&
586          ShiftOp->getOpcode() != Instruction::Shl) {
587        assert(ShiftOp->getOpcode() == Instruction::LShr ||
588               ShiftOp->getOpcode() == Instruction::AShr);
589        Value *Shift = Builder->CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
590
591        APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
592        return BinaryOperator::CreateAnd(Shift,
593                                         ConstantInt::get(I.getContext(),Mask));
594      }
595
596      // (X << C1) >>u C2  --> X >>u (C2-C1) & (-1 >> C2)
597      if (I.getOpcode() == Instruction::LShr &&
598          ShiftOp->getOpcode() == Instruction::Shl) {
599        assert(ShiftOp->getOpcode() == Instruction::Shl);
600        Value *Shift = Builder->CreateLShr(X, ConstantInt::get(Ty, ShiftDiff));
601
602        APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
603        return BinaryOperator::CreateAnd(Shift,
604                                         ConstantInt::get(I.getContext(),Mask));
605      }
606
607      // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
608    } else {
609      assert(ShiftAmt2 < ShiftAmt1);
610      uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
611
612      // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
613      if (I.getOpcode() == Instruction::Shl &&
614          ShiftOp->getOpcode() != Instruction::Shl) {
615        Value *Shift = Builder->CreateBinOp(ShiftOp->getOpcode(), X,
616                                            ConstantInt::get(Ty, ShiftDiff));
617
618        APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
619        return BinaryOperator::CreateAnd(Shift,
620                                         ConstantInt::get(I.getContext(),Mask));
621      }
622
623      // (X << C1) >>u C2  --> X << (C1-C2) & (-1 >> C2)
624      if (I.getOpcode() == Instruction::LShr &&
625          ShiftOp->getOpcode() == Instruction::Shl) {
626        Value *Shift = Builder->CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
627
628        APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
629        return BinaryOperator::CreateAnd(Shift,
630                                         ConstantInt::get(I.getContext(),Mask));
631      }
632
633      // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
634    }
635  }
636  return 0;
637}
638
639Instruction *InstCombiner::visitShl(BinaryOperator &I) {
640  return commonShiftTransforms(I);
641}
642
643Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
644  if (Instruction *R = commonShiftTransforms(I))
645    return R;
646
647  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
648
649  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1))
650    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op0)) {
651      unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
652      // ctlz.i32(x)>>5  --> zext(x == 0)
653      // cttz.i32(x)>>5  --> zext(x == 0)
654      // ctpop.i32(x)>>5 --> zext(x == -1)
655      if ((II->getIntrinsicID() == Intrinsic::ctlz ||
656           II->getIntrinsicID() == Intrinsic::cttz ||
657           II->getIntrinsicID() == Intrinsic::ctpop) &&
658          isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == Op1C->getZExtValue()){
659        bool isCtPop = II->getIntrinsicID() == Intrinsic::ctpop;
660        Constant *RHS = ConstantInt::getSigned(Op0->getType(), isCtPop ? -1:0);
661        Value *Cmp = Builder->CreateICmpEQ(II->getArgOperand(0), RHS);
662        return new ZExtInst(Cmp, II->getType());
663      }
664    }
665
666  return 0;
667}
668
669Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
670  if (Instruction *R = commonShiftTransforms(I))
671    return R;
672
673  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
674
675  if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0)) {
676    // ashr int -1, X = -1   (for any arithmetic shift rights of ~0)
677    if (CSI->isAllOnesValue())
678      return ReplaceInstUsesWith(I, CSI);
679  }
680
681  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
682    // If the input is a SHL by the same constant (ashr (shl X, C), C), then we
683    // have a sign-extend idiom.
684    Value *X;
685    if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1)))) {
686      // If the input value is known to already be sign extended enough, delete
687      // the extension.
688      if (ComputeNumSignBits(X) > Op1C->getZExtValue())
689        return ReplaceInstUsesWith(I, X);
690
691      // If the input is an extension from the shifted amount value, e.g.
692      //   %x = zext i8 %A to i32
693      //   %y = shl i32 %x, 24
694      //   %z = ashr %y, 24
695      // then turn this into "z = sext i8 A to i32".
696      if (ZExtInst *ZI = dyn_cast<ZExtInst>(X)) {
697        uint32_t SrcBits = ZI->getOperand(0)->getType()->getScalarSizeInBits();
698        uint32_t DestBits = ZI->getType()->getScalarSizeInBits();
699        if (Op1C->getZExtValue() == DestBits-SrcBits)
700          return new SExtInst(ZI->getOperand(0), ZI->getType());
701      }
702    }
703  }
704
705  // See if we can turn a signed shr into an unsigned shr.
706  if (MaskedValueIsZero(Op0,
707                        APInt::getSignBit(I.getType()->getScalarSizeInBits())))
708    return BinaryOperator::CreateLShr(Op0, Op1);
709
710  // Arithmetic shifting an all-sign-bit value is a no-op.
711  unsigned NumSignBits = ComputeNumSignBits(Op0);
712  if (NumSignBits == Op0->getType()->getScalarSizeInBits())
713    return ReplaceInstUsesWith(I, Op0);
714
715  return 0;
716}
717
718