InstCombineShifts.cpp revision b70ebd2aa3b6f4546d4734e7bcdbed2017036b4d
1//===- InstCombineShifts.cpp ----------------------------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the visitShl, visitLShr, and visitAShr functions. 11// 12//===----------------------------------------------------------------------===// 13 14#include "InstCombine.h" 15#include "llvm/IntrinsicInst.h" 16#include "llvm/Support/PatternMatch.h" 17using namespace llvm; 18using namespace PatternMatch; 19 20Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) { 21 assert(I.getOperand(1)->getType() == I.getOperand(0)->getType()); 22 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 23 24 // shl X, 0 == X and shr X, 0 == X 25 // shl 0, X == 0 and shr 0, X == 0 26 if (Op1 == Constant::getNullValue(Op1->getType()) || 27 Op0 == Constant::getNullValue(Op0->getType())) 28 return ReplaceInstUsesWith(I, Op0); 29 30 if (isa<UndefValue>(Op0)) { 31 if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef 32 return ReplaceInstUsesWith(I, Op0); 33 else // undef << X -> 0, undef >>u X -> 0 34 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); 35 } 36 if (isa<UndefValue>(Op1)) { 37 if (I.getOpcode() == Instruction::AShr) // X >>s undef -> X 38 return ReplaceInstUsesWith(I, Op0); 39 else // X << undef, X >>u undef -> 0 40 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); 41 } 42 43 // See if we can fold away this shift. 44 if (SimplifyDemandedInstructionBits(I)) 45 return &I; 46 47 // Try to fold constant and into select arguments. 48 if (isa<Constant>(Op0)) 49 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 50 if (Instruction *R = FoldOpIntoSelect(I, SI)) 51 return R; 52 53 if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1)) 54 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I)) 55 return Res; 56 57 // X shift (A srem B) -> X shift (A urem B) iff B is positive. 58 // Because shifts by negative values are undefined. 59 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op1)) 60 if (BO->getOpcode() == Instruction::SRem && BO->getType()->isIntegerTy()) { 61 // Make sure the divisor's sign bit is zero. 62 APInt Mask = APInt::getSignBit(BO->getType()->getPrimitiveSizeInBits()); 63 if (MaskedValueIsZero(BO->getOperand(1), Mask)) { 64 Value *URem = Builder->CreateURem(BO->getOperand(0), BO->getOperand(1), 65 BO->getName()); 66 I.setOperand(1, URem); 67 return &I; 68 } 69 } 70 71 return 0; 72} 73 74/// CanEvaluateShifted - See if we can compute the specified value, but shifted 75/// logically to the left or right by some number of bits. This should return 76/// true if the expression can be computed for the same cost as the current 77/// expression tree. This is used to eliminate extraneous shifting from things 78/// like: 79/// %C = shl i128 %A, 64 80/// %D = shl i128 %B, 96 81/// %E = or i128 %C, %D 82/// %F = lshr i128 %E, 64 83/// where the client will ask if E can be computed shifted right by 64-bits. If 84/// this succeeds, the GetShiftedValue function will be called to produce the 85/// value. 86static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift, 87 InstCombiner &IC) { 88 // We can always evaluate constants shifted. 89 if (isa<Constant>(V)) 90 return true; 91 92 Instruction *I = dyn_cast<Instruction>(V); 93 if (!I) return false; 94 95 // If this is the opposite shift, we can directly reuse the input of the shift 96 // if the needed bits are already zero in the input. This allows us to reuse 97 // the value which means that we don't care if the shift has multiple uses. 98 // TODO: Handle opposite shift by exact value. 99 ConstantInt *CI; 100 if ((isLeftShift && match(I, m_LShr(m_Value(), m_ConstantInt(CI)))) || 101 (!isLeftShift && match(I, m_Shl(m_Value(), m_ConstantInt(CI))))) { 102 if (CI->getZExtValue() == NumBits) { 103 // TODO: Check that the input bits are already zero with MaskedValueIsZero 104#if 0 105 // If this is a truncate of a logical shr, we can truncate it to a smaller 106 // lshr iff we know that the bits we would otherwise be shifting in are 107 // already zeros. 108 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 109 uint32_t BitWidth = Ty->getScalarSizeInBits(); 110 if (MaskedValueIsZero(I->getOperand(0), 111 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) && 112 CI->getLimitedValue(BitWidth) < BitWidth) { 113 return CanEvaluateTruncated(I->getOperand(0), Ty); 114 } 115#endif 116 117 } 118 } 119 120 // We can't mutate something that has multiple uses: doing so would 121 // require duplicating the instruction in general, which isn't profitable. 122 if (!I->hasOneUse()) return false; 123 124 switch (I->getOpcode()) { 125 default: return false; 126 case Instruction::And: 127 case Instruction::Or: 128 case Instruction::Xor: 129 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted. 130 return CanEvaluateShifted(I->getOperand(0), NumBits, isLeftShift, IC) && 131 CanEvaluateShifted(I->getOperand(1), NumBits, isLeftShift, IC); 132 133 case Instruction::Shl: { 134 // We can often fold the shift into shifts-by-a-constant. 135 CI = dyn_cast<ConstantInt>(I->getOperand(1)); 136 if (CI == 0) return false; 137 138 // We can always fold shl(c1)+shl(c2) -> shl(c1+c2). 139 if (isLeftShift) return true; 140 141 // We can always turn shl(c)+shr(c) -> and(c2). 142 if (CI->getValue() == NumBits) return true; 143 144 unsigned TypeWidth = I->getType()->getScalarSizeInBits(); 145 146 // We can turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but it isn't 147 // profitable unless we know the and'd out bits are already zero. 148 if (CI->getZExtValue() > NumBits) { 149 unsigned LowBits = TypeWidth - CI->getZExtValue(); 150 if (MaskedValueIsZero(I->getOperand(0), 151 APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits)) 152 return true; 153 } 154 155 return false; 156 } 157 case Instruction::LShr: { 158 // We can often fold the shift into shifts-by-a-constant. 159 CI = dyn_cast<ConstantInt>(I->getOperand(1)); 160 if (CI == 0) return false; 161 162 // We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2). 163 if (!isLeftShift) return true; 164 165 // We can always turn lshr(c)+shl(c) -> and(c2). 166 if (CI->getValue() == NumBits) return true; 167 168 unsigned TypeWidth = I->getType()->getScalarSizeInBits(); 169 170 // We can always turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but it isn't 171 // profitable unless we know the and'd out bits are already zero. 172 if (CI->getZExtValue() > NumBits) { 173 unsigned LowBits = CI->getZExtValue() - NumBits; 174 if (MaskedValueIsZero(I->getOperand(0), 175 APInt::getLowBitsSet(TypeWidth, LowBits) << NumBits)) 176 return true; 177 } 178 179 return false; 180 } 181 case Instruction::Select: { 182 SelectInst *SI = cast<SelectInst>(I); 183 return CanEvaluateShifted(SI->getTrueValue(), NumBits, isLeftShift, IC) && 184 CanEvaluateShifted(SI->getFalseValue(), NumBits, isLeftShift, IC); 185 } 186 case Instruction::PHI: { 187 // We can change a phi if we can change all operands. Note that we never 188 // get into trouble with cyclic PHIs here because we only consider 189 // instructions with a single use. 190 PHINode *PN = cast<PHINode>(I); 191 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 192 if (!CanEvaluateShifted(PN->getIncomingValue(i), NumBits, isLeftShift,IC)) 193 return false; 194 return true; 195 } 196 } 197} 198 199/// GetShiftedValue - When CanEvaluateShifted returned true for an expression, 200/// this value inserts the new computation that produces the shifted value. 201static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift, 202 InstCombiner &IC) { 203 // We can always evaluate constants shifted. 204 if (Constant *C = dyn_cast<Constant>(V)) { 205 if (isLeftShift) 206 V = IC.Builder->CreateShl(C, NumBits); 207 else 208 V = IC.Builder->CreateLShr(C, NumBits); 209 // If we got a constantexpr back, try to simplify it with TD info. 210 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 211 V = ConstantFoldConstantExpression(CE, IC.getTargetData()); 212 return V; 213 } 214 215 Instruction *I = cast<Instruction>(V); 216 IC.Worklist.Add(I); 217 218 switch (I->getOpcode()) { 219 default: assert(0 && "Inconsistency with CanEvaluateShifted"); 220 case Instruction::And: 221 case Instruction::Or: 222 case Instruction::Xor: 223 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted. 224 I->setOperand(0, GetShiftedValue(I->getOperand(0), NumBits,isLeftShift,IC)); 225 I->setOperand(1, GetShiftedValue(I->getOperand(1), NumBits,isLeftShift,IC)); 226 return I; 227 228 case Instruction::Shl: { 229 unsigned TypeWidth = I->getType()->getScalarSizeInBits(); 230 231 // We only accept shifts-by-a-constant in CanEvaluateShifted. 232 ConstantInt *CI = cast<ConstantInt>(I->getOperand(1)); 233 234 // We can always fold shl(c1)+shl(c2) -> shl(c1+c2). 235 if (isLeftShift) { 236 // If this is oversized composite shift, then unsigned shifts get 0. 237 unsigned NewShAmt = NumBits+CI->getZExtValue(); 238 if (NewShAmt >= TypeWidth) 239 return Constant::getNullValue(I->getType()); 240 241 I->setOperand(1, ConstantInt::get(I->getType(), NewShAmt)); 242 return I; 243 } 244 245 // We turn shl(c)+lshr(c) -> and(c2) if the input doesn't already have 246 // zeros. 247 if (CI->getValue() == NumBits) { 248 APInt Mask(APInt::getLowBitsSet(TypeWidth, TypeWidth - NumBits)); 249 V = IC.Builder->CreateAnd(I->getOperand(0), 250 ConstantInt::get(I->getContext(), Mask)); 251 if (Instruction *VI = dyn_cast<Instruction>(V)) { 252 VI->moveBefore(I); 253 VI->takeName(I); 254 } 255 return V; 256 } 257 258 // We turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but only when we know that 259 // the and won't be needed. 260 assert(CI->getZExtValue() > NumBits); 261 I->setOperand(1, ConstantInt::get(I->getType(), 262 CI->getZExtValue() - NumBits)); 263 return I; 264 } 265 case Instruction::LShr: { 266 unsigned TypeWidth = I->getType()->getScalarSizeInBits(); 267 // We only accept shifts-by-a-constant in CanEvaluateShifted. 268 ConstantInt *CI = cast<ConstantInt>(I->getOperand(1)); 269 270 // We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2). 271 if (!isLeftShift) { 272 // If this is oversized composite shift, then unsigned shifts get 0. 273 unsigned NewShAmt = NumBits+CI->getZExtValue(); 274 if (NewShAmt >= TypeWidth) 275 return Constant::getNullValue(I->getType()); 276 277 I->setOperand(1, ConstantInt::get(I->getType(), NewShAmt)); 278 return I; 279 } 280 281 // We turn lshr(c)+shl(c) -> and(c2) if the input doesn't already have 282 // zeros. 283 if (CI->getValue() == NumBits) { 284 APInt Mask(APInt::getHighBitsSet(TypeWidth, TypeWidth - NumBits)); 285 V = IC.Builder->CreateAnd(I->getOperand(0), 286 ConstantInt::get(I->getContext(), Mask)); 287 if (Instruction *VI = dyn_cast<Instruction>(V)) { 288 VI->moveBefore(I); 289 VI->takeName(I); 290 } 291 return V; 292 } 293 294 // We turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but only when we know that 295 // the and won't be needed. 296 assert(CI->getZExtValue() > NumBits); 297 I->setOperand(1, ConstantInt::get(I->getType(), 298 CI->getZExtValue() - NumBits)); 299 return I; 300 } 301 302 case Instruction::Select: 303 I->setOperand(1, GetShiftedValue(I->getOperand(1), NumBits,isLeftShift,IC)); 304 I->setOperand(2, GetShiftedValue(I->getOperand(2), NumBits,isLeftShift,IC)); 305 return I; 306 case Instruction::PHI: { 307 // We can change a phi if we can change all operands. Note that we never 308 // get into trouble with cyclic PHIs here because we only consider 309 // instructions with a single use. 310 PHINode *PN = cast<PHINode>(I); 311 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 312 PN->setIncomingValue(i, GetShiftedValue(PN->getIncomingValue(i), 313 NumBits, isLeftShift, IC)); 314 return PN; 315 } 316 } 317} 318 319 320 321Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1, 322 BinaryOperator &I) { 323 bool isLeftShift = I.getOpcode() == Instruction::Shl; 324 325 326 // See if we can propagate this shift into the input, this covers the trivial 327 // cast of lshr(shl(x,c1),c2) as well as other more complex cases. 328 if (I.getOpcode() != Instruction::AShr && 329 CanEvaluateShifted(Op0, Op1->getZExtValue(), isLeftShift, *this)) { 330 DEBUG(dbgs() << "ICE: GetShiftedValue propagating shift through expression" 331 " to eliminate shift:\n IN: " << *Op0 << "\n SH: " << I <<"\n"); 332 333 return ReplaceInstUsesWith(I, 334 GetShiftedValue(Op0, Op1->getZExtValue(), isLeftShift, *this)); 335 } 336 337 338 // See if we can simplify any instructions used by the instruction whose sole 339 // purpose is to compute bits we don't care about. 340 uint32_t TypeBits = Op0->getType()->getScalarSizeInBits(); 341 342 // shl i32 X, 32 = 0 and srl i8 Y, 9 = 0, ... just don't eliminate 343 // a signed shift. 344 // 345 if (Op1->uge(TypeBits)) { 346 if (I.getOpcode() != Instruction::AShr) 347 return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType())); 348 // ashr i32 X, 32 --> ashr i32 X, 31 349 I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1)); 350 return &I; 351 } 352 353 // ((X*C1) << C2) == (X * (C1 << C2)) 354 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0)) 355 if (BO->getOpcode() == Instruction::Mul && isLeftShift) 356 if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1))) 357 return BinaryOperator::CreateMul(BO->getOperand(0), 358 ConstantExpr::getShl(BOOp, Op1)); 359 360 // Try to fold constant and into select arguments. 361 if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) 362 if (Instruction *R = FoldOpIntoSelect(I, SI)) 363 return R; 364 if (isa<PHINode>(Op0)) 365 if (Instruction *NV = FoldOpIntoPhi(I)) 366 return NV; 367 368 // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2)) 369 if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) { 370 Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0)); 371 // If 'shift2' is an ashr, we would have to get the sign bit into a funny 372 // place. Don't try to do this transformation in this case. Also, we 373 // require that the input operand is a shift-by-constant so that we have 374 // confidence that the shifts will get folded together. We could do this 375 // xform in more cases, but it is unlikely to be profitable. 376 if (TrOp && I.isLogicalShift() && TrOp->isShift() && 377 isa<ConstantInt>(TrOp->getOperand(1))) { 378 // Okay, we'll do this xform. Make the shift of shift. 379 Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType()); 380 // (shift2 (shift1 & 0x00FF), c2) 381 Value *NSh = Builder->CreateBinOp(I.getOpcode(), TrOp, ShAmt,I.getName()); 382 383 // For logical shifts, the truncation has the effect of making the high 384 // part of the register be zeros. Emulate this by inserting an AND to 385 // clear the top bits as needed. This 'and' will usually be zapped by 386 // other xforms later if dead. 387 unsigned SrcSize = TrOp->getType()->getScalarSizeInBits(); 388 unsigned DstSize = TI->getType()->getScalarSizeInBits(); 389 APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize)); 390 391 // The mask we constructed says what the trunc would do if occurring 392 // between the shifts. We want to know the effect *after* the second 393 // shift. We know that it is a logical shift by a constant, so adjust the 394 // mask as appropriate. 395 if (I.getOpcode() == Instruction::Shl) 396 MaskV <<= Op1->getZExtValue(); 397 else { 398 assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift"); 399 MaskV = MaskV.lshr(Op1->getZExtValue()); 400 } 401 402 // shift1 & 0x00FF 403 Value *And = Builder->CreateAnd(NSh, 404 ConstantInt::get(I.getContext(), MaskV), 405 TI->getName()); 406 407 // Return the value truncated to the interesting size. 408 return new TruncInst(And, I.getType()); 409 } 410 } 411 412 if (Op0->hasOneUse()) { 413 if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) { 414 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C) 415 Value *V1, *V2; 416 ConstantInt *CC; 417 switch (Op0BO->getOpcode()) { 418 default: break; 419 case Instruction::Add: 420 case Instruction::And: 421 case Instruction::Or: 422 case Instruction::Xor: { 423 // These operators commute. 424 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C) 425 if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() && 426 match(Op0BO->getOperand(1), m_Shr(m_Value(V1), 427 m_Specific(Op1)))) { 428 Value *YS = // (Y << C) 429 Builder->CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName()); 430 // (X + (Y << C)) 431 Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), YS, V1, 432 Op0BO->getOperand(1)->getName()); 433 uint32_t Op1Val = Op1->getLimitedValue(TypeBits); 434 return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(), 435 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val))); 436 } 437 438 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C)) 439 Value *Op0BOOp1 = Op0BO->getOperand(1); 440 if (isLeftShift && Op0BOOp1->hasOneUse() && 441 match(Op0BOOp1, 442 m_And(m_Shr(m_Value(V1), m_Specific(Op1)), 443 m_ConstantInt(CC))) && 444 cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse()) { 445 Value *YS = // (Y << C) 446 Builder->CreateShl(Op0BO->getOperand(0), Op1, 447 Op0BO->getName()); 448 // X & (CC << C) 449 Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1), 450 V1->getName()+".mask"); 451 return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM); 452 } 453 } 454 455 // FALL THROUGH. 456 case Instruction::Sub: { 457 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C) 458 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() && 459 match(Op0BO->getOperand(0), m_Shr(m_Value(V1), 460 m_Specific(Op1)))) { 461 Value *YS = // (Y << C) 462 Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName()); 463 // (X + (Y << C)) 464 Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), V1, YS, 465 Op0BO->getOperand(0)->getName()); 466 uint32_t Op1Val = Op1->getLimitedValue(TypeBits); 467 return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(), 468 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val))); 469 } 470 471 // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C) 472 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() && 473 match(Op0BO->getOperand(0), 474 m_And(m_Shr(m_Value(V1), m_Value(V2)), 475 m_ConstantInt(CC))) && V2 == Op1 && 476 cast<BinaryOperator>(Op0BO->getOperand(0)) 477 ->getOperand(0)->hasOneUse()) { 478 Value *YS = // (Y << C) 479 Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName()); 480 // X & (CC << C) 481 Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1), 482 V1->getName()+".mask"); 483 484 return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS); 485 } 486 487 break; 488 } 489 } 490 491 492 // If the operand is an bitwise operator with a constant RHS, and the 493 // shift is the only use, we can pull it out of the shift. 494 if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) { 495 bool isValid = true; // Valid only for And, Or, Xor 496 bool highBitSet = false; // Transform if high bit of constant set? 497 498 switch (Op0BO->getOpcode()) { 499 default: isValid = false; break; // Do not perform transform! 500 case Instruction::Add: 501 isValid = isLeftShift; 502 break; 503 case Instruction::Or: 504 case Instruction::Xor: 505 highBitSet = false; 506 break; 507 case Instruction::And: 508 highBitSet = true; 509 break; 510 } 511 512 // If this is a signed shift right, and the high bit is modified 513 // by the logical operation, do not perform the transformation. 514 // The highBitSet boolean indicates the value of the high bit of 515 // the constant which would cause it to be modified for this 516 // operation. 517 // 518 if (isValid && I.getOpcode() == Instruction::AShr) 519 isValid = Op0C->getValue()[TypeBits-1] == highBitSet; 520 521 if (isValid) { 522 Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1); 523 524 Value *NewShift = 525 Builder->CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1); 526 NewShift->takeName(Op0BO); 527 528 return BinaryOperator::Create(Op0BO->getOpcode(), NewShift, 529 NewRHS); 530 } 531 } 532 } 533 } 534 535 // Find out if this is a shift of a shift by a constant. 536 BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0); 537 if (ShiftOp && !ShiftOp->isShift()) 538 ShiftOp = 0; 539 540 if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) { 541 ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1)); 542 uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits); 543 uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits); 544 assert(ShiftAmt2 != 0 && "Should have been simplified earlier"); 545 if (ShiftAmt1 == 0) return 0; // Will be simplified in the future. 546 Value *X = ShiftOp->getOperand(0); 547 548 uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift. 549 550 const IntegerType *Ty = cast<IntegerType>(I.getType()); 551 552 // Check for (X << c1) << c2 and (X >> c1) >> c2 553 if (I.getOpcode() == ShiftOp->getOpcode()) { 554 // If this is oversized composite shift, then unsigned shifts get 0, ashr 555 // saturates. 556 if (AmtSum >= TypeBits) { 557 if (I.getOpcode() != Instruction::AShr) 558 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); 559 AmtSum = TypeBits-1; // Saturate to 31 for i32 ashr. 560 } 561 562 return BinaryOperator::Create(I.getOpcode(), X, 563 ConstantInt::get(Ty, AmtSum)); 564 } 565 566 if (ShiftAmt1 == ShiftAmt2) { 567 // If we have ((X >>? C) << C), turn this into X & (-1 << C). 568 if (I.getOpcode() == Instruction::Shl && 569 ShiftOp->getOpcode() != Instruction::Shl) { 570 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1)); 571 return BinaryOperator::CreateAnd(X, 572 ConstantInt::get(I.getContext(),Mask)); 573 } 574 // If we have ((X << C) >>u C), turn this into X & (-1 >>u C). 575 if (I.getOpcode() == Instruction::LShr && 576 ShiftOp->getOpcode() == Instruction::Shl) { 577 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1)); 578 return BinaryOperator::CreateAnd(X, 579 ConstantInt::get(I.getContext(), Mask)); 580 } 581 } else if (ShiftAmt1 < ShiftAmt2) { 582 uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1; 583 584 // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2) 585 if (I.getOpcode() == Instruction::Shl && 586 ShiftOp->getOpcode() != Instruction::Shl) { 587 assert(ShiftOp->getOpcode() == Instruction::LShr || 588 ShiftOp->getOpcode() == Instruction::AShr); 589 Value *Shift = Builder->CreateShl(X, ConstantInt::get(Ty, ShiftDiff)); 590 591 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2)); 592 return BinaryOperator::CreateAnd(Shift, 593 ConstantInt::get(I.getContext(),Mask)); 594 } 595 596 // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2) 597 if (I.getOpcode() == Instruction::LShr && 598 ShiftOp->getOpcode() == Instruction::Shl) { 599 assert(ShiftOp->getOpcode() == Instruction::Shl); 600 Value *Shift = Builder->CreateLShr(X, ConstantInt::get(Ty, ShiftDiff)); 601 602 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2)); 603 return BinaryOperator::CreateAnd(Shift, 604 ConstantInt::get(I.getContext(),Mask)); 605 } 606 607 // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in. 608 } else { 609 assert(ShiftAmt2 < ShiftAmt1); 610 uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2; 611 612 // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2) 613 if (I.getOpcode() == Instruction::Shl && 614 ShiftOp->getOpcode() != Instruction::Shl) { 615 Value *Shift = Builder->CreateBinOp(ShiftOp->getOpcode(), X, 616 ConstantInt::get(Ty, ShiftDiff)); 617 618 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2)); 619 return BinaryOperator::CreateAnd(Shift, 620 ConstantInt::get(I.getContext(),Mask)); 621 } 622 623 // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2) 624 if (I.getOpcode() == Instruction::LShr && 625 ShiftOp->getOpcode() == Instruction::Shl) { 626 Value *Shift = Builder->CreateShl(X, ConstantInt::get(Ty, ShiftDiff)); 627 628 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2)); 629 return BinaryOperator::CreateAnd(Shift, 630 ConstantInt::get(I.getContext(),Mask)); 631 } 632 633 // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in. 634 } 635 } 636 return 0; 637} 638 639Instruction *InstCombiner::visitShl(BinaryOperator &I) { 640 return commonShiftTransforms(I); 641} 642 643Instruction *InstCombiner::visitLShr(BinaryOperator &I) { 644 if (Instruction *R = commonShiftTransforms(I)) 645 return R; 646 647 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 648 649 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) 650 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op0)) { 651 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 652 // ctlz.i32(x)>>5 --> zext(x == 0) 653 // cttz.i32(x)>>5 --> zext(x == 0) 654 // ctpop.i32(x)>>5 --> zext(x == -1) 655 if ((II->getIntrinsicID() == Intrinsic::ctlz || 656 II->getIntrinsicID() == Intrinsic::cttz || 657 II->getIntrinsicID() == Intrinsic::ctpop) && 658 isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == Op1C->getZExtValue()){ 659 bool isCtPop = II->getIntrinsicID() == Intrinsic::ctpop; 660 Constant *RHS = ConstantInt::getSigned(Op0->getType(), isCtPop ? -1:0); 661 Value *Cmp = Builder->CreateICmpEQ(II->getArgOperand(0), RHS); 662 return new ZExtInst(Cmp, II->getType()); 663 } 664 } 665 666 return 0; 667} 668 669Instruction *InstCombiner::visitAShr(BinaryOperator &I) { 670 if (Instruction *R = commonShiftTransforms(I)) 671 return R; 672 673 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 674 675 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0)) { 676 // ashr int -1, X = -1 (for any arithmetic shift rights of ~0) 677 if (CSI->isAllOnesValue()) 678 return ReplaceInstUsesWith(I, CSI); 679 } 680 681 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 682 // If the input is a SHL by the same constant (ashr (shl X, C), C), then we 683 // have a sign-extend idiom. 684 Value *X; 685 if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1)))) { 686 // If the input value is known to already be sign extended enough, delete 687 // the extension. 688 if (ComputeNumSignBits(X) > Op1C->getZExtValue()) 689 return ReplaceInstUsesWith(I, X); 690 691 // If the input is an extension from the shifted amount value, e.g. 692 // %x = zext i8 %A to i32 693 // %y = shl i32 %x, 24 694 // %z = ashr %y, 24 695 // then turn this into "z = sext i8 A to i32". 696 if (ZExtInst *ZI = dyn_cast<ZExtInst>(X)) { 697 uint32_t SrcBits = ZI->getOperand(0)->getType()->getScalarSizeInBits(); 698 uint32_t DestBits = ZI->getType()->getScalarSizeInBits(); 699 if (Op1C->getZExtValue() == DestBits-SrcBits) 700 return new SExtInst(ZI->getOperand(0), ZI->getType()); 701 } 702 } 703 } 704 705 // See if we can turn a signed shr into an unsigned shr. 706 if (MaskedValueIsZero(Op0, 707 APInt::getSignBit(I.getType()->getScalarSizeInBits()))) 708 return BinaryOperator::CreateLShr(Op0, Op1); 709 710 // Arithmetic shifting an all-sign-bit value is a no-op. 711 unsigned NumSignBits = ComputeNumSignBits(Op0); 712 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 713 return ReplaceInstUsesWith(I, Op0); 714 715 return 0; 716} 717 718