AddressSanitizer.cpp revision c8a196ae8fad3cba7a777e2e7916fd36ebf70fe6
1//===-- AddressSanitizer.cpp - memory error detector ------------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file is a part of AddressSanitizer, an address sanity checker. 11// Details of the algorithm: 12// http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm 13// 14//===----------------------------------------------------------------------===// 15 16#define DEBUG_TYPE "asan" 17 18#include "llvm/Transforms/Instrumentation.h" 19#include "llvm/ADT/ArrayRef.h" 20#include "llvm/ADT/DenseMap.h" 21#include "llvm/ADT/DepthFirstIterator.h" 22#include "llvm/ADT/OwningPtr.h" 23#include "llvm/ADT/SmallSet.h" 24#include "llvm/ADT/SmallString.h" 25#include "llvm/ADT/SmallVector.h" 26#include "llvm/ADT/StringExtras.h" 27#include "llvm/ADT/Triple.h" 28#include "llvm/DIBuilder.h" 29#include "llvm/IR/DataLayout.h" 30#include "llvm/IR/Function.h" 31#include "llvm/IR/IRBuilder.h" 32#include "llvm/IR/InlineAsm.h" 33#include "llvm/IR/IntrinsicInst.h" 34#include "llvm/IR/LLVMContext.h" 35#include "llvm/IR/Module.h" 36#include "llvm/IR/Type.h" 37#include "llvm/InstVisitor.h" 38#include "llvm/Support/CommandLine.h" 39#include "llvm/Support/DataTypes.h" 40#include "llvm/Support/Debug.h" 41#include "llvm/Support/raw_ostream.h" 42#include "llvm/Support/system_error.h" 43#include "llvm/Target/TargetMachine.h" 44#include "llvm/Transforms/Utils/BasicBlockUtils.h" 45#include "llvm/Transforms/Utils/BlackList.h" 46#include "llvm/Transforms/Utils/Local.h" 47#include "llvm/Transforms/Utils/ModuleUtils.h" 48#include <algorithm> 49#include <string> 50 51using namespace llvm; 52 53static const uint64_t kDefaultShadowScale = 3; 54static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; 55static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; 56static const uint64_t kDefaultShort64bitShadowOffset = 0x7FFF8000; // < 2G. 57static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 41; 58 59static const size_t kMaxStackMallocSize = 1 << 16; // 64K 60static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; 61static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; 62 63static const char *kAsanModuleCtorName = "asan.module_ctor"; 64static const char *kAsanModuleDtorName = "asan.module_dtor"; 65static const int kAsanCtorAndCtorPriority = 1; 66static const char *kAsanReportErrorTemplate = "__asan_report_"; 67static const char *kAsanRegisterGlobalsName = "__asan_register_globals"; 68static const char *kAsanUnregisterGlobalsName = "__asan_unregister_globals"; 69static const char *kAsanPoisonGlobalsName = "__asan_before_dynamic_init"; 70static const char *kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init"; 71static const char *kAsanInitName = "__asan_init_v1"; 72static const char *kAsanHandleNoReturnName = "__asan_handle_no_return"; 73static const char *kAsanMappingOffsetName = "__asan_mapping_offset"; 74static const char *kAsanMappingScaleName = "__asan_mapping_scale"; 75static const char *kAsanStackMallocName = "__asan_stack_malloc"; 76static const char *kAsanStackFreeName = "__asan_stack_free"; 77static const char *kAsanGenPrefix = "__asan_gen_"; 78static const char *kAsanPoisonStackMemoryName = "__asan_poison_stack_memory"; 79static const char *kAsanUnpoisonStackMemoryName = 80 "__asan_unpoison_stack_memory"; 81 82static const int kAsanStackLeftRedzoneMagic = 0xf1; 83static const int kAsanStackMidRedzoneMagic = 0xf2; 84static const int kAsanStackRightRedzoneMagic = 0xf3; 85static const int kAsanStackPartialRedzoneMagic = 0xf4; 86 87// Accesses sizes are powers of two: 1, 2, 4, 8, 16. 88static const size_t kNumberOfAccessSizes = 5; 89 90// Command-line flags. 91 92// This flag may need to be replaced with -f[no-]asan-reads. 93static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", 94 cl::desc("instrument read instructions"), cl::Hidden, cl::init(true)); 95static cl::opt<bool> ClInstrumentWrites("asan-instrument-writes", 96 cl::desc("instrument write instructions"), cl::Hidden, cl::init(true)); 97static cl::opt<bool> ClInstrumentAtomics("asan-instrument-atomics", 98 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), 99 cl::Hidden, cl::init(true)); 100static cl::opt<bool> ClAlwaysSlowPath("asan-always-slow-path", 101 cl::desc("use instrumentation with slow path for all accesses"), 102 cl::Hidden, cl::init(false)); 103// This flag limits the number of instructions to be instrumented 104// in any given BB. Normally, this should be set to unlimited (INT_MAX), 105// but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary 106// set it to 10000. 107static cl::opt<int> ClMaxInsnsToInstrumentPerBB("asan-max-ins-per-bb", 108 cl::init(10000), 109 cl::desc("maximal number of instructions to instrument in any given BB"), 110 cl::Hidden); 111// This flag may need to be replaced with -f[no]asan-stack. 112static cl::opt<bool> ClStack("asan-stack", 113 cl::desc("Handle stack memory"), cl::Hidden, cl::init(true)); 114// This flag may need to be replaced with -f[no]asan-use-after-return. 115static cl::opt<bool> ClUseAfterReturn("asan-use-after-return", 116 cl::desc("Check return-after-free"), cl::Hidden, cl::init(false)); 117// This flag may need to be replaced with -f[no]asan-globals. 118static cl::opt<bool> ClGlobals("asan-globals", 119 cl::desc("Handle global objects"), cl::Hidden, cl::init(true)); 120static cl::opt<bool> ClInitializers("asan-initialization-order", 121 cl::desc("Handle C++ initializer order"), cl::Hidden, cl::init(false)); 122static cl::opt<bool> ClMemIntrin("asan-memintrin", 123 cl::desc("Handle memset/memcpy/memmove"), cl::Hidden, cl::init(true)); 124static cl::opt<bool> ClRealignStack("asan-realign-stack", 125 cl::desc("Realign stack to 32"), cl::Hidden, cl::init(true)); 126static cl::opt<std::string> ClBlacklistFile("asan-blacklist", 127 cl::desc("File containing the list of objects to ignore " 128 "during instrumentation"), cl::Hidden); 129 130// These flags allow to change the shadow mapping. 131// The shadow mapping looks like 132// Shadow = (Mem >> scale) + (1 << offset_log) 133static cl::opt<int> ClMappingScale("asan-mapping-scale", 134 cl::desc("scale of asan shadow mapping"), cl::Hidden, cl::init(0)); 135static cl::opt<int> ClMappingOffsetLog("asan-mapping-offset-log", 136 cl::desc("offset of asan shadow mapping"), cl::Hidden, cl::init(-1)); 137static cl::opt<bool> ClShort64BitOffset("asan-short-64bit-mapping-offset", 138 cl::desc("Use short immediate constant as the mapping offset for 64bit"), 139 cl::Hidden, cl::init(true)); 140 141// Optimization flags. Not user visible, used mostly for testing 142// and benchmarking the tool. 143static cl::opt<bool> ClOpt("asan-opt", 144 cl::desc("Optimize instrumentation"), cl::Hidden, cl::init(true)); 145static cl::opt<bool> ClOptSameTemp("asan-opt-same-temp", 146 cl::desc("Instrument the same temp just once"), cl::Hidden, 147 cl::init(true)); 148static cl::opt<bool> ClOptGlobals("asan-opt-globals", 149 cl::desc("Don't instrument scalar globals"), cl::Hidden, cl::init(true)); 150 151static cl::opt<bool> ClCheckLifetime("asan-check-lifetime", 152 cl::desc("Use llvm.lifetime intrinsics to insert extra checks"), 153 cl::Hidden, cl::init(false)); 154 155// Debug flags. 156static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, 157 cl::init(0)); 158static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), 159 cl::Hidden, cl::init(0)); 160static cl::opt<std::string> ClDebugFunc("asan-debug-func", 161 cl::Hidden, cl::desc("Debug func")); 162static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), 163 cl::Hidden, cl::init(-1)); 164static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug man inst"), 165 cl::Hidden, cl::init(-1)); 166 167namespace { 168/// A set of dynamically initialized globals extracted from metadata. 169class SetOfDynamicallyInitializedGlobals { 170 public: 171 void Init(Module& M) { 172 // Clang generates metadata identifying all dynamically initialized globals. 173 NamedMDNode *DynamicGlobals = 174 M.getNamedMetadata("llvm.asan.dynamically_initialized_globals"); 175 if (!DynamicGlobals) 176 return; 177 for (int i = 0, n = DynamicGlobals->getNumOperands(); i < n; ++i) { 178 MDNode *MDN = DynamicGlobals->getOperand(i); 179 assert(MDN->getNumOperands() == 1); 180 Value *VG = MDN->getOperand(0); 181 // The optimizer may optimize away a global entirely, in which case we 182 // cannot instrument access to it. 183 if (!VG) 184 continue; 185 DynInitGlobals.insert(cast<GlobalVariable>(VG)); 186 } 187 } 188 bool Contains(GlobalVariable *G) { return DynInitGlobals.count(G) != 0; } 189 private: 190 SmallSet<GlobalValue*, 32> DynInitGlobals; 191}; 192 193/// This struct defines the shadow mapping using the rule: 194/// shadow = (mem >> Scale) ADD-or-OR Offset. 195struct ShadowMapping { 196 int Scale; 197 uint64_t Offset; 198 bool OrShadowOffset; 199}; 200 201static ShadowMapping getShadowMapping(const Module &M, int LongSize, 202 bool ZeroBaseShadow) { 203 llvm::Triple TargetTriple(M.getTargetTriple()); 204 bool IsAndroid = TargetTriple.getEnvironment() == llvm::Triple::Android; 205 bool IsMacOSX = TargetTriple.getOS() == llvm::Triple::MacOSX; 206 bool IsPPC64 = TargetTriple.getArch() == llvm::Triple::ppc64; 207 bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64; 208 209 ShadowMapping Mapping; 210 211 // OR-ing shadow offset if more efficient (at least on x86), 212 // but on ppc64 we have to use add since the shadow offset is not neccesary 213 // 1/8-th of the address space. 214 Mapping.OrShadowOffset = !IsPPC64 && !ClShort64BitOffset; 215 216 Mapping.Offset = (IsAndroid || ZeroBaseShadow) ? 0 : 217 (LongSize == 32 ? kDefaultShadowOffset32 : 218 IsPPC64 ? kPPC64_ShadowOffset64 : kDefaultShadowOffset64); 219 if (!ZeroBaseShadow && ClShort64BitOffset && IsX86_64 && !IsMacOSX) { 220 assert(LongSize == 64); 221 Mapping.Offset = kDefaultShort64bitShadowOffset; 222 } if (!ZeroBaseShadow && ClMappingOffsetLog >= 0) { 223 // Zero offset log is the special case. 224 Mapping.Offset = (ClMappingOffsetLog == 0) ? 0 : 1ULL << ClMappingOffsetLog; 225 } 226 227 Mapping.Scale = kDefaultShadowScale; 228 if (ClMappingScale) { 229 Mapping.Scale = ClMappingScale; 230 } 231 232 return Mapping; 233} 234 235static size_t RedzoneSizeForScale(int MappingScale) { 236 // Redzone used for stack and globals is at least 32 bytes. 237 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. 238 return std::max(32U, 1U << MappingScale); 239} 240 241/// AddressSanitizer: instrument the code in module to find memory bugs. 242struct AddressSanitizer : public FunctionPass { 243 AddressSanitizer(bool CheckInitOrder = false, 244 bool CheckUseAfterReturn = false, 245 bool CheckLifetime = false, 246 StringRef BlacklistFile = StringRef(), 247 bool ZeroBaseShadow = false) 248 : FunctionPass(ID), 249 CheckInitOrder(CheckInitOrder || ClInitializers), 250 CheckUseAfterReturn(CheckUseAfterReturn || ClUseAfterReturn), 251 CheckLifetime(CheckLifetime || ClCheckLifetime), 252 BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile 253 : BlacklistFile), 254 ZeroBaseShadow(ZeroBaseShadow) {} 255 virtual const char *getPassName() const { 256 return "AddressSanitizerFunctionPass"; 257 } 258 void instrumentMop(Instruction *I); 259 void instrumentAddress(Instruction *OrigIns, IRBuilder<> &IRB, 260 Value *Addr, uint32_t TypeSize, bool IsWrite); 261 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 262 Value *ShadowValue, uint32_t TypeSize); 263 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, 264 bool IsWrite, size_t AccessSizeIndex); 265 bool instrumentMemIntrinsic(MemIntrinsic *MI); 266 void instrumentMemIntrinsicParam(Instruction *OrigIns, Value *Addr, 267 Value *Size, 268 Instruction *InsertBefore, bool IsWrite); 269 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); 270 bool runOnFunction(Function &F); 271 void createInitializerPoisonCalls(Module &M, 272 Value *FirstAddr, Value *LastAddr); 273 bool maybeInsertAsanInitAtFunctionEntry(Function &F); 274 void emitShadowMapping(Module &M, IRBuilder<> &IRB) const; 275 virtual bool doInitialization(Module &M); 276 static char ID; // Pass identification, replacement for typeid 277 278 private: 279 void initializeCallbacks(Module &M); 280 281 bool ShouldInstrumentGlobal(GlobalVariable *G); 282 bool LooksLikeCodeInBug11395(Instruction *I); 283 void FindDynamicInitializers(Module &M); 284 285 bool CheckInitOrder; 286 bool CheckUseAfterReturn; 287 bool CheckLifetime; 288 SmallString<64> BlacklistFile; 289 bool ZeroBaseShadow; 290 291 LLVMContext *C; 292 DataLayout *TD; 293 int LongSize; 294 Type *IntptrTy; 295 ShadowMapping Mapping; 296 Function *AsanCtorFunction; 297 Function *AsanInitFunction; 298 Function *AsanHandleNoReturnFunc; 299 OwningPtr<BlackList> BL; 300 // This array is indexed by AccessIsWrite and log2(AccessSize). 301 Function *AsanErrorCallback[2][kNumberOfAccessSizes]; 302 InlineAsm *EmptyAsm; 303 SetOfDynamicallyInitializedGlobals DynamicallyInitializedGlobals; 304 305 friend struct FunctionStackPoisoner; 306}; 307 308class AddressSanitizerModule : public ModulePass { 309 public: 310 AddressSanitizerModule(bool CheckInitOrder = false, 311 StringRef BlacklistFile = StringRef(), 312 bool ZeroBaseShadow = false) 313 : ModulePass(ID), 314 CheckInitOrder(CheckInitOrder || ClInitializers), 315 BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile 316 : BlacklistFile), 317 ZeroBaseShadow(ZeroBaseShadow) {} 318 bool runOnModule(Module &M); 319 static char ID; // Pass identification, replacement for typeid 320 virtual const char *getPassName() const { 321 return "AddressSanitizerModule"; 322 } 323 324 private: 325 void initializeCallbacks(Module &M); 326 327 bool ShouldInstrumentGlobal(GlobalVariable *G); 328 void createInitializerPoisonCalls(Module &M, Value *FirstAddr, 329 Value *LastAddr); 330 size_t RedzoneSize() const { 331 return RedzoneSizeForScale(Mapping.Scale); 332 } 333 334 bool CheckInitOrder; 335 SmallString<64> BlacklistFile; 336 bool ZeroBaseShadow; 337 338 OwningPtr<BlackList> BL; 339 SetOfDynamicallyInitializedGlobals DynamicallyInitializedGlobals; 340 Type *IntptrTy; 341 LLVMContext *C; 342 DataLayout *TD; 343 ShadowMapping Mapping; 344 Function *AsanPoisonGlobals; 345 Function *AsanUnpoisonGlobals; 346 Function *AsanRegisterGlobals; 347 Function *AsanUnregisterGlobals; 348}; 349 350// Stack poisoning does not play well with exception handling. 351// When an exception is thrown, we essentially bypass the code 352// that unpoisones the stack. This is why the run-time library has 353// to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire 354// stack in the interceptor. This however does not work inside the 355// actual function which catches the exception. Most likely because the 356// compiler hoists the load of the shadow value somewhere too high. 357// This causes asan to report a non-existing bug on 453.povray. 358// It sounds like an LLVM bug. 359struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { 360 Function &F; 361 AddressSanitizer &ASan; 362 DIBuilder DIB; 363 LLVMContext *C; 364 Type *IntptrTy; 365 Type *IntptrPtrTy; 366 ShadowMapping Mapping; 367 368 SmallVector<AllocaInst*, 16> AllocaVec; 369 SmallVector<Instruction*, 8> RetVec; 370 uint64_t TotalStackSize; 371 unsigned StackAlignment; 372 373 Function *AsanStackMallocFunc, *AsanStackFreeFunc; 374 Function *AsanPoisonStackMemoryFunc, *AsanUnpoisonStackMemoryFunc; 375 376 // Stores a place and arguments of poisoning/unpoisoning call for alloca. 377 struct AllocaPoisonCall { 378 IntrinsicInst *InsBefore; 379 uint64_t Size; 380 bool DoPoison; 381 }; 382 SmallVector<AllocaPoisonCall, 8> AllocaPoisonCallVec; 383 384 // Maps Value to an AllocaInst from which the Value is originated. 385 typedef DenseMap<Value*, AllocaInst*> AllocaForValueMapTy; 386 AllocaForValueMapTy AllocaForValue; 387 388 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) 389 : F(F), ASan(ASan), DIB(*F.getParent()), C(ASan.C), 390 IntptrTy(ASan.IntptrTy), IntptrPtrTy(PointerType::get(IntptrTy, 0)), 391 Mapping(ASan.Mapping), 392 TotalStackSize(0), StackAlignment(1 << Mapping.Scale) {} 393 394 bool runOnFunction() { 395 if (!ClStack) return false; 396 // Collect alloca, ret, lifetime instructions etc. 397 for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()), 398 DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) { 399 BasicBlock *BB = *DI; 400 visit(*BB); 401 } 402 if (AllocaVec.empty()) return false; 403 404 initializeCallbacks(*F.getParent()); 405 406 poisonStack(); 407 408 if (ClDebugStack) { 409 DEBUG(dbgs() << F); 410 } 411 return true; 412 } 413 414 // Finds all static Alloca instructions and puts 415 // poisoned red zones around all of them. 416 // Then unpoison everything back before the function returns. 417 void poisonStack(); 418 419 // ----------------------- Visitors. 420 /// \brief Collect all Ret instructions. 421 void visitReturnInst(ReturnInst &RI) { 422 RetVec.push_back(&RI); 423 } 424 425 /// \brief Collect Alloca instructions we want (and can) handle. 426 void visitAllocaInst(AllocaInst &AI) { 427 if (!isInterestingAlloca(AI)) return; 428 429 StackAlignment = std::max(StackAlignment, AI.getAlignment()); 430 AllocaVec.push_back(&AI); 431 uint64_t AlignedSize = getAlignedAllocaSize(&AI); 432 TotalStackSize += AlignedSize; 433 } 434 435 /// \brief Collect lifetime intrinsic calls to check for use-after-scope 436 /// errors. 437 void visitIntrinsicInst(IntrinsicInst &II) { 438 if (!ASan.CheckLifetime) return; 439 Intrinsic::ID ID = II.getIntrinsicID(); 440 if (ID != Intrinsic::lifetime_start && 441 ID != Intrinsic::lifetime_end) 442 return; 443 // Found lifetime intrinsic, add ASan instrumentation if necessary. 444 ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0)); 445 // If size argument is undefined, don't do anything. 446 if (Size->isMinusOne()) return; 447 // Check that size doesn't saturate uint64_t and can 448 // be stored in IntptrTy. 449 const uint64_t SizeValue = Size->getValue().getLimitedValue(); 450 if (SizeValue == ~0ULL || 451 !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) 452 return; 453 // Find alloca instruction that corresponds to llvm.lifetime argument. 454 AllocaInst *AI = findAllocaForValue(II.getArgOperand(1)); 455 if (!AI) return; 456 bool DoPoison = (ID == Intrinsic::lifetime_end); 457 AllocaPoisonCall APC = {&II, SizeValue, DoPoison}; 458 AllocaPoisonCallVec.push_back(APC); 459 } 460 461 // ---------------------- Helpers. 462 void initializeCallbacks(Module &M); 463 464 // Check if we want (and can) handle this alloca. 465 bool isInterestingAlloca(AllocaInst &AI) { 466 return (!AI.isArrayAllocation() && 467 AI.isStaticAlloca() && 468 AI.getAllocatedType()->isSized()); 469 } 470 471 size_t RedzoneSize() const { 472 return RedzoneSizeForScale(Mapping.Scale); 473 } 474 uint64_t getAllocaSizeInBytes(AllocaInst *AI) { 475 Type *Ty = AI->getAllocatedType(); 476 uint64_t SizeInBytes = ASan.TD->getTypeAllocSize(Ty); 477 return SizeInBytes; 478 } 479 uint64_t getAlignedSize(uint64_t SizeInBytes) { 480 size_t RZ = RedzoneSize(); 481 return ((SizeInBytes + RZ - 1) / RZ) * RZ; 482 } 483 uint64_t getAlignedAllocaSize(AllocaInst *AI) { 484 uint64_t SizeInBytes = getAllocaSizeInBytes(AI); 485 return getAlignedSize(SizeInBytes); 486 } 487 /// Finds alloca where the value comes from. 488 AllocaInst *findAllocaForValue(Value *V); 489 void poisonRedZones(const ArrayRef<AllocaInst*> &AllocaVec, IRBuilder<> IRB, 490 Value *ShadowBase, bool DoPoison); 491 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> IRB, bool DoPoison); 492}; 493 494} // namespace 495 496char AddressSanitizer::ID = 0; 497INITIALIZE_PASS(AddressSanitizer, "asan", 498 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", 499 false, false) 500FunctionPass *llvm::createAddressSanitizerFunctionPass( 501 bool CheckInitOrder, bool CheckUseAfterReturn, bool CheckLifetime, 502 StringRef BlacklistFile, bool ZeroBaseShadow) { 503 return new AddressSanitizer(CheckInitOrder, CheckUseAfterReturn, 504 CheckLifetime, BlacklistFile, ZeroBaseShadow); 505} 506 507char AddressSanitizerModule::ID = 0; 508INITIALIZE_PASS(AddressSanitizerModule, "asan-module", 509 "AddressSanitizer: detects use-after-free and out-of-bounds bugs." 510 "ModulePass", false, false) 511ModulePass *llvm::createAddressSanitizerModulePass( 512 bool CheckInitOrder, StringRef BlacklistFile, bool ZeroBaseShadow) { 513 return new AddressSanitizerModule(CheckInitOrder, BlacklistFile, 514 ZeroBaseShadow); 515} 516 517static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { 518 size_t Res = CountTrailingZeros_32(TypeSize / 8); 519 assert(Res < kNumberOfAccessSizes); 520 return Res; 521} 522 523// Create a constant for Str so that we can pass it to the run-time lib. 524static GlobalVariable *createPrivateGlobalForString(Module &M, StringRef Str) { 525 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 526 return new GlobalVariable(M, StrConst->getType(), true, 527 GlobalValue::PrivateLinkage, StrConst, 528 kAsanGenPrefix); 529} 530 531static bool GlobalWasGeneratedByAsan(GlobalVariable *G) { 532 return G->getName().find(kAsanGenPrefix) == 0; 533} 534 535Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { 536 // Shadow >> scale 537 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); 538 if (Mapping.Offset == 0) 539 return Shadow; 540 // (Shadow >> scale) | offset 541 if (Mapping.OrShadowOffset) 542 return IRB.CreateOr(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset)); 543 else 544 return IRB.CreateAdd(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset)); 545} 546 547void AddressSanitizer::instrumentMemIntrinsicParam( 548 Instruction *OrigIns, 549 Value *Addr, Value *Size, Instruction *InsertBefore, bool IsWrite) { 550 // Check the first byte. 551 { 552 IRBuilder<> IRB(InsertBefore); 553 instrumentAddress(OrigIns, IRB, Addr, 8, IsWrite); 554 } 555 // Check the last byte. 556 { 557 IRBuilder<> IRB(InsertBefore); 558 Value *SizeMinusOne = IRB.CreateSub( 559 Size, ConstantInt::get(Size->getType(), 1)); 560 SizeMinusOne = IRB.CreateIntCast(SizeMinusOne, IntptrTy, false); 561 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 562 Value *AddrPlusSizeMinisOne = IRB.CreateAdd(AddrLong, SizeMinusOne); 563 instrumentAddress(OrigIns, IRB, AddrPlusSizeMinisOne, 8, IsWrite); 564 } 565} 566 567// Instrument memset/memmove/memcpy 568bool AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { 569 Value *Dst = MI->getDest(); 570 MemTransferInst *MemTran = dyn_cast<MemTransferInst>(MI); 571 Value *Src = MemTran ? MemTran->getSource() : 0; 572 Value *Length = MI->getLength(); 573 574 Constant *ConstLength = dyn_cast<Constant>(Length); 575 Instruction *InsertBefore = MI; 576 if (ConstLength) { 577 if (ConstLength->isNullValue()) return false; 578 } else { 579 // The size is not a constant so it could be zero -- check at run-time. 580 IRBuilder<> IRB(InsertBefore); 581 582 Value *Cmp = IRB.CreateICmpNE(Length, 583 Constant::getNullValue(Length->getType())); 584 InsertBefore = SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false); 585 } 586 587 instrumentMemIntrinsicParam(MI, Dst, Length, InsertBefore, true); 588 if (Src) 589 instrumentMemIntrinsicParam(MI, Src, Length, InsertBefore, false); 590 return true; 591} 592 593// If I is an interesting memory access, return the PointerOperand 594// and set IsWrite. Otherwise return NULL. 595static Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite) { 596 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 597 if (!ClInstrumentReads) return NULL; 598 *IsWrite = false; 599 return LI->getPointerOperand(); 600 } 601 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 602 if (!ClInstrumentWrites) return NULL; 603 *IsWrite = true; 604 return SI->getPointerOperand(); 605 } 606 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 607 if (!ClInstrumentAtomics) return NULL; 608 *IsWrite = true; 609 return RMW->getPointerOperand(); 610 } 611 if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { 612 if (!ClInstrumentAtomics) return NULL; 613 *IsWrite = true; 614 return XCHG->getPointerOperand(); 615 } 616 return NULL; 617} 618 619void AddressSanitizer::instrumentMop(Instruction *I) { 620 bool IsWrite = false; 621 Value *Addr = isInterestingMemoryAccess(I, &IsWrite); 622 assert(Addr); 623 if (ClOpt && ClOptGlobals) { 624 if (GlobalVariable *G = dyn_cast<GlobalVariable>(Addr)) { 625 // If initialization order checking is disabled, a simple access to a 626 // dynamically initialized global is always valid. 627 if (!CheckInitOrder) 628 return; 629 // If a global variable does not have dynamic initialization we don't 630 // have to instrument it. However, if a global does not have initailizer 631 // at all, we assume it has dynamic initializer (in other TU). 632 if (G->hasInitializer() && !DynamicallyInitializedGlobals.Contains(G)) 633 return; 634 } 635 } 636 637 Type *OrigPtrTy = Addr->getType(); 638 Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType(); 639 640 assert(OrigTy->isSized()); 641 uint32_t TypeSize = TD->getTypeStoreSizeInBits(OrigTy); 642 643 if (TypeSize != 8 && TypeSize != 16 && 644 TypeSize != 32 && TypeSize != 64 && TypeSize != 128) { 645 // Ignore all unusual sizes. 646 return; 647 } 648 649 IRBuilder<> IRB(I); 650 instrumentAddress(I, IRB, Addr, TypeSize, IsWrite); 651} 652 653// Validate the result of Module::getOrInsertFunction called for an interface 654// function of AddressSanitizer. If the instrumented module defines a function 655// with the same name, their prototypes must match, otherwise 656// getOrInsertFunction returns a bitcast. 657static Function *checkInterfaceFunction(Constant *FuncOrBitcast) { 658 if (isa<Function>(FuncOrBitcast)) return cast<Function>(FuncOrBitcast); 659 FuncOrBitcast->dump(); 660 report_fatal_error("trying to redefine an AddressSanitizer " 661 "interface function"); 662} 663 664Instruction *AddressSanitizer::generateCrashCode( 665 Instruction *InsertBefore, Value *Addr, 666 bool IsWrite, size_t AccessSizeIndex) { 667 IRBuilder<> IRB(InsertBefore); 668 CallInst *Call = IRB.CreateCall(AsanErrorCallback[IsWrite][AccessSizeIndex], 669 Addr); 670 // We don't do Call->setDoesNotReturn() because the BB already has 671 // UnreachableInst at the end. 672 // This EmptyAsm is required to avoid callback merge. 673 IRB.CreateCall(EmptyAsm); 674 return Call; 675} 676 677Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 678 Value *ShadowValue, 679 uint32_t TypeSize) { 680 size_t Granularity = 1 << Mapping.Scale; 681 // Addr & (Granularity - 1) 682 Value *LastAccessedByte = IRB.CreateAnd( 683 AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); 684 // (Addr & (Granularity - 1)) + size - 1 685 if (TypeSize / 8 > 1) 686 LastAccessedByte = IRB.CreateAdd( 687 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); 688 // (uint8_t) ((Addr & (Granularity-1)) + size - 1) 689 LastAccessedByte = IRB.CreateIntCast( 690 LastAccessedByte, ShadowValue->getType(), false); 691 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue 692 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); 693} 694 695void AddressSanitizer::instrumentAddress(Instruction *OrigIns, 696 IRBuilder<> &IRB, Value *Addr, 697 uint32_t TypeSize, bool IsWrite) { 698 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 699 700 Type *ShadowTy = IntegerType::get( 701 *C, std::max(8U, TypeSize >> Mapping.Scale)); 702 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); 703 Value *ShadowPtr = memToShadow(AddrLong, IRB); 704 Value *CmpVal = Constant::getNullValue(ShadowTy); 705 Value *ShadowValue = IRB.CreateLoad( 706 IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); 707 708 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); 709 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); 710 size_t Granularity = 1 << Mapping.Scale; 711 TerminatorInst *CrashTerm = 0; 712 713 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { 714 TerminatorInst *CheckTerm = 715 SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false); 716 assert(dyn_cast<BranchInst>(CheckTerm)->isUnconditional()); 717 BasicBlock *NextBB = CheckTerm->getSuccessor(0); 718 IRB.SetInsertPoint(CheckTerm); 719 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); 720 BasicBlock *CrashBlock = 721 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); 722 CrashTerm = new UnreachableInst(*C, CrashBlock); 723 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); 724 ReplaceInstWithInst(CheckTerm, NewTerm); 725 } else { 726 CrashTerm = SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), true); 727 } 728 729 Instruction *Crash = 730 generateCrashCode(CrashTerm, AddrLong, IsWrite, AccessSizeIndex); 731 Crash->setDebugLoc(OrigIns->getDebugLoc()); 732} 733 734void AddressSanitizerModule::createInitializerPoisonCalls( 735 Module &M, Value *FirstAddr, Value *LastAddr) { 736 // We do all of our poisoning and unpoisoning within _GLOBAL__I_a. 737 Function *GlobalInit = M.getFunction("_GLOBAL__I_a"); 738 // If that function is not present, this TU contains no globals, or they have 739 // all been optimized away 740 if (!GlobalInit) 741 return; 742 743 // Set up the arguments to our poison/unpoison functions. 744 IRBuilder<> IRB(GlobalInit->begin()->getFirstInsertionPt()); 745 746 // Add a call to poison all external globals before the given function starts. 747 IRB.CreateCall2(AsanPoisonGlobals, FirstAddr, LastAddr); 748 749 // Add calls to unpoison all globals before each return instruction. 750 for (Function::iterator I = GlobalInit->begin(), E = GlobalInit->end(); 751 I != E; ++I) { 752 if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator())) { 753 CallInst::Create(AsanUnpoisonGlobals, "", RI); 754 } 755 } 756} 757 758bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) { 759 Type *Ty = cast<PointerType>(G->getType())->getElementType(); 760 DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); 761 762 if (BL->isIn(*G)) return false; 763 if (!Ty->isSized()) return false; 764 if (!G->hasInitializer()) return false; 765 if (GlobalWasGeneratedByAsan(G)) return false; // Our own global. 766 // Touch only those globals that will not be defined in other modules. 767 // Don't handle ODR type linkages since other modules may be built w/o asan. 768 if (G->getLinkage() != GlobalVariable::ExternalLinkage && 769 G->getLinkage() != GlobalVariable::PrivateLinkage && 770 G->getLinkage() != GlobalVariable::InternalLinkage) 771 return false; 772 // Two problems with thread-locals: 773 // - The address of the main thread's copy can't be computed at link-time. 774 // - Need to poison all copies, not just the main thread's one. 775 if (G->isThreadLocal()) 776 return false; 777 // For now, just ignore this Alloca if the alignment is large. 778 if (G->getAlignment() > RedzoneSize()) return false; 779 780 // Ignore all the globals with the names starting with "\01L_OBJC_". 781 // Many of those are put into the .cstring section. The linker compresses 782 // that section by removing the spare \0s after the string terminator, so 783 // our redzones get broken. 784 if ((G->getName().find("\01L_OBJC_") == 0) || 785 (G->getName().find("\01l_OBJC_") == 0)) { 786 DEBUG(dbgs() << "Ignoring \\01L_OBJC_* global: " << *G); 787 return false; 788 } 789 790 if (G->hasSection()) { 791 StringRef Section(G->getSection()); 792 // Ignore the globals from the __OBJC section. The ObjC runtime assumes 793 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to 794 // them. 795 if ((Section.find("__OBJC,") == 0) || 796 (Section.find("__DATA, __objc_") == 0)) { 797 DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G); 798 return false; 799 } 800 // See http://code.google.com/p/address-sanitizer/issues/detail?id=32 801 // Constant CFString instances are compiled in the following way: 802 // -- the string buffer is emitted into 803 // __TEXT,__cstring,cstring_literals 804 // -- the constant NSConstantString structure referencing that buffer 805 // is placed into __DATA,__cfstring 806 // Therefore there's no point in placing redzones into __DATA,__cfstring. 807 // Moreover, it causes the linker to crash on OS X 10.7 808 if (Section.find("__DATA,__cfstring") == 0) { 809 DEBUG(dbgs() << "Ignoring CFString: " << *G); 810 return false; 811 } 812 } 813 814 return true; 815} 816 817void AddressSanitizerModule::initializeCallbacks(Module &M) { 818 IRBuilder<> IRB(*C); 819 // Declare our poisoning and unpoisoning functions. 820 AsanPoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction( 821 kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL)); 822 AsanPoisonGlobals->setLinkage(Function::ExternalLinkage); 823 AsanUnpoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction( 824 kAsanUnpoisonGlobalsName, IRB.getVoidTy(), NULL)); 825 AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage); 826 // Declare functions that register/unregister globals. 827 AsanRegisterGlobals = checkInterfaceFunction(M.getOrInsertFunction( 828 kAsanRegisterGlobalsName, IRB.getVoidTy(), 829 IntptrTy, IntptrTy, NULL)); 830 AsanRegisterGlobals->setLinkage(Function::ExternalLinkage); 831 AsanUnregisterGlobals = checkInterfaceFunction(M.getOrInsertFunction( 832 kAsanUnregisterGlobalsName, 833 IRB.getVoidTy(), IntptrTy, IntptrTy, NULL)); 834 AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage); 835} 836 837// This function replaces all global variables with new variables that have 838// trailing redzones. It also creates a function that poisons 839// redzones and inserts this function into llvm.global_ctors. 840bool AddressSanitizerModule::runOnModule(Module &M) { 841 if (!ClGlobals) return false; 842 TD = getAnalysisIfAvailable<DataLayout>(); 843 if (!TD) 844 return false; 845 BL.reset(new BlackList(BlacklistFile)); 846 if (BL->isIn(M)) return false; 847 C = &(M.getContext()); 848 int LongSize = TD->getPointerSizeInBits(); 849 IntptrTy = Type::getIntNTy(*C, LongSize); 850 Mapping = getShadowMapping(M, LongSize, ZeroBaseShadow); 851 initializeCallbacks(M); 852 DynamicallyInitializedGlobals.Init(M); 853 854 SmallVector<GlobalVariable *, 16> GlobalsToChange; 855 856 for (Module::GlobalListType::iterator G = M.global_begin(), 857 E = M.global_end(); G != E; ++G) { 858 if (ShouldInstrumentGlobal(G)) 859 GlobalsToChange.push_back(G); 860 } 861 862 size_t n = GlobalsToChange.size(); 863 if (n == 0) return false; 864 865 // A global is described by a structure 866 // size_t beg; 867 // size_t size; 868 // size_t size_with_redzone; 869 // const char *name; 870 // size_t has_dynamic_init; 871 // We initialize an array of such structures and pass it to a run-time call. 872 StructType *GlobalStructTy = StructType::get(IntptrTy, IntptrTy, 873 IntptrTy, IntptrTy, 874 IntptrTy, NULL); 875 SmallVector<Constant *, 16> Initializers(n), DynamicInit; 876 877 878 Function *CtorFunc = M.getFunction(kAsanModuleCtorName); 879 assert(CtorFunc); 880 IRBuilder<> IRB(CtorFunc->getEntryBlock().getTerminator()); 881 882 // The addresses of the first and last dynamically initialized globals in 883 // this TU. Used in initialization order checking. 884 Value *FirstDynamic = 0, *LastDynamic = 0; 885 886 for (size_t i = 0; i < n; i++) { 887 static const uint64_t kMaxGlobalRedzone = 1 << 18; 888 GlobalVariable *G = GlobalsToChange[i]; 889 PointerType *PtrTy = cast<PointerType>(G->getType()); 890 Type *Ty = PtrTy->getElementType(); 891 uint64_t SizeInBytes = TD->getTypeAllocSize(Ty); 892 uint64_t MinRZ = RedzoneSize(); 893 // MinRZ <= RZ <= kMaxGlobalRedzone 894 // and trying to make RZ to be ~ 1/4 of SizeInBytes. 895 uint64_t RZ = std::max(MinRZ, 896 std::min(kMaxGlobalRedzone, 897 (SizeInBytes / MinRZ / 4) * MinRZ)); 898 uint64_t RightRedzoneSize = RZ; 899 // Round up to MinRZ 900 if (SizeInBytes % MinRZ) 901 RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ); 902 assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0); 903 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); 904 // Determine whether this global should be poisoned in initialization. 905 bool GlobalHasDynamicInitializer = 906 DynamicallyInitializedGlobals.Contains(G); 907 // Don't check initialization order if this global is blacklisted. 908 GlobalHasDynamicInitializer &= !BL->isInInit(*G); 909 910 StructType *NewTy = StructType::get(Ty, RightRedZoneTy, NULL); 911 Constant *NewInitializer = ConstantStruct::get( 912 NewTy, G->getInitializer(), 913 Constant::getNullValue(RightRedZoneTy), NULL); 914 915 SmallString<2048> DescriptionOfGlobal = G->getName(); 916 DescriptionOfGlobal += " ("; 917 DescriptionOfGlobal += M.getModuleIdentifier(); 918 DescriptionOfGlobal += ")"; 919 GlobalVariable *Name = createPrivateGlobalForString(M, DescriptionOfGlobal); 920 921 // Create a new global variable with enough space for a redzone. 922 GlobalVariable *NewGlobal = new GlobalVariable( 923 M, NewTy, G->isConstant(), G->getLinkage(), 924 NewInitializer, "", G, G->getThreadLocalMode()); 925 NewGlobal->copyAttributesFrom(G); 926 NewGlobal->setAlignment(MinRZ); 927 928 Value *Indices2[2]; 929 Indices2[0] = IRB.getInt32(0); 930 Indices2[1] = IRB.getInt32(0); 931 932 G->replaceAllUsesWith( 933 ConstantExpr::getGetElementPtr(NewGlobal, Indices2, true)); 934 NewGlobal->takeName(G); 935 G->eraseFromParent(); 936 937 Initializers[i] = ConstantStruct::get( 938 GlobalStructTy, 939 ConstantExpr::getPointerCast(NewGlobal, IntptrTy), 940 ConstantInt::get(IntptrTy, SizeInBytes), 941 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), 942 ConstantExpr::getPointerCast(Name, IntptrTy), 943 ConstantInt::get(IntptrTy, GlobalHasDynamicInitializer), 944 NULL); 945 946 // Populate the first and last globals declared in this TU. 947 if (CheckInitOrder && GlobalHasDynamicInitializer) { 948 LastDynamic = ConstantExpr::getPointerCast(NewGlobal, IntptrTy); 949 if (FirstDynamic == 0) 950 FirstDynamic = LastDynamic; 951 } 952 953 DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); 954 } 955 956 ArrayType *ArrayOfGlobalStructTy = ArrayType::get(GlobalStructTy, n); 957 GlobalVariable *AllGlobals = new GlobalVariable( 958 M, ArrayOfGlobalStructTy, false, GlobalVariable::PrivateLinkage, 959 ConstantArray::get(ArrayOfGlobalStructTy, Initializers), ""); 960 961 // Create calls for poisoning before initializers run and unpoisoning after. 962 if (CheckInitOrder && FirstDynamic && LastDynamic) 963 createInitializerPoisonCalls(M, FirstDynamic, LastDynamic); 964 IRB.CreateCall2(AsanRegisterGlobals, 965 IRB.CreatePointerCast(AllGlobals, IntptrTy), 966 ConstantInt::get(IntptrTy, n)); 967 968 // We also need to unregister globals at the end, e.g. when a shared library 969 // gets closed. 970 Function *AsanDtorFunction = Function::Create( 971 FunctionType::get(Type::getVoidTy(*C), false), 972 GlobalValue::InternalLinkage, kAsanModuleDtorName, &M); 973 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); 974 IRBuilder<> IRB_Dtor(ReturnInst::Create(*C, AsanDtorBB)); 975 IRB_Dtor.CreateCall2(AsanUnregisterGlobals, 976 IRB.CreatePointerCast(AllGlobals, IntptrTy), 977 ConstantInt::get(IntptrTy, n)); 978 appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndCtorPriority); 979 980 DEBUG(dbgs() << M); 981 return true; 982} 983 984void AddressSanitizer::initializeCallbacks(Module &M) { 985 IRBuilder<> IRB(*C); 986 // Create __asan_report* callbacks. 987 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { 988 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 989 AccessSizeIndex++) { 990 // IsWrite and TypeSize are encoded in the function name. 991 std::string FunctionName = std::string(kAsanReportErrorTemplate) + 992 (AccessIsWrite ? "store" : "load") + itostr(1 << AccessSizeIndex); 993 // If we are merging crash callbacks, they have two parameters. 994 AsanErrorCallback[AccessIsWrite][AccessSizeIndex] = 995 checkInterfaceFunction(M.getOrInsertFunction( 996 FunctionName, IRB.getVoidTy(), IntptrTy, NULL)); 997 } 998 } 999 1000 AsanHandleNoReturnFunc = checkInterfaceFunction(M.getOrInsertFunction( 1001 kAsanHandleNoReturnName, IRB.getVoidTy(), NULL)); 1002 // We insert an empty inline asm after __asan_report* to avoid callback merge. 1003 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), 1004 StringRef(""), StringRef(""), 1005 /*hasSideEffects=*/true); 1006} 1007 1008void AddressSanitizer::emitShadowMapping(Module &M, IRBuilder<> &IRB) const { 1009 // Tell the values of mapping offset and scale to the run-time. 1010 GlobalValue *asan_mapping_offset = 1011 new GlobalVariable(M, IntptrTy, true, GlobalValue::LinkOnceODRLinkage, 1012 ConstantInt::get(IntptrTy, Mapping.Offset), 1013 kAsanMappingOffsetName); 1014 // Read the global, otherwise it may be optimized away. 1015 IRB.CreateLoad(asan_mapping_offset, true); 1016 1017 GlobalValue *asan_mapping_scale = 1018 new GlobalVariable(M, IntptrTy, true, GlobalValue::LinkOnceODRLinkage, 1019 ConstantInt::get(IntptrTy, Mapping.Scale), 1020 kAsanMappingScaleName); 1021 // Read the global, otherwise it may be optimized away. 1022 IRB.CreateLoad(asan_mapping_scale, true); 1023} 1024 1025// virtual 1026bool AddressSanitizer::doInitialization(Module &M) { 1027 // Initialize the private fields. No one has accessed them before. 1028 TD = getAnalysisIfAvailable<DataLayout>(); 1029 1030 if (!TD) 1031 return false; 1032 BL.reset(new BlackList(BlacklistFile)); 1033 DynamicallyInitializedGlobals.Init(M); 1034 1035 C = &(M.getContext()); 1036 LongSize = TD->getPointerSizeInBits(); 1037 IntptrTy = Type::getIntNTy(*C, LongSize); 1038 1039 AsanCtorFunction = Function::Create( 1040 FunctionType::get(Type::getVoidTy(*C), false), 1041 GlobalValue::InternalLinkage, kAsanModuleCtorName, &M); 1042 BasicBlock *AsanCtorBB = BasicBlock::Create(*C, "", AsanCtorFunction); 1043 // call __asan_init in the module ctor. 1044 IRBuilder<> IRB(ReturnInst::Create(*C, AsanCtorBB)); 1045 AsanInitFunction = checkInterfaceFunction( 1046 M.getOrInsertFunction(kAsanInitName, IRB.getVoidTy(), NULL)); 1047 AsanInitFunction->setLinkage(Function::ExternalLinkage); 1048 IRB.CreateCall(AsanInitFunction); 1049 1050 Mapping = getShadowMapping(M, LongSize, ZeroBaseShadow); 1051 emitShadowMapping(M, IRB); 1052 1053 appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndCtorPriority); 1054 return true; 1055} 1056 1057bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { 1058 // For each NSObject descendant having a +load method, this method is invoked 1059 // by the ObjC runtime before any of the static constructors is called. 1060 // Therefore we need to instrument such methods with a call to __asan_init 1061 // at the beginning in order to initialize our runtime before any access to 1062 // the shadow memory. 1063 // We cannot just ignore these methods, because they may call other 1064 // instrumented functions. 1065 if (F.getName().find(" load]") != std::string::npos) { 1066 IRBuilder<> IRB(F.begin()->begin()); 1067 IRB.CreateCall(AsanInitFunction); 1068 return true; 1069 } 1070 return false; 1071} 1072 1073bool AddressSanitizer::runOnFunction(Function &F) { 1074 if (BL->isIn(F)) return false; 1075 if (&F == AsanCtorFunction) return false; 1076 DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); 1077 initializeCallbacks(*F.getParent()); 1078 1079 // If needed, insert __asan_init before checking for AddressSafety attr. 1080 maybeInsertAsanInitAtFunctionEntry(F); 1081 1082 if (!F.getAttributes().hasAttribute(AttributeSet::FunctionIndex, 1083 Attribute::AddressSafety)) 1084 return false; 1085 1086 if (!ClDebugFunc.empty() && ClDebugFunc != F.getName()) 1087 return false; 1088 1089 // We want to instrument every address only once per basic block (unless there 1090 // are calls between uses). 1091 SmallSet<Value*, 16> TempsToInstrument; 1092 SmallVector<Instruction*, 16> ToInstrument; 1093 SmallVector<Instruction*, 8> NoReturnCalls; 1094 bool IsWrite; 1095 1096 // Fill the set of memory operations to instrument. 1097 for (Function::iterator FI = F.begin(), FE = F.end(); 1098 FI != FE; ++FI) { 1099 TempsToInstrument.clear(); 1100 int NumInsnsPerBB = 0; 1101 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 1102 BI != BE; ++BI) { 1103 if (LooksLikeCodeInBug11395(BI)) return false; 1104 if (Value *Addr = isInterestingMemoryAccess(BI, &IsWrite)) { 1105 if (ClOpt && ClOptSameTemp) { 1106 if (!TempsToInstrument.insert(Addr)) 1107 continue; // We've seen this temp in the current BB. 1108 } 1109 } else if (isa<MemIntrinsic>(BI) && ClMemIntrin) { 1110 // ok, take it. 1111 } else { 1112 if (CallInst *CI = dyn_cast<CallInst>(BI)) { 1113 // A call inside BB. 1114 TempsToInstrument.clear(); 1115 if (CI->doesNotReturn()) { 1116 NoReturnCalls.push_back(CI); 1117 } 1118 } 1119 continue; 1120 } 1121 ToInstrument.push_back(BI); 1122 NumInsnsPerBB++; 1123 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) 1124 break; 1125 } 1126 } 1127 1128 // Instrument. 1129 int NumInstrumented = 0; 1130 for (size_t i = 0, n = ToInstrument.size(); i != n; i++) { 1131 Instruction *Inst = ToInstrument[i]; 1132 if (ClDebugMin < 0 || ClDebugMax < 0 || 1133 (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) { 1134 if (isInterestingMemoryAccess(Inst, &IsWrite)) 1135 instrumentMop(Inst); 1136 else 1137 instrumentMemIntrinsic(cast<MemIntrinsic>(Inst)); 1138 } 1139 NumInstrumented++; 1140 } 1141 1142 FunctionStackPoisoner FSP(F, *this); 1143 bool ChangedStack = FSP.runOnFunction(); 1144 1145 // We must unpoison the stack before every NoReturn call (throw, _exit, etc). 1146 // See e.g. http://code.google.com/p/address-sanitizer/issues/detail?id=37 1147 for (size_t i = 0, n = NoReturnCalls.size(); i != n; i++) { 1148 Instruction *CI = NoReturnCalls[i]; 1149 IRBuilder<> IRB(CI); 1150 IRB.CreateCall(AsanHandleNoReturnFunc); 1151 } 1152 DEBUG(dbgs() << "ASAN done instrumenting:\n" << F << "\n"); 1153 1154 return NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty(); 1155} 1156 1157static uint64_t ValueForPoison(uint64_t PoisonByte, size_t ShadowRedzoneSize) { 1158 if (ShadowRedzoneSize == 1) return PoisonByte; 1159 if (ShadowRedzoneSize == 2) return (PoisonByte << 8) + PoisonByte; 1160 if (ShadowRedzoneSize == 4) 1161 return (PoisonByte << 24) + (PoisonByte << 16) + 1162 (PoisonByte << 8) + (PoisonByte); 1163 llvm_unreachable("ShadowRedzoneSize is either 1, 2 or 4"); 1164} 1165 1166static void PoisonShadowPartialRightRedzone(uint8_t *Shadow, 1167 size_t Size, 1168 size_t RZSize, 1169 size_t ShadowGranularity, 1170 uint8_t Magic) { 1171 for (size_t i = 0; i < RZSize; 1172 i+= ShadowGranularity, Shadow++) { 1173 if (i + ShadowGranularity <= Size) { 1174 *Shadow = 0; // fully addressable 1175 } else if (i >= Size) { 1176 *Shadow = Magic; // unaddressable 1177 } else { 1178 *Shadow = Size - i; // first Size-i bytes are addressable 1179 } 1180 } 1181} 1182 1183// Workaround for bug 11395: we don't want to instrument stack in functions 1184// with large assembly blobs (32-bit only), otherwise reg alloc may crash. 1185// FIXME: remove once the bug 11395 is fixed. 1186bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { 1187 if (LongSize != 32) return false; 1188 CallInst *CI = dyn_cast<CallInst>(I); 1189 if (!CI || !CI->isInlineAsm()) return false; 1190 if (CI->getNumArgOperands() <= 5) return false; 1191 // We have inline assembly with quite a few arguments. 1192 return true; 1193} 1194 1195void FunctionStackPoisoner::initializeCallbacks(Module &M) { 1196 IRBuilder<> IRB(*C); 1197 AsanStackMallocFunc = checkInterfaceFunction(M.getOrInsertFunction( 1198 kAsanStackMallocName, IntptrTy, IntptrTy, IntptrTy, NULL)); 1199 AsanStackFreeFunc = checkInterfaceFunction(M.getOrInsertFunction( 1200 kAsanStackFreeName, IRB.getVoidTy(), 1201 IntptrTy, IntptrTy, IntptrTy, NULL)); 1202 AsanPoisonStackMemoryFunc = checkInterfaceFunction(M.getOrInsertFunction( 1203 kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL)); 1204 AsanUnpoisonStackMemoryFunc = checkInterfaceFunction(M.getOrInsertFunction( 1205 kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL)); 1206} 1207 1208void FunctionStackPoisoner::poisonRedZones( 1209 const ArrayRef<AllocaInst*> &AllocaVec, IRBuilder<> IRB, Value *ShadowBase, 1210 bool DoPoison) { 1211 size_t ShadowRZSize = RedzoneSize() >> Mapping.Scale; 1212 assert(ShadowRZSize >= 1 && ShadowRZSize <= 4); 1213 Type *RZTy = Type::getIntNTy(*C, ShadowRZSize * 8); 1214 Type *RZPtrTy = PointerType::get(RZTy, 0); 1215 1216 Value *PoisonLeft = ConstantInt::get(RZTy, 1217 ValueForPoison(DoPoison ? kAsanStackLeftRedzoneMagic : 0LL, ShadowRZSize)); 1218 Value *PoisonMid = ConstantInt::get(RZTy, 1219 ValueForPoison(DoPoison ? kAsanStackMidRedzoneMagic : 0LL, ShadowRZSize)); 1220 Value *PoisonRight = ConstantInt::get(RZTy, 1221 ValueForPoison(DoPoison ? kAsanStackRightRedzoneMagic : 0LL, ShadowRZSize)); 1222 1223 // poison the first red zone. 1224 IRB.CreateStore(PoisonLeft, IRB.CreateIntToPtr(ShadowBase, RZPtrTy)); 1225 1226 // poison all other red zones. 1227 uint64_t Pos = RedzoneSize(); 1228 for (size_t i = 0, n = AllocaVec.size(); i < n; i++) { 1229 AllocaInst *AI = AllocaVec[i]; 1230 uint64_t SizeInBytes = getAllocaSizeInBytes(AI); 1231 uint64_t AlignedSize = getAlignedAllocaSize(AI); 1232 assert(AlignedSize - SizeInBytes < RedzoneSize()); 1233 Value *Ptr = NULL; 1234 1235 Pos += AlignedSize; 1236 1237 assert(ShadowBase->getType() == IntptrTy); 1238 if (SizeInBytes < AlignedSize) { 1239 // Poison the partial redzone at right 1240 Ptr = IRB.CreateAdd( 1241 ShadowBase, ConstantInt::get(IntptrTy, 1242 (Pos >> Mapping.Scale) - ShadowRZSize)); 1243 size_t AddressableBytes = RedzoneSize() - (AlignedSize - SizeInBytes); 1244 uint32_t Poison = 0; 1245 if (DoPoison) { 1246 PoisonShadowPartialRightRedzone((uint8_t*)&Poison, AddressableBytes, 1247 RedzoneSize(), 1248 1ULL << Mapping.Scale, 1249 kAsanStackPartialRedzoneMagic); 1250 } 1251 Value *PartialPoison = ConstantInt::get(RZTy, Poison); 1252 IRB.CreateStore(PartialPoison, IRB.CreateIntToPtr(Ptr, RZPtrTy)); 1253 } 1254 1255 // Poison the full redzone at right. 1256 Ptr = IRB.CreateAdd(ShadowBase, 1257 ConstantInt::get(IntptrTy, Pos >> Mapping.Scale)); 1258 bool LastAlloca = (i == AllocaVec.size() - 1); 1259 Value *Poison = LastAlloca ? PoisonRight : PoisonMid; 1260 IRB.CreateStore(Poison, IRB.CreateIntToPtr(Ptr, RZPtrTy)); 1261 1262 Pos += RedzoneSize(); 1263 } 1264} 1265 1266void FunctionStackPoisoner::poisonStack() { 1267 uint64_t LocalStackSize = TotalStackSize + 1268 (AllocaVec.size() + 1) * RedzoneSize(); 1269 1270 bool DoStackMalloc = ASan.CheckUseAfterReturn 1271 && LocalStackSize <= kMaxStackMallocSize; 1272 1273 assert(AllocaVec.size() > 0); 1274 Instruction *InsBefore = AllocaVec[0]; 1275 IRBuilder<> IRB(InsBefore); 1276 1277 1278 Type *ByteArrayTy = ArrayType::get(IRB.getInt8Ty(), LocalStackSize); 1279 AllocaInst *MyAlloca = 1280 new AllocaInst(ByteArrayTy, "MyAlloca", InsBefore); 1281 if (ClRealignStack && StackAlignment < RedzoneSize()) 1282 StackAlignment = RedzoneSize(); 1283 MyAlloca->setAlignment(StackAlignment); 1284 assert(MyAlloca->isStaticAlloca()); 1285 Value *OrigStackBase = IRB.CreatePointerCast(MyAlloca, IntptrTy); 1286 Value *LocalStackBase = OrigStackBase; 1287 1288 if (DoStackMalloc) { 1289 LocalStackBase = IRB.CreateCall2(AsanStackMallocFunc, 1290 ConstantInt::get(IntptrTy, LocalStackSize), OrigStackBase); 1291 } 1292 1293 // This string will be parsed by the run-time (DescribeStackAddress). 1294 SmallString<2048> StackDescriptionStorage; 1295 raw_svector_ostream StackDescription(StackDescriptionStorage); 1296 StackDescription << F.getName() << " " << AllocaVec.size() << " "; 1297 1298 // Insert poison calls for lifetime intrinsics for alloca. 1299 bool HavePoisonedAllocas = false; 1300 for (size_t i = 0, n = AllocaPoisonCallVec.size(); i < n; i++) { 1301 const AllocaPoisonCall &APC = AllocaPoisonCallVec[i]; 1302 IntrinsicInst *II = APC.InsBefore; 1303 AllocaInst *AI = findAllocaForValue(II->getArgOperand(1)); 1304 assert(AI); 1305 IRBuilder<> IRB(II); 1306 poisonAlloca(AI, APC.Size, IRB, APC.DoPoison); 1307 HavePoisonedAllocas |= APC.DoPoison; 1308 } 1309 1310 uint64_t Pos = RedzoneSize(); 1311 // Replace Alloca instructions with base+offset. 1312 for (size_t i = 0, n = AllocaVec.size(); i < n; i++) { 1313 AllocaInst *AI = AllocaVec[i]; 1314 uint64_t SizeInBytes = getAllocaSizeInBytes(AI); 1315 StringRef Name = AI->getName(); 1316 StackDescription << Pos << " " << SizeInBytes << " " 1317 << Name.size() << " " << Name << " "; 1318 uint64_t AlignedSize = getAlignedAllocaSize(AI); 1319 assert((AlignedSize % RedzoneSize()) == 0); 1320 Value *NewAllocaPtr = IRB.CreateIntToPtr( 1321 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Pos)), 1322 AI->getType()); 1323 replaceDbgDeclareForAlloca(AI, NewAllocaPtr, DIB); 1324 AI->replaceAllUsesWith(NewAllocaPtr); 1325 Pos += AlignedSize + RedzoneSize(); 1326 } 1327 assert(Pos == LocalStackSize); 1328 1329 // Write the Magic value and the frame description constant to the redzone. 1330 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); 1331 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), 1332 BasePlus0); 1333 Value *BasePlus1 = IRB.CreateAdd(LocalStackBase, 1334 ConstantInt::get(IntptrTy, 1335 ASan.LongSize/8)); 1336 BasePlus1 = IRB.CreateIntToPtr(BasePlus1, IntptrPtrTy); 1337 GlobalVariable *StackDescriptionGlobal = 1338 createPrivateGlobalForString(*F.getParent(), StackDescription.str()); 1339 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, 1340 IntptrTy); 1341 IRB.CreateStore(Description, BasePlus1); 1342 1343 // Poison the stack redzones at the entry. 1344 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); 1345 poisonRedZones(AllocaVec, IRB, ShadowBase, true); 1346 1347 // Unpoison the stack before all ret instructions. 1348 for (size_t i = 0, n = RetVec.size(); i < n; i++) { 1349 Instruction *Ret = RetVec[i]; 1350 IRBuilder<> IRBRet(Ret); 1351 // Mark the current frame as retired. 1352 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), 1353 BasePlus0); 1354 // Unpoison the stack. 1355 poisonRedZones(AllocaVec, IRBRet, ShadowBase, false); 1356 if (DoStackMalloc) { 1357 // In use-after-return mode, mark the whole stack frame unaddressable. 1358 IRBRet.CreateCall3(AsanStackFreeFunc, LocalStackBase, 1359 ConstantInt::get(IntptrTy, LocalStackSize), 1360 OrigStackBase); 1361 } else if (HavePoisonedAllocas) { 1362 // If we poisoned some allocas in llvm.lifetime analysis, 1363 // unpoison whole stack frame now. 1364 assert(LocalStackBase == OrigStackBase); 1365 poisonAlloca(LocalStackBase, LocalStackSize, IRBRet, false); 1366 } 1367 } 1368 1369 // We are done. Remove the old unused alloca instructions. 1370 for (size_t i = 0, n = AllocaVec.size(); i < n; i++) 1371 AllocaVec[i]->eraseFromParent(); 1372} 1373 1374void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, 1375 IRBuilder<> IRB, bool DoPoison) { 1376 // For now just insert the call to ASan runtime. 1377 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); 1378 Value *SizeArg = ConstantInt::get(IntptrTy, Size); 1379 IRB.CreateCall2(DoPoison ? AsanPoisonStackMemoryFunc 1380 : AsanUnpoisonStackMemoryFunc, 1381 AddrArg, SizeArg); 1382} 1383 1384// Handling llvm.lifetime intrinsics for a given %alloca: 1385// (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. 1386// (2) if %size is constant, poison memory for llvm.lifetime.end (to detect 1387// invalid accesses) and unpoison it for llvm.lifetime.start (the memory 1388// could be poisoned by previous llvm.lifetime.end instruction, as the 1389// variable may go in and out of scope several times, e.g. in loops). 1390// (3) if we poisoned at least one %alloca in a function, 1391// unpoison the whole stack frame at function exit. 1392 1393AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) { 1394 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) 1395 // We're intested only in allocas we can handle. 1396 return isInterestingAlloca(*AI) ? AI : 0; 1397 // See if we've already calculated (or started to calculate) alloca for a 1398 // given value. 1399 AllocaForValueMapTy::iterator I = AllocaForValue.find(V); 1400 if (I != AllocaForValue.end()) 1401 return I->second; 1402 // Store 0 while we're calculating alloca for value V to avoid 1403 // infinite recursion if the value references itself. 1404 AllocaForValue[V] = 0; 1405 AllocaInst *Res = 0; 1406 if (CastInst *CI = dyn_cast<CastInst>(V)) 1407 Res = findAllocaForValue(CI->getOperand(0)); 1408 else if (PHINode *PN = dyn_cast<PHINode>(V)) { 1409 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1410 Value *IncValue = PN->getIncomingValue(i); 1411 // Allow self-referencing phi-nodes. 1412 if (IncValue == PN) continue; 1413 AllocaInst *IncValueAI = findAllocaForValue(IncValue); 1414 // AI for incoming values should exist and should all be equal. 1415 if (IncValueAI == 0 || (Res != 0 && IncValueAI != Res)) 1416 return 0; 1417 Res = IncValueAI; 1418 } 1419 } 1420 if (Res != 0) 1421 AllocaForValue[V] = Res; 1422 return Res; 1423} 1424