LoopDeletion.cpp revision 2ab36d350293c77fc8941ce1023e4899df7e3a82
1//===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Dead Loop Deletion Pass. This pass is responsible
11// for eliminating loops with non-infinite computable trip counts that have no
12// side effects or volatile instructions, and do not contribute to the
13// computation of the function's return value.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "loop-delete"
18#include "llvm/Transforms/Scalar.h"
19#include "llvm/Analysis/LoopPass.h"
20#include "llvm/Analysis/ScalarEvolution.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/ADT/SmallVector.h"
23using namespace llvm;
24
25STATISTIC(NumDeleted, "Number of loops deleted");
26
27namespace {
28  class LoopDeletion : public LoopPass {
29  public:
30    static char ID; // Pass ID, replacement for typeid
31    LoopDeletion() : LoopPass(ID) {}
32
33    // Possibly eliminate loop L if it is dead.
34    bool runOnLoop(Loop* L, LPPassManager& LPM);
35
36    bool IsLoopDead(Loop* L, SmallVector<BasicBlock*, 4>& exitingBlocks,
37                    SmallVector<BasicBlock*, 4>& exitBlocks,
38                    bool &Changed, BasicBlock *Preheader);
39
40    virtual void getAnalysisUsage(AnalysisUsage& AU) const {
41      AU.addRequired<DominatorTree>();
42      AU.addRequired<LoopInfo>();
43      AU.addRequired<ScalarEvolution>();
44      AU.addRequiredID(LoopSimplifyID);
45      AU.addRequiredID(LCSSAID);
46
47      AU.addPreserved<ScalarEvolution>();
48      AU.addPreserved<DominatorTree>();
49      AU.addPreserved<LoopInfo>();
50      AU.addPreservedID(LoopSimplifyID);
51      AU.addPreservedID(LCSSAID);
52      AU.addPreserved<DominanceFrontier>();
53    }
54  };
55}
56
57char LoopDeletion::ID = 0;
58INITIALIZE_PASS_BEGIN(LoopDeletion, "loop-deletion",
59                "Delete dead loops", false, false)
60INITIALIZE_PASS_DEPENDENCY(DominatorTree)
61INITIALIZE_PASS_DEPENDENCY(LoopInfo)
62INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
63INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
64INITIALIZE_PASS_DEPENDENCY(LCSSA)
65INITIALIZE_PASS_DEPENDENCY(DominanceFrontier)
66INITIALIZE_PASS_END(LoopDeletion, "loop-deletion",
67                "Delete dead loops", false, false)
68
69Pass* llvm::createLoopDeletionPass() {
70  return new LoopDeletion();
71}
72
73/// IsLoopDead - Determined if a loop is dead.  This assumes that we've already
74/// checked for unique exit and exiting blocks, and that the code is in LCSSA
75/// form.
76bool LoopDeletion::IsLoopDead(Loop* L,
77                              SmallVector<BasicBlock*, 4>& exitingBlocks,
78                              SmallVector<BasicBlock*, 4>& exitBlocks,
79                              bool &Changed, BasicBlock *Preheader) {
80  BasicBlock* exitingBlock = exitingBlocks[0];
81  BasicBlock* exitBlock = exitBlocks[0];
82
83  // Make sure that all PHI entries coming from the loop are loop invariant.
84  // Because the code is in LCSSA form, any values used outside of the loop
85  // must pass through a PHI in the exit block, meaning that this check is
86  // sufficient to guarantee that no loop-variant values are used outside
87  // of the loop.
88  BasicBlock::iterator BI = exitBlock->begin();
89  while (PHINode* P = dyn_cast<PHINode>(BI)) {
90    Value* incoming = P->getIncomingValueForBlock(exitingBlock);
91    if (Instruction* I = dyn_cast<Instruction>(incoming))
92      if (!L->makeLoopInvariant(I, Changed, Preheader->getTerminator()))
93        return false;
94
95    ++BI;
96  }
97
98  // Make sure that no instructions in the block have potential side-effects.
99  // This includes instructions that could write to memory, and loads that are
100  // marked volatile.  This could be made more aggressive by using aliasing
101  // information to identify readonly and readnone calls.
102  for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
103       LI != LE; ++LI) {
104    for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end();
105         BI != BE; ++BI) {
106      if (BI->mayHaveSideEffects())
107        return false;
108    }
109  }
110
111  return true;
112}
113
114/// runOnLoop - Remove dead loops, by which we mean loops that do not impact the
115/// observable behavior of the program other than finite running time.  Note
116/// we do ensure that this never remove a loop that might be infinite, as doing
117/// so could change the halting/non-halting nature of a program.
118/// NOTE: This entire process relies pretty heavily on LoopSimplify and LCSSA
119/// in order to make various safety checks work.
120bool LoopDeletion::runOnLoop(Loop* L, LPPassManager& LPM) {
121  // We can only remove the loop if there is a preheader that we can
122  // branch from after removing it.
123  BasicBlock* preheader = L->getLoopPreheader();
124  if (!preheader)
125    return false;
126
127  // If LoopSimplify form is not available, stay out of trouble.
128  if (!L->hasDedicatedExits())
129    return false;
130
131  // We can't remove loops that contain subloops.  If the subloops were dead,
132  // they would already have been removed in earlier executions of this pass.
133  if (L->begin() != L->end())
134    return false;
135
136  SmallVector<BasicBlock*, 4> exitingBlocks;
137  L->getExitingBlocks(exitingBlocks);
138
139  SmallVector<BasicBlock*, 4> exitBlocks;
140  L->getUniqueExitBlocks(exitBlocks);
141
142  // We require that the loop only have a single exit block.  Otherwise, we'd
143  // be in the situation of needing to be able to solve statically which exit
144  // block will be branched to, or trying to preserve the branching logic in
145  // a loop invariant manner.
146  if (exitBlocks.size() != 1)
147    return false;
148
149  // Loops with multiple exits are too complicated to handle correctly.
150  if (exitingBlocks.size() != 1)
151    return false;
152
153  // Finally, we have to check that the loop really is dead.
154  bool Changed = false;
155  if (!IsLoopDead(L, exitingBlocks, exitBlocks, Changed, preheader))
156    return Changed;
157
158  // Don't remove loops for which we can't solve the trip count.
159  // They could be infinite, in which case we'd be changing program behavior.
160  ScalarEvolution& SE = getAnalysis<ScalarEvolution>();
161  const SCEV *S = SE.getMaxBackedgeTakenCount(L);
162  if (isa<SCEVCouldNotCompute>(S))
163    return Changed;
164
165  // Now that we know the removal is safe, remove the loop by changing the
166  // branch from the preheader to go to the single exit block.
167  BasicBlock* exitBlock = exitBlocks[0];
168  BasicBlock* exitingBlock = exitingBlocks[0];
169
170  // Because we're deleting a large chunk of code at once, the sequence in which
171  // we remove things is very important to avoid invalidation issues.  Don't
172  // mess with this unless you have good reason and know what you're doing.
173
174  // Tell ScalarEvolution that the loop is deleted. Do this before
175  // deleting the loop so that ScalarEvolution can look at the loop
176  // to determine what it needs to clean up.
177  SE.forgetLoop(L);
178
179  // Connect the preheader directly to the exit block.
180  TerminatorInst* TI = preheader->getTerminator();
181  TI->replaceUsesOfWith(L->getHeader(), exitBlock);
182
183  // Rewrite phis in the exit block to get their inputs from
184  // the preheader instead of the exiting block.
185  BasicBlock::iterator BI = exitBlock->begin();
186  while (PHINode* P = dyn_cast<PHINode>(BI)) {
187    P->replaceUsesOfWith(exitingBlock, preheader);
188    ++BI;
189  }
190
191  // Update the dominator tree and remove the instructions and blocks that will
192  // be deleted from the reference counting scheme.
193  DominatorTree& DT = getAnalysis<DominatorTree>();
194  DominanceFrontier* DF = getAnalysisIfAvailable<DominanceFrontier>();
195  SmallPtrSet<DomTreeNode*, 8> ChildNodes;
196  for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
197       LI != LE; ++LI) {
198    // Move all of the block's children to be children of the preheader, which
199    // allows us to remove the domtree entry for the block.
200    ChildNodes.insert(DT[*LI]->begin(), DT[*LI]->end());
201    for (SmallPtrSet<DomTreeNode*, 8>::iterator DI = ChildNodes.begin(),
202         DE = ChildNodes.end(); DI != DE; ++DI) {
203      DT.changeImmediateDominator(*DI, DT[preheader]);
204      if (DF) DF->changeImmediateDominator((*DI)->getBlock(), preheader, &DT);
205    }
206
207    ChildNodes.clear();
208    DT.eraseNode(*LI);
209    if (DF) DF->removeBlock(*LI);
210
211    // Remove the block from the reference counting scheme, so that we can
212    // delete it freely later.
213    (*LI)->dropAllReferences();
214  }
215
216  // Erase the instructions and the blocks without having to worry
217  // about ordering because we already dropped the references.
218  // NOTE: This iteration is safe because erasing the block does not remove its
219  // entry from the loop's block list.  We do that in the next section.
220  for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
221       LI != LE; ++LI)
222    (*LI)->eraseFromParent();
223
224  // Finally, the blocks from loopinfo.  This has to happen late because
225  // otherwise our loop iterators won't work.
226  LoopInfo& loopInfo = getAnalysis<LoopInfo>();
227  SmallPtrSet<BasicBlock*, 8> blocks;
228  blocks.insert(L->block_begin(), L->block_end());
229  for (SmallPtrSet<BasicBlock*,8>::iterator I = blocks.begin(),
230       E = blocks.end(); I != E; ++I)
231    loopInfo.removeBlock(*I);
232
233  // The last step is to inform the loop pass manager that we've
234  // eliminated this loop.
235  LPM.deleteLoopFromQueue(L);
236  Changed = true;
237
238  ++NumDeleted;
239
240  return Changed;
241}
242