LoopDeletion.cpp revision ce665bd2e2b581ab0858d1afe359192bac96b868
1//===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Dead Loop Deletion Pass. This pass is responsible
11// for eliminating loops with non-infinite computable trip counts that have no
12// side effects or volatile instructions, and do not contribute to the
13// computation of the function's return value.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "loop-delete"
18#include "llvm/Transforms/Scalar.h"
19#include "llvm/Analysis/LoopPass.h"
20#include "llvm/Analysis/ScalarEvolution.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/ADT/SmallVector.h"
23using namespace llvm;
24
25STATISTIC(NumDeleted, "Number of loops deleted");
26
27namespace {
28  class LoopDeletion : public LoopPass {
29  public:
30    static char ID; // Pass ID, replacement for typeid
31    LoopDeletion() : LoopPass(ID) {}
32
33    // Possibly eliminate loop L if it is dead.
34    bool runOnLoop(Loop* L, LPPassManager& LPM);
35
36    bool IsLoopDead(Loop* L, SmallVector<BasicBlock*, 4>& exitingBlocks,
37                    SmallVector<BasicBlock*, 4>& exitBlocks,
38                    bool &Changed, BasicBlock *Preheader);
39
40    virtual void getAnalysisUsage(AnalysisUsage& AU) const {
41      AU.addRequired<DominatorTree>();
42      AU.addRequired<LoopInfo>();
43      AU.addRequired<ScalarEvolution>();
44      AU.addRequiredID(LoopSimplifyID);
45      AU.addRequiredID(LCSSAID);
46
47      AU.addPreserved<ScalarEvolution>();
48      AU.addPreserved<DominatorTree>();
49      AU.addPreserved<LoopInfo>();
50      AU.addPreservedID(LoopSimplifyID);
51      AU.addPreservedID(LCSSAID);
52      AU.addPreserved<DominanceFrontier>();
53    }
54  };
55}
56
57char LoopDeletion::ID = 0;
58INITIALIZE_PASS(LoopDeletion, "loop-deletion",
59                "Delete dead loops", false, false)
60
61Pass* llvm::createLoopDeletionPass() {
62  return new LoopDeletion();
63}
64
65/// IsLoopDead - Determined if a loop is dead.  This assumes that we've already
66/// checked for unique exit and exiting blocks, and that the code is in LCSSA
67/// form.
68bool LoopDeletion::IsLoopDead(Loop* L,
69                              SmallVector<BasicBlock*, 4>& exitingBlocks,
70                              SmallVector<BasicBlock*, 4>& exitBlocks,
71                              bool &Changed, BasicBlock *Preheader) {
72  BasicBlock* exitingBlock = exitingBlocks[0];
73  BasicBlock* exitBlock = exitBlocks[0];
74
75  // Make sure that all PHI entries coming from the loop are loop invariant.
76  // Because the code is in LCSSA form, any values used outside of the loop
77  // must pass through a PHI in the exit block, meaning that this check is
78  // sufficient to guarantee that no loop-variant values are used outside
79  // of the loop.
80  BasicBlock::iterator BI = exitBlock->begin();
81  while (PHINode* P = dyn_cast<PHINode>(BI)) {
82    Value* incoming = P->getIncomingValueForBlock(exitingBlock);
83    if (Instruction* I = dyn_cast<Instruction>(incoming))
84      if (!L->makeLoopInvariant(I, Changed, Preheader->getTerminator()))
85        return false;
86
87    ++BI;
88  }
89
90  // Make sure that no instructions in the block have potential side-effects.
91  // This includes instructions that could write to memory, and loads that are
92  // marked volatile.  This could be made more aggressive by using aliasing
93  // information to identify readonly and readnone calls.
94  for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
95       LI != LE; ++LI) {
96    for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end();
97         BI != BE; ++BI) {
98      if (BI->mayHaveSideEffects())
99        return false;
100    }
101  }
102
103  return true;
104}
105
106/// runOnLoop - Remove dead loops, by which we mean loops that do not impact the
107/// observable behavior of the program other than finite running time.  Note
108/// we do ensure that this never remove a loop that might be infinite, as doing
109/// so could change the halting/non-halting nature of a program.
110/// NOTE: This entire process relies pretty heavily on LoopSimplify and LCSSA
111/// in order to make various safety checks work.
112bool LoopDeletion::runOnLoop(Loop* L, LPPassManager& LPM) {
113  // We can only remove the loop if there is a preheader that we can
114  // branch from after removing it.
115  BasicBlock* preheader = L->getLoopPreheader();
116  if (!preheader)
117    return false;
118
119  // If LoopSimplify form is not available, stay out of trouble.
120  if (!L->hasDedicatedExits())
121    return false;
122
123  // We can't remove loops that contain subloops.  If the subloops were dead,
124  // they would already have been removed in earlier executions of this pass.
125  if (L->begin() != L->end())
126    return false;
127
128  SmallVector<BasicBlock*, 4> exitingBlocks;
129  L->getExitingBlocks(exitingBlocks);
130
131  SmallVector<BasicBlock*, 4> exitBlocks;
132  L->getUniqueExitBlocks(exitBlocks);
133
134  // We require that the loop only have a single exit block.  Otherwise, we'd
135  // be in the situation of needing to be able to solve statically which exit
136  // block will be branched to, or trying to preserve the branching logic in
137  // a loop invariant manner.
138  if (exitBlocks.size() != 1)
139    return false;
140
141  // Loops with multiple exits are too complicated to handle correctly.
142  if (exitingBlocks.size() != 1)
143    return false;
144
145  // Finally, we have to check that the loop really is dead.
146  bool Changed = false;
147  if (!IsLoopDead(L, exitingBlocks, exitBlocks, Changed, preheader))
148    return Changed;
149
150  // Don't remove loops for which we can't solve the trip count.
151  // They could be infinite, in which case we'd be changing program behavior.
152  ScalarEvolution& SE = getAnalysis<ScalarEvolution>();
153  const SCEV *S = SE.getMaxBackedgeTakenCount(L);
154  if (isa<SCEVCouldNotCompute>(S))
155    return Changed;
156
157  // Now that we know the removal is safe, remove the loop by changing the
158  // branch from the preheader to go to the single exit block.
159  BasicBlock* exitBlock = exitBlocks[0];
160  BasicBlock* exitingBlock = exitingBlocks[0];
161
162  // Because we're deleting a large chunk of code at once, the sequence in which
163  // we remove things is very important to avoid invalidation issues.  Don't
164  // mess with this unless you have good reason and know what you're doing.
165
166  // Tell ScalarEvolution that the loop is deleted. Do this before
167  // deleting the loop so that ScalarEvolution can look at the loop
168  // to determine what it needs to clean up.
169  SE.forgetLoop(L);
170
171  // Connect the preheader directly to the exit block.
172  TerminatorInst* TI = preheader->getTerminator();
173  TI->replaceUsesOfWith(L->getHeader(), exitBlock);
174
175  // Rewrite phis in the exit block to get their inputs from
176  // the preheader instead of the exiting block.
177  BasicBlock::iterator BI = exitBlock->begin();
178  while (PHINode* P = dyn_cast<PHINode>(BI)) {
179    P->replaceUsesOfWith(exitingBlock, preheader);
180    ++BI;
181  }
182
183  // Update the dominator tree and remove the instructions and blocks that will
184  // be deleted from the reference counting scheme.
185  DominatorTree& DT = getAnalysis<DominatorTree>();
186  DominanceFrontier* DF = getAnalysisIfAvailable<DominanceFrontier>();
187  SmallPtrSet<DomTreeNode*, 8> ChildNodes;
188  for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
189       LI != LE; ++LI) {
190    // Move all of the block's children to be children of the preheader, which
191    // allows us to remove the domtree entry for the block.
192    ChildNodes.insert(DT[*LI]->begin(), DT[*LI]->end());
193    for (SmallPtrSet<DomTreeNode*, 8>::iterator DI = ChildNodes.begin(),
194         DE = ChildNodes.end(); DI != DE; ++DI) {
195      DT.changeImmediateDominator(*DI, DT[preheader]);
196      if (DF) DF->changeImmediateDominator((*DI)->getBlock(), preheader, &DT);
197    }
198
199    ChildNodes.clear();
200    DT.eraseNode(*LI);
201    if (DF) DF->removeBlock(*LI);
202
203    // Remove the block from the reference counting scheme, so that we can
204    // delete it freely later.
205    (*LI)->dropAllReferences();
206  }
207
208  // Erase the instructions and the blocks without having to worry
209  // about ordering because we already dropped the references.
210  // NOTE: This iteration is safe because erasing the block does not remove its
211  // entry from the loop's block list.  We do that in the next section.
212  for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
213       LI != LE; ++LI)
214    (*LI)->eraseFromParent();
215
216  // Finally, the blocks from loopinfo.  This has to happen late because
217  // otherwise our loop iterators won't work.
218  LoopInfo& loopInfo = getAnalysis<LoopInfo>();
219  SmallPtrSet<BasicBlock*, 8> blocks;
220  blocks.insert(L->block_begin(), L->block_end());
221  for (SmallPtrSet<BasicBlock*,8>::iterator I = blocks.begin(),
222       E = blocks.end(); I != E; ++I)
223    loopInfo.removeBlock(*I);
224
225  // The last step is to inform the loop pass manager that we've
226  // eliminated this loop.
227  LPM.deleteLoopFromQueue(L);
228  Changed = true;
229
230  ++NumDeleted;
231
232  return Changed;
233}
234