1//===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the interface to tear out a code region, such as an
11// individual loop or a parallel section, into a new function, replacing it with
12// a call to the new function.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Transforms/Utils/CodeExtractor.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SetVector.h"
19#include "llvm/ADT/StringExtras.h"
20#include "llvm/Analysis/LoopInfo.h"
21#include "llvm/Analysis/RegionInfo.h"
22#include "llvm/Analysis/RegionIterator.h"
23#include "llvm/IR/Constants.h"
24#include "llvm/IR/DerivedTypes.h"
25#include "llvm/IR/Dominators.h"
26#include "llvm/IR/Instructions.h"
27#include "llvm/IR/Intrinsics.h"
28#include "llvm/IR/LLVMContext.h"
29#include "llvm/IR/Module.h"
30#include "llvm/IR/Verifier.h"
31#include "llvm/Pass.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/Transforms/Utils/BasicBlockUtils.h"
37#include <algorithm>
38#include <set>
39using namespace llvm;
40
41#define DEBUG_TYPE "code-extractor"
42
43// Provide a command-line option to aggregate function arguments into a struct
44// for functions produced by the code extractor. This is useful when converting
45// extracted functions to pthread-based code, as only one argument (void*) can
46// be passed in to pthread_create().
47static cl::opt<bool>
48AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
49                 cl::desc("Aggregate arguments to code-extracted functions"));
50
51/// \brief Test whether a block is valid for extraction.
52static bool isBlockValidForExtraction(const BasicBlock &BB) {
53  // Landing pads must be in the function where they were inserted for cleanup.
54  if (BB.isLandingPad())
55    return false;
56
57  // Don't hoist code containing allocas, invokes, or vastarts.
58  for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
59    if (isa<AllocaInst>(I) || isa<InvokeInst>(I))
60      return false;
61    if (const CallInst *CI = dyn_cast<CallInst>(I))
62      if (const Function *F = CI->getCalledFunction())
63        if (F->getIntrinsicID() == Intrinsic::vastart)
64          return false;
65  }
66
67  return true;
68}
69
70/// \brief Build a set of blocks to extract if the input blocks are viable.
71template <typename IteratorT>
72static SetVector<BasicBlock *> buildExtractionBlockSet(IteratorT BBBegin,
73                                                       IteratorT BBEnd) {
74  SetVector<BasicBlock *> Result;
75
76  assert(BBBegin != BBEnd);
77
78  // Loop over the blocks, adding them to our set-vector, and aborting with an
79  // empty set if we encounter invalid blocks.
80  for (IteratorT I = BBBegin, E = BBEnd; I != E; ++I) {
81    if (!Result.insert(*I))
82      llvm_unreachable("Repeated basic blocks in extraction input");
83
84    if (!isBlockValidForExtraction(**I)) {
85      Result.clear();
86      return Result;
87    }
88  }
89
90#ifndef NDEBUG
91  for (SetVector<BasicBlock *>::iterator I = std::next(Result.begin()),
92                                         E = Result.end();
93       I != E; ++I)
94    for (pred_iterator PI = pred_begin(*I), PE = pred_end(*I);
95         PI != PE; ++PI)
96      assert(Result.count(*PI) &&
97             "No blocks in this region may have entries from outside the region"
98             " except for the first block!");
99#endif
100
101  return Result;
102}
103
104/// \brief Helper to call buildExtractionBlockSet with an ArrayRef.
105static SetVector<BasicBlock *>
106buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs) {
107  return buildExtractionBlockSet(BBs.begin(), BBs.end());
108}
109
110/// \brief Helper to call buildExtractionBlockSet with a RegionNode.
111static SetVector<BasicBlock *>
112buildExtractionBlockSet(const RegionNode &RN) {
113  if (!RN.isSubRegion())
114    // Just a single BasicBlock.
115    return buildExtractionBlockSet(RN.getNodeAs<BasicBlock>());
116
117  const Region &R = *RN.getNodeAs<Region>();
118
119  return buildExtractionBlockSet(R.block_begin(), R.block_end());
120}
121
122CodeExtractor::CodeExtractor(BasicBlock *BB, bool AggregateArgs)
123  : DT(nullptr), AggregateArgs(AggregateArgs||AggregateArgsOpt),
124    Blocks(buildExtractionBlockSet(BB)), NumExitBlocks(~0U) {}
125
126CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
127                             bool AggregateArgs)
128  : DT(DT), AggregateArgs(AggregateArgs||AggregateArgsOpt),
129    Blocks(buildExtractionBlockSet(BBs)), NumExitBlocks(~0U) {}
130
131CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs)
132  : DT(&DT), AggregateArgs(AggregateArgs||AggregateArgsOpt),
133    Blocks(buildExtractionBlockSet(L.getBlocks())), NumExitBlocks(~0U) {}
134
135CodeExtractor::CodeExtractor(DominatorTree &DT, const RegionNode &RN,
136                             bool AggregateArgs)
137  : DT(&DT), AggregateArgs(AggregateArgs||AggregateArgsOpt),
138    Blocks(buildExtractionBlockSet(RN)), NumExitBlocks(~0U) {}
139
140/// definedInRegion - Return true if the specified value is defined in the
141/// extracted region.
142static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
143  if (Instruction *I = dyn_cast<Instruction>(V))
144    if (Blocks.count(I->getParent()))
145      return true;
146  return false;
147}
148
149/// definedInCaller - Return true if the specified value is defined in the
150/// function being code extracted, but not in the region being extracted.
151/// These values must be passed in as live-ins to the function.
152static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
153  if (isa<Argument>(V)) return true;
154  if (Instruction *I = dyn_cast<Instruction>(V))
155    if (!Blocks.count(I->getParent()))
156      return true;
157  return false;
158}
159
160void CodeExtractor::findInputsOutputs(ValueSet &Inputs,
161                                      ValueSet &Outputs) const {
162  for (SetVector<BasicBlock *>::const_iterator I = Blocks.begin(),
163                                               E = Blocks.end();
164       I != E; ++I) {
165    BasicBlock *BB = *I;
166
167    // If a used value is defined outside the region, it's an input.  If an
168    // instruction is used outside the region, it's an output.
169    for (BasicBlock::iterator II = BB->begin(), IE = BB->end();
170         II != IE; ++II) {
171      for (User::op_iterator OI = II->op_begin(), OE = II->op_end();
172           OI != OE; ++OI)
173        if (definedInCaller(Blocks, *OI))
174          Inputs.insert(*OI);
175
176      for (User *U : II->users())
177        if (!definedInRegion(Blocks, U)) {
178          Outputs.insert(II);
179          break;
180        }
181    }
182  }
183}
184
185/// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
186/// region, we need to split the entry block of the region so that the PHI node
187/// is easier to deal with.
188void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
189  unsigned NumPredsFromRegion = 0;
190  unsigned NumPredsOutsideRegion = 0;
191
192  if (Header != &Header->getParent()->getEntryBlock()) {
193    PHINode *PN = dyn_cast<PHINode>(Header->begin());
194    if (!PN) return;  // No PHI nodes.
195
196    // If the header node contains any PHI nodes, check to see if there is more
197    // than one entry from outside the region.  If so, we need to sever the
198    // header block into two.
199    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
200      if (Blocks.count(PN->getIncomingBlock(i)))
201        ++NumPredsFromRegion;
202      else
203        ++NumPredsOutsideRegion;
204
205    // If there is one (or fewer) predecessor from outside the region, we don't
206    // need to do anything special.
207    if (NumPredsOutsideRegion <= 1) return;
208  }
209
210  // Otherwise, we need to split the header block into two pieces: one
211  // containing PHI nodes merging values from outside of the region, and a
212  // second that contains all of the code for the block and merges back any
213  // incoming values from inside of the region.
214  BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI();
215  BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs,
216                                              Header->getName()+".ce");
217
218  // We only want to code extract the second block now, and it becomes the new
219  // header of the region.
220  BasicBlock *OldPred = Header;
221  Blocks.remove(OldPred);
222  Blocks.insert(NewBB);
223  Header = NewBB;
224
225  // Okay, update dominator sets. The blocks that dominate the new one are the
226  // blocks that dominate TIBB plus the new block itself.
227  if (DT)
228    DT->splitBlock(NewBB);
229
230  // Okay, now we need to adjust the PHI nodes and any branches from within the
231  // region to go to the new header block instead of the old header block.
232  if (NumPredsFromRegion) {
233    PHINode *PN = cast<PHINode>(OldPred->begin());
234    // Loop over all of the predecessors of OldPred that are in the region,
235    // changing them to branch to NewBB instead.
236    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
237      if (Blocks.count(PN->getIncomingBlock(i))) {
238        TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator();
239        TI->replaceUsesOfWith(OldPred, NewBB);
240      }
241
242    // Okay, everything within the region is now branching to the right block, we
243    // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
244    for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
245      PHINode *PN = cast<PHINode>(AfterPHIs);
246      // Create a new PHI node in the new region, which has an incoming value
247      // from OldPred of PN.
248      PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
249                                       PN->getName()+".ce", NewBB->begin());
250      NewPN->addIncoming(PN, OldPred);
251
252      // Loop over all of the incoming value in PN, moving them to NewPN if they
253      // are from the extracted region.
254      for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
255        if (Blocks.count(PN->getIncomingBlock(i))) {
256          NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
257          PN->removeIncomingValue(i);
258          --i;
259        }
260      }
261    }
262  }
263}
264
265void CodeExtractor::splitReturnBlocks() {
266  for (SetVector<BasicBlock *>::iterator I = Blocks.begin(), E = Blocks.end();
267       I != E; ++I)
268    if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) {
269      BasicBlock *New = (*I)->splitBasicBlock(RI, (*I)->getName()+".ret");
270      if (DT) {
271        // Old dominates New. New node dominates all other nodes dominated
272        // by Old.
273        DomTreeNode *OldNode = DT->getNode(*I);
274        SmallVector<DomTreeNode*, 8> Children;
275        for (DomTreeNode::iterator DI = OldNode->begin(), DE = OldNode->end();
276             DI != DE; ++DI)
277          Children.push_back(*DI);
278
279        DomTreeNode *NewNode = DT->addNewBlock(New, *I);
280
281        for (SmallVectorImpl<DomTreeNode *>::iterator I = Children.begin(),
282               E = Children.end(); I != E; ++I)
283          DT->changeImmediateDominator(*I, NewNode);
284      }
285    }
286}
287
288/// constructFunction - make a function based on inputs and outputs, as follows:
289/// f(in0, ..., inN, out0, ..., outN)
290///
291Function *CodeExtractor::constructFunction(const ValueSet &inputs,
292                                           const ValueSet &outputs,
293                                           BasicBlock *header,
294                                           BasicBlock *newRootNode,
295                                           BasicBlock *newHeader,
296                                           Function *oldFunction,
297                                           Module *M) {
298  DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
299  DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
300
301  // This function returns unsigned, outputs will go back by reference.
302  switch (NumExitBlocks) {
303  case 0:
304  case 1: RetTy = Type::getVoidTy(header->getContext()); break;
305  case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
306  default: RetTy = Type::getInt16Ty(header->getContext()); break;
307  }
308
309  std::vector<Type*> paramTy;
310
311  // Add the types of the input values to the function's argument list
312  for (ValueSet::const_iterator i = inputs.begin(), e = inputs.end();
313       i != e; ++i) {
314    const Value *value = *i;
315    DEBUG(dbgs() << "value used in func: " << *value << "\n");
316    paramTy.push_back(value->getType());
317  }
318
319  // Add the types of the output values to the function's argument list.
320  for (ValueSet::const_iterator I = outputs.begin(), E = outputs.end();
321       I != E; ++I) {
322    DEBUG(dbgs() << "instr used in func: " << **I << "\n");
323    if (AggregateArgs)
324      paramTy.push_back((*I)->getType());
325    else
326      paramTy.push_back(PointerType::getUnqual((*I)->getType()));
327  }
328
329  DEBUG(dbgs() << "Function type: " << *RetTy << " f(");
330  for (std::vector<Type*>::iterator i = paramTy.begin(),
331         e = paramTy.end(); i != e; ++i)
332    DEBUG(dbgs() << **i << ", ");
333  DEBUG(dbgs() << ")\n");
334
335  StructType *StructTy;
336  if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
337    StructTy = StructType::get(M->getContext(), paramTy);
338    paramTy.clear();
339    paramTy.push_back(PointerType::getUnqual(StructTy));
340  }
341  FunctionType *funcType =
342                  FunctionType::get(RetTy, paramTy, false);
343
344  // Create the new function
345  Function *newFunction = Function::Create(funcType,
346                                           GlobalValue::InternalLinkage,
347                                           oldFunction->getName() + "_" +
348                                           header->getName(), M);
349  // If the old function is no-throw, so is the new one.
350  if (oldFunction->doesNotThrow())
351    newFunction->setDoesNotThrow();
352
353  newFunction->getBasicBlockList().push_back(newRootNode);
354
355  // Create an iterator to name all of the arguments we inserted.
356  Function::arg_iterator AI = newFunction->arg_begin();
357
358  // Rewrite all users of the inputs in the extracted region to use the
359  // arguments (or appropriate addressing into struct) instead.
360  for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
361    Value *RewriteVal;
362    if (AggregateArgs) {
363      Value *Idx[2];
364      Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
365      Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
366      TerminatorInst *TI = newFunction->begin()->getTerminator();
367      GetElementPtrInst *GEP = GetElementPtrInst::Create(
368          StructTy, AI, Idx, "gep_" + inputs[i]->getName(), TI);
369      RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI);
370    } else
371      RewriteVal = AI++;
372
373    std::vector<User*> Users(inputs[i]->user_begin(), inputs[i]->user_end());
374    for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end();
375         use != useE; ++use)
376      if (Instruction* inst = dyn_cast<Instruction>(*use))
377        if (Blocks.count(inst->getParent()))
378          inst->replaceUsesOfWith(inputs[i], RewriteVal);
379  }
380
381  // Set names for input and output arguments.
382  if (!AggregateArgs) {
383    AI = newFunction->arg_begin();
384    for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
385      AI->setName(inputs[i]->getName());
386    for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
387      AI->setName(outputs[i]->getName()+".out");
388  }
389
390  // Rewrite branches to basic blocks outside of the loop to new dummy blocks
391  // within the new function. This must be done before we lose track of which
392  // blocks were originally in the code region.
393  std::vector<User*> Users(header->user_begin(), header->user_end());
394  for (unsigned i = 0, e = Users.size(); i != e; ++i)
395    // The BasicBlock which contains the branch is not in the region
396    // modify the branch target to a new block
397    if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i]))
398      if (!Blocks.count(TI->getParent()) &&
399          TI->getParent()->getParent() == oldFunction)
400        TI->replaceUsesOfWith(header, newHeader);
401
402  return newFunction;
403}
404
405/// FindPhiPredForUseInBlock - Given a value and a basic block, find a PHI
406/// that uses the value within the basic block, and return the predecessor
407/// block associated with that use, or return 0 if none is found.
408static BasicBlock* FindPhiPredForUseInBlock(Value* Used, BasicBlock* BB) {
409  for (Use &U : Used->uses()) {
410     PHINode *P = dyn_cast<PHINode>(U.getUser());
411     if (P && P->getParent() == BB)
412       return P->getIncomingBlock(U);
413  }
414
415  return nullptr;
416}
417
418/// emitCallAndSwitchStatement - This method sets up the caller side by adding
419/// the call instruction, splitting any PHI nodes in the header block as
420/// necessary.
421void CodeExtractor::
422emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
423                           ValueSet &inputs, ValueSet &outputs) {
424  // Emit a call to the new function, passing in: *pointer to struct (if
425  // aggregating parameters), or plan inputs and allocated memory for outputs
426  std::vector<Value*> params, StructValues, ReloadOutputs, Reloads;
427
428  LLVMContext &Context = newFunction->getContext();
429
430  // Add inputs as params, or to be filled into the struct
431  for (ValueSet::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i)
432    if (AggregateArgs)
433      StructValues.push_back(*i);
434    else
435      params.push_back(*i);
436
437  // Create allocas for the outputs
438  for (ValueSet::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) {
439    if (AggregateArgs) {
440      StructValues.push_back(*i);
441    } else {
442      AllocaInst *alloca =
443        new AllocaInst((*i)->getType(), nullptr, (*i)->getName()+".loc",
444                       codeReplacer->getParent()->begin()->begin());
445      ReloadOutputs.push_back(alloca);
446      params.push_back(alloca);
447    }
448  }
449
450  StructType *StructArgTy = nullptr;
451  AllocaInst *Struct = nullptr;
452  if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
453    std::vector<Type*> ArgTypes;
454    for (ValueSet::iterator v = StructValues.begin(),
455           ve = StructValues.end(); v != ve; ++v)
456      ArgTypes.push_back((*v)->getType());
457
458    // Allocate a struct at the beginning of this function
459    StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
460    Struct =
461      new AllocaInst(StructArgTy, nullptr, "structArg",
462                     codeReplacer->getParent()->begin()->begin());
463    params.push_back(Struct);
464
465    for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
466      Value *Idx[2];
467      Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
468      Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
469      GetElementPtrInst *GEP = GetElementPtrInst::Create(
470          StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
471      codeReplacer->getInstList().push_back(GEP);
472      StoreInst *SI = new StoreInst(StructValues[i], GEP);
473      codeReplacer->getInstList().push_back(SI);
474    }
475  }
476
477  // Emit the call to the function
478  CallInst *call = CallInst::Create(newFunction, params,
479                                    NumExitBlocks > 1 ? "targetBlock" : "");
480  codeReplacer->getInstList().push_back(call);
481
482  Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
483  unsigned FirstOut = inputs.size();
484  if (!AggregateArgs)
485    std::advance(OutputArgBegin, inputs.size());
486
487  // Reload the outputs passed in by reference
488  for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
489    Value *Output = nullptr;
490    if (AggregateArgs) {
491      Value *Idx[2];
492      Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
493      Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
494      GetElementPtrInst *GEP = GetElementPtrInst::Create(
495          StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
496      codeReplacer->getInstList().push_back(GEP);
497      Output = GEP;
498    } else {
499      Output = ReloadOutputs[i];
500    }
501    LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
502    Reloads.push_back(load);
503    codeReplacer->getInstList().push_back(load);
504    std::vector<User*> Users(outputs[i]->user_begin(), outputs[i]->user_end());
505    for (unsigned u = 0, e = Users.size(); u != e; ++u) {
506      Instruction *inst = cast<Instruction>(Users[u]);
507      if (!Blocks.count(inst->getParent()))
508        inst->replaceUsesOfWith(outputs[i], load);
509    }
510  }
511
512  // Now we can emit a switch statement using the call as a value.
513  SwitchInst *TheSwitch =
514      SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
515                         codeReplacer, 0, codeReplacer);
516
517  // Since there may be multiple exits from the original region, make the new
518  // function return an unsigned, switch on that number.  This loop iterates
519  // over all of the blocks in the extracted region, updating any terminator
520  // instructions in the to-be-extracted region that branch to blocks that are
521  // not in the region to be extracted.
522  std::map<BasicBlock*, BasicBlock*> ExitBlockMap;
523
524  unsigned switchVal = 0;
525  for (SetVector<BasicBlock*>::const_iterator i = Blocks.begin(),
526         e = Blocks.end(); i != e; ++i) {
527    TerminatorInst *TI = (*i)->getTerminator();
528    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
529      if (!Blocks.count(TI->getSuccessor(i))) {
530        BasicBlock *OldTarget = TI->getSuccessor(i);
531        // add a new basic block which returns the appropriate value
532        BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
533        if (!NewTarget) {
534          // If we don't already have an exit stub for this non-extracted
535          // destination, create one now!
536          NewTarget = BasicBlock::Create(Context,
537                                         OldTarget->getName() + ".exitStub",
538                                         newFunction);
539          unsigned SuccNum = switchVal++;
540
541          Value *brVal = nullptr;
542          switch (NumExitBlocks) {
543          case 0:
544          case 1: break;  // No value needed.
545          case 2:         // Conditional branch, return a bool
546            brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
547            break;
548          default:
549            brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
550            break;
551          }
552
553          ReturnInst *NTRet = ReturnInst::Create(Context, brVal, NewTarget);
554
555          // Update the switch instruction.
556          TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
557                                              SuccNum),
558                             OldTarget);
559
560          // Restore values just before we exit
561          Function::arg_iterator OAI = OutputArgBegin;
562          for (unsigned out = 0, e = outputs.size(); out != e; ++out) {
563            // For an invoke, the normal destination is the only one that is
564            // dominated by the result of the invocation
565            BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent();
566
567            bool DominatesDef = true;
568
569            if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) {
570              DefBlock = Invoke->getNormalDest();
571
572              // Make sure we are looking at the original successor block, not
573              // at a newly inserted exit block, which won't be in the dominator
574              // info.
575              for (std::map<BasicBlock*, BasicBlock*>::iterator I =
576                     ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I)
577                if (DefBlock == I->second) {
578                  DefBlock = I->first;
579                  break;
580                }
581
582              // In the extract block case, if the block we are extracting ends
583              // with an invoke instruction, make sure that we don't emit a
584              // store of the invoke value for the unwind block.
585              if (!DT && DefBlock != OldTarget)
586                DominatesDef = false;
587            }
588
589            if (DT) {
590              DominatesDef = DT->dominates(DefBlock, OldTarget);
591
592              // If the output value is used by a phi in the target block,
593              // then we need to test for dominance of the phi's predecessor
594              // instead.  Unfortunately, this a little complicated since we
595              // have already rewritten uses of the value to uses of the reload.
596              BasicBlock* pred = FindPhiPredForUseInBlock(Reloads[out],
597                                                          OldTarget);
598              if (pred && DT && DT->dominates(DefBlock, pred))
599                DominatesDef = true;
600            }
601
602            if (DominatesDef) {
603              if (AggregateArgs) {
604                Value *Idx[2];
605                Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
606                Idx[1] = ConstantInt::get(Type::getInt32Ty(Context),
607                                          FirstOut+out);
608                GetElementPtrInst *GEP = GetElementPtrInst::Create(
609                    StructArgTy, OAI, Idx, "gep_" + outputs[out]->getName(),
610                    NTRet);
611                new StoreInst(outputs[out], GEP, NTRet);
612              } else {
613                new StoreInst(outputs[out], OAI, NTRet);
614              }
615            }
616            // Advance output iterator even if we don't emit a store
617            if (!AggregateArgs) ++OAI;
618          }
619        }
620
621        // rewrite the original branch instruction with this new target
622        TI->setSuccessor(i, NewTarget);
623      }
624  }
625
626  // Now that we've done the deed, simplify the switch instruction.
627  Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
628  switch (NumExitBlocks) {
629  case 0:
630    // There are no successors (the block containing the switch itself), which
631    // means that previously this was the last part of the function, and hence
632    // this should be rewritten as a `ret'
633
634    // Check if the function should return a value
635    if (OldFnRetTy->isVoidTy()) {
636      ReturnInst::Create(Context, nullptr, TheSwitch);  // Return void
637    } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
638      // return what we have
639      ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
640    } else {
641      // Otherwise we must have code extracted an unwind or something, just
642      // return whatever we want.
643      ReturnInst::Create(Context,
644                         Constant::getNullValue(OldFnRetTy), TheSwitch);
645    }
646
647    TheSwitch->eraseFromParent();
648    break;
649  case 1:
650    // Only a single destination, change the switch into an unconditional
651    // branch.
652    BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
653    TheSwitch->eraseFromParent();
654    break;
655  case 2:
656    BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
657                       call, TheSwitch);
658    TheSwitch->eraseFromParent();
659    break;
660  default:
661    // Otherwise, make the default destination of the switch instruction be one
662    // of the other successors.
663    TheSwitch->setCondition(call);
664    TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
665    // Remove redundant case
666    TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
667    break;
668  }
669}
670
671void CodeExtractor::moveCodeToFunction(Function *newFunction) {
672  Function *oldFunc = (*Blocks.begin())->getParent();
673  Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
674  Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
675
676  for (SetVector<BasicBlock*>::const_iterator i = Blocks.begin(),
677         e = Blocks.end(); i != e; ++i) {
678    // Delete the basic block from the old function, and the list of blocks
679    oldBlocks.remove(*i);
680
681    // Insert this basic block into the new function
682    newBlocks.push_back(*i);
683  }
684}
685
686Function *CodeExtractor::extractCodeRegion() {
687  if (!isEligible())
688    return nullptr;
689
690  ValueSet inputs, outputs;
691
692  // Assumption: this is a single-entry code region, and the header is the first
693  // block in the region.
694  BasicBlock *header = *Blocks.begin();
695
696  // If we have to split PHI nodes or the entry block, do so now.
697  severSplitPHINodes(header);
698
699  // If we have any return instructions in the region, split those blocks so
700  // that the return is not in the region.
701  splitReturnBlocks();
702
703  Function *oldFunction = header->getParent();
704
705  // This takes place of the original loop
706  BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
707                                                "codeRepl", oldFunction,
708                                                header);
709
710  // The new function needs a root node because other nodes can branch to the
711  // head of the region, but the entry node of a function cannot have preds.
712  BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
713                                               "newFuncRoot");
714  newFuncRoot->getInstList().push_back(BranchInst::Create(header));
715
716  // Find inputs to, outputs from the code region.
717  findInputsOutputs(inputs, outputs);
718
719  SmallPtrSet<BasicBlock *, 1> ExitBlocks;
720  for (SetVector<BasicBlock *>::iterator I = Blocks.begin(), E = Blocks.end();
721       I != E; ++I)
722    for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
723      if (!Blocks.count(*SI))
724        ExitBlocks.insert(*SI);
725  NumExitBlocks = ExitBlocks.size();
726
727  // Construct new function based on inputs/outputs & add allocas for all defs.
728  Function *newFunction = constructFunction(inputs, outputs, header,
729                                            newFuncRoot,
730                                            codeReplacer, oldFunction,
731                                            oldFunction->getParent());
732
733  emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
734
735  moveCodeToFunction(newFunction);
736
737  // Loop over all of the PHI nodes in the header block, and change any
738  // references to the old incoming edge to be the new incoming edge.
739  for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
740    PHINode *PN = cast<PHINode>(I);
741    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
742      if (!Blocks.count(PN->getIncomingBlock(i)))
743        PN->setIncomingBlock(i, newFuncRoot);
744  }
745
746  // Look at all successors of the codeReplacer block.  If any of these blocks
747  // had PHI nodes in them, we need to update the "from" block to be the code
748  // replacer, not the original block in the extracted region.
749  std::vector<BasicBlock*> Succs(succ_begin(codeReplacer),
750                                 succ_end(codeReplacer));
751  for (unsigned i = 0, e = Succs.size(); i != e; ++i)
752    for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) {
753      PHINode *PN = cast<PHINode>(I);
754      std::set<BasicBlock*> ProcessedPreds;
755      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
756        if (Blocks.count(PN->getIncomingBlock(i))) {
757          if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second)
758            PN->setIncomingBlock(i, codeReplacer);
759          else {
760            // There were multiple entries in the PHI for this block, now there
761            // is only one, so remove the duplicated entries.
762            PN->removeIncomingValue(i, false);
763            --i; --e;
764          }
765        }
766    }
767
768  //cerr << "NEW FUNCTION: " << *newFunction;
769  //  verifyFunction(*newFunction);
770
771  //  cerr << "OLD FUNCTION: " << *oldFunction;
772  //  verifyFunction(*oldFunction);
773
774  DEBUG(if (verifyFunction(*newFunction))
775        report_fatal_error("verifyFunction failed!"));
776  return newFunction;
777}
778