LowerInvoke.cpp revision 23d3d4595c23784494cba422a76428e48431413a
1//===- LowerInvoke.cpp - Eliminate Invoke & Unwind instructions -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation is designed for use by code generators which do not yet
11// support stack unwinding.  This pass supports two models of exception handling
12// lowering, the 'cheap' support and the 'expensive' support.
13//
14// 'Cheap' exception handling support gives the program the ability to execute
15// any program which does not "throw an exception", by turning 'invoke'
16// instructions into calls and by turning 'unwind' instructions into calls to
17// abort().  If the program does dynamically use the unwind instruction, the
18// program will print a message then abort.
19//
20// 'Expensive' exception handling support gives the full exception handling
21// support to the program at the cost of making the 'invoke' instruction
22// really expensive.  It basically inserts setjmp/longjmp calls to emulate the
23// exception handling as necessary.
24//
25// Because the 'expensive' support slows down programs a lot, and EH is only
26// used for a subset of the programs, it must be specifically enabled by an
27// option.
28//
29// Note that after this pass runs the CFG is not entirely accurate (exceptional
30// control flow edges are not correct anymore) so only very simple things should
31// be done after the lowerinvoke pass has run (like generation of native code).
32// This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't
33// support the invoke instruction yet" lowering pass.
34//
35//===----------------------------------------------------------------------===//
36
37#define DEBUG_TYPE "lowerinvoke"
38#include "llvm/Transforms/Scalar.h"
39#include "llvm/Constants.h"
40#include "llvm/DerivedTypes.h"
41#include "llvm/Instructions.h"
42#include "llvm/Intrinsics.h"
43#include "llvm/LLVMContext.h"
44#include "llvm/Module.h"
45#include "llvm/Pass.h"
46#include "llvm/Transforms/Utils/BasicBlockUtils.h"
47#include "llvm/Transforms/Utils/Local.h"
48#include "llvm/ADT/SmallVector.h"
49#include "llvm/ADT/Statistic.h"
50#include "llvm/Support/CommandLine.h"
51#include "llvm/Target/TargetLowering.h"
52#include <csetjmp>
53#include <set>
54using namespace llvm;
55
56STATISTIC(NumInvokes, "Number of invokes replaced");
57STATISTIC(NumUnwinds, "Number of unwinds replaced");
58STATISTIC(NumSpilled, "Number of registers live across unwind edges");
59
60static cl::opt<bool> ExpensiveEHSupport("enable-correct-eh-support",
61 cl::desc("Make the -lowerinvoke pass insert expensive, but correct, EH code"));
62
63namespace {
64  class LowerInvoke : public FunctionPass {
65    // Used for both models.
66    Constant *AbortFn;
67
68    // Used for expensive EH support.
69    const Type *JBLinkTy;
70    GlobalVariable *JBListHead;
71    Constant *SetJmpFn, *LongJmpFn, *StackSaveFn, *StackRestoreFn;
72    bool useExpensiveEHSupport;
73
74    // We peek in TLI to grab the target's jmp_buf size and alignment
75    const TargetLowering *TLI;
76
77  public:
78    static char ID; // Pass identification, replacement for typeid
79    explicit LowerInvoke(const TargetLowering *tli = NULL,
80                         bool useExpensiveEHSupport = ExpensiveEHSupport)
81      : FunctionPass(&ID), useExpensiveEHSupport(useExpensiveEHSupport),
82        TLI(tli) { }
83    bool doInitialization(Module &M);
84    bool runOnFunction(Function &F);
85
86    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
87      // This is a cluster of orthogonal Transforms
88      AU.addPreservedID(PromoteMemoryToRegisterID);
89      AU.addPreservedID(LowerSwitchID);
90    }
91
92  private:
93    bool insertCheapEHSupport(Function &F);
94    void splitLiveRangesLiveAcrossInvokes(SmallVectorImpl<InvokeInst*>&Invokes);
95    void rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo,
96                                AllocaInst *InvokeNum, AllocaInst *StackPtr,
97                                SwitchInst *CatchSwitch);
98    bool insertExpensiveEHSupport(Function &F);
99  };
100}
101
102char LowerInvoke::ID = 0;
103static RegisterPass<LowerInvoke>
104X("lowerinvoke", "Lower invoke and unwind, for unwindless code generators");
105
106const PassInfo *const llvm::LowerInvokePassID = &X;
107
108// Public Interface To the LowerInvoke pass.
109FunctionPass *llvm::createLowerInvokePass(const TargetLowering *TLI) {
110  return new LowerInvoke(TLI, ExpensiveEHSupport);
111}
112FunctionPass *llvm::createLowerInvokePass(const TargetLowering *TLI,
113                                          bool useExpensiveEHSupport) {
114  return new LowerInvoke(TLI, useExpensiveEHSupport);
115}
116
117// doInitialization - Make sure that there is a prototype for abort in the
118// current module.
119bool LowerInvoke::doInitialization(Module &M) {
120  const Type *VoidPtrTy =
121          Type::getInt8PtrTy(M.getContext());
122  if (useExpensiveEHSupport) {
123    // Insert a type for the linked list of jump buffers.
124    unsigned JBSize = TLI ? TLI->getJumpBufSize() : 0;
125    JBSize = JBSize ? JBSize : 200;
126    const Type *JmpBufTy = ArrayType::get(VoidPtrTy, JBSize);
127
128    { // The type is recursive, so use a type holder.
129      std::vector<const Type*> Elements;
130      Elements.push_back(JmpBufTy);
131      OpaqueType *OT = OpaqueType::get(M.getContext());
132      Elements.push_back(PointerType::getUnqual(OT));
133      PATypeHolder JBLType(StructType::get(M.getContext(), Elements));
134      OT->refineAbstractTypeTo(JBLType.get());  // Complete the cycle.
135      JBLinkTy = JBLType.get();
136      M.addTypeName("llvm.sjljeh.jmpbufty", JBLinkTy);
137    }
138
139    const Type *PtrJBList = PointerType::getUnqual(JBLinkTy);
140
141    // Now that we've done that, insert the jmpbuf list head global, unless it
142    // already exists.
143    if (!(JBListHead = M.getGlobalVariable("llvm.sjljeh.jblist", PtrJBList))) {
144      JBListHead = new GlobalVariable(M, PtrJBList, false,
145                                      GlobalValue::LinkOnceAnyLinkage,
146                                      Constant::getNullValue(PtrJBList),
147                                      "llvm.sjljeh.jblist");
148    }
149
150// VisualStudio defines setjmp as _setjmp via #include <csetjmp> / <setjmp.h>,
151// so it looks like Intrinsic::_setjmp
152#if defined(_MSC_VER) && defined(setjmp)
153#define setjmp_undefined_for_visual_studio
154#undef setjmp
155#endif
156
157    SetJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::setjmp);
158
159#if defined(_MSC_VER) && defined(setjmp_undefined_for_visual_studio)
160// let's return it to _setjmp state in case anyone ever needs it after this
161// point under VisualStudio
162#define setjmp _setjmp
163#endif
164
165    LongJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::longjmp);
166    StackSaveFn = Intrinsic::getDeclaration(&M, Intrinsic::stacksave);
167    StackRestoreFn = Intrinsic::getDeclaration(&M, Intrinsic::stackrestore);
168  }
169
170  // We need the 'write' and 'abort' functions for both models.
171  AbortFn = M.getOrInsertFunction("abort", Type::getVoidTy(M.getContext()),
172                                  (Type *)0);
173  return true;
174}
175
176bool LowerInvoke::insertCheapEHSupport(Function &F) {
177  bool Changed = false;
178  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
179    if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
180      SmallVector<Value*,16> CallArgs(II->op_begin(), II->op_end() - 3);
181      // Insert a normal call instruction...
182      CallInst *NewCall = CallInst::Create(II->getCalledValue(),
183                                           CallArgs.begin(), CallArgs.end(),
184                                           "",II);
185      NewCall->takeName(II);
186      NewCall->setCallingConv(II->getCallingConv());
187      NewCall->setAttributes(II->getAttributes());
188      II->replaceAllUsesWith(NewCall);
189
190      // Insert an unconditional branch to the normal destination.
191      BranchInst::Create(II->getNormalDest(), II);
192
193      // Remove any PHI node entries from the exception destination.
194      II->getUnwindDest()->removePredecessor(BB);
195
196      // Remove the invoke instruction now.
197      BB->getInstList().erase(II);
198
199      ++NumInvokes; Changed = true;
200    } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
201      // Insert a call to abort()
202      CallInst::Create(AbortFn, "", UI)->setTailCall();
203
204      // Insert a return instruction.  This really should be a "barrier", as it
205      // is unreachable.
206      ReturnInst::Create(F.getContext(),
207                         F.getReturnType()->isVoidTy() ?
208                          0 : Constant::getNullValue(F.getReturnType()), UI);
209
210      // Remove the unwind instruction now.
211      BB->getInstList().erase(UI);
212
213      ++NumUnwinds; Changed = true;
214    }
215  return Changed;
216}
217
218/// rewriteExpensiveInvoke - Insert code and hack the function to replace the
219/// specified invoke instruction with a call.
220void LowerInvoke::rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo,
221                                         AllocaInst *InvokeNum,
222                                         AllocaInst *StackPtr,
223                                         SwitchInst *CatchSwitch) {
224  ConstantInt *InvokeNoC = ConstantInt::get(Type::getInt32Ty(II->getContext()),
225                                            InvokeNo);
226
227  // If the unwind edge has phi nodes, split the edge.
228  if (isa<PHINode>(II->getUnwindDest()->begin())) {
229    SplitCriticalEdge(II, 1, this);
230
231    // If there are any phi nodes left, they must have a single predecessor.
232    while (PHINode *PN = dyn_cast<PHINode>(II->getUnwindDest()->begin())) {
233      PN->replaceAllUsesWith(PN->getIncomingValue(0));
234      PN->eraseFromParent();
235    }
236  }
237
238  // Insert a store of the invoke num before the invoke and store zero into the
239  // location afterward.
240  new StoreInst(InvokeNoC, InvokeNum, true, II);  // volatile
241
242  // Insert a store of the stack ptr before the invoke, so we can restore it
243  // later in the exception case.
244  CallInst* StackSaveRet = CallInst::Create(StackSaveFn, "ssret", II);
245  new StoreInst(StackSaveRet, StackPtr, true, II); // volatile
246
247  BasicBlock::iterator NI = II->getNormalDest()->getFirstNonPHI();
248  // nonvolatile.
249  new StoreInst(Constant::getNullValue(Type::getInt32Ty(II->getContext())),
250                InvokeNum, false, NI);
251
252  Instruction* StackPtrLoad = new LoadInst(StackPtr, "stackptr.restore", true,
253                                           II->getUnwindDest()->getFirstNonPHI()
254                                           );
255  CallInst::Create(StackRestoreFn, StackPtrLoad, "")->insertAfter(StackPtrLoad);
256
257  // Add a switch case to our unwind block.
258  CatchSwitch->addCase(InvokeNoC, II->getUnwindDest());
259
260  // Insert a normal call instruction.
261  SmallVector<Value*,16> CallArgs(II->op_begin(), II->op_end() - 3);
262  CallInst *NewCall = CallInst::Create(II->getCalledValue(),
263                                       CallArgs.begin(), CallArgs.end(), "",
264                                       II);
265  NewCall->takeName(II);
266  NewCall->setCallingConv(II->getCallingConv());
267  NewCall->setAttributes(II->getAttributes());
268  II->replaceAllUsesWith(NewCall);
269
270  // Replace the invoke with an uncond branch.
271  BranchInst::Create(II->getNormalDest(), NewCall->getParent());
272  II->eraseFromParent();
273}
274
275/// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until
276/// we reach blocks we've already seen.
277static void MarkBlocksLiveIn(BasicBlock *BB, std::set<BasicBlock*> &LiveBBs) {
278  if (!LiveBBs.insert(BB).second) return; // already been here.
279
280  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
281    MarkBlocksLiveIn(*PI, LiveBBs);
282}
283
284// First thing we need to do is scan the whole function for values that are
285// live across unwind edges.  Each value that is live across an unwind edge
286// we spill into a stack location, guaranteeing that there is nothing live
287// across the unwind edge.  This process also splits all critical edges
288// coming out of invoke's.
289void LowerInvoke::
290splitLiveRangesLiveAcrossInvokes(SmallVectorImpl<InvokeInst*> &Invokes) {
291  // First step, split all critical edges from invoke instructions.
292  for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
293    InvokeInst *II = Invokes[i];
294    SplitCriticalEdge(II, 0, this);
295    SplitCriticalEdge(II, 1, this);
296    assert(!isa<PHINode>(II->getNormalDest()) &&
297           !isa<PHINode>(II->getUnwindDest()) &&
298           "critical edge splitting left single entry phi nodes?");
299  }
300
301  Function *F = Invokes.back()->getParent()->getParent();
302
303  // To avoid having to handle incoming arguments specially, we lower each arg
304  // to a copy instruction in the entry block.  This ensures that the argument
305  // value itself cannot be live across the entry block.
306  BasicBlock::iterator AfterAllocaInsertPt = F->begin()->begin();
307  while (isa<AllocaInst>(AfterAllocaInsertPt) &&
308        isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsertPt)->getArraySize()))
309    ++AfterAllocaInsertPt;
310  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
311       AI != E; ++AI) {
312    const Type *Ty = AI->getType();
313    // StructType can't be cast, but is a legal argument type, so we have
314    // to handle them differently. We use an extract/insert pair as a
315    // lightweight method to achieve the same goal.
316    if (isa<StructType>(Ty)) {
317      Instruction *EI = ExtractValueInst::Create(AI, 0, "", AfterAllocaInsertPt);
318      Instruction *NI = InsertValueInst::Create(AI, EI, 0);
319      NI->insertAfter(EI);
320      AI->replaceAllUsesWith(NI);
321      // Set the struct operand of the instructions back to the AllocaInst.
322      EI->setOperand(0, AI);
323      NI->setOperand(0, AI);
324    } else {
325      // This is always a no-op cast because we're casting AI to AI->getType()
326      // so src and destination types are identical. BitCast is the only
327      // possibility.
328      CastInst *NC = new BitCastInst(
329        AI, AI->getType(), AI->getName()+".tmp", AfterAllocaInsertPt);
330      AI->replaceAllUsesWith(NC);
331      // Set the operand of the cast instruction back to the AllocaInst.
332      // Normally it's forbidden to replace a CastInst's operand because it
333      // could cause the opcode to reflect an illegal conversion. However,
334      // we're replacing it here with the same value it was constructed with.
335      // We do this because the above replaceAllUsesWith() clobbered the
336      // operand, but we want this one to remain.
337      NC->setOperand(0, AI);
338    }
339  }
340
341  // Finally, scan the code looking for instructions with bad live ranges.
342  for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
343    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
344      // Ignore obvious cases we don't have to handle.  In particular, most
345      // instructions either have no uses or only have a single use inside the
346      // current block.  Ignore them quickly.
347      Instruction *Inst = II;
348      if (Inst->use_empty()) continue;
349      if (Inst->hasOneUse() &&
350          cast<Instruction>(Inst->use_back())->getParent() == BB &&
351          !isa<PHINode>(Inst->use_back())) continue;
352
353      // If this is an alloca in the entry block, it's not a real register
354      // value.
355      if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst))
356        if (isa<ConstantInt>(AI->getArraySize()) && BB == F->begin())
357          continue;
358
359      // Avoid iterator invalidation by copying users to a temporary vector.
360      SmallVector<Instruction*,16> Users;
361      for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end();
362           UI != E; ++UI) {
363        Instruction *User = cast<Instruction>(*UI);
364        if (User->getParent() != BB || isa<PHINode>(User))
365          Users.push_back(User);
366      }
367
368      // Scan all of the uses and see if the live range is live across an unwind
369      // edge.  If we find a use live across an invoke edge, create an alloca
370      // and spill the value.
371      std::set<InvokeInst*> InvokesWithStoreInserted;
372
373      // Find all of the blocks that this value is live in.
374      std::set<BasicBlock*> LiveBBs;
375      LiveBBs.insert(Inst->getParent());
376      while (!Users.empty()) {
377        Instruction *U = Users.back();
378        Users.pop_back();
379
380        if (!isa<PHINode>(U)) {
381          MarkBlocksLiveIn(U->getParent(), LiveBBs);
382        } else {
383          // Uses for a PHI node occur in their predecessor block.
384          PHINode *PN = cast<PHINode>(U);
385          for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
386            if (PN->getIncomingValue(i) == Inst)
387              MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs);
388        }
389      }
390
391      // Now that we know all of the blocks that this thing is live in, see if
392      // it includes any of the unwind locations.
393      bool NeedsSpill = false;
394      for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
395        BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest();
396        if (UnwindBlock != BB && LiveBBs.count(UnwindBlock)) {
397          NeedsSpill = true;
398        }
399      }
400
401      // If we decided we need a spill, do it.
402      if (NeedsSpill) {
403        ++NumSpilled;
404        DemoteRegToStack(*Inst, true);
405      }
406    }
407}
408
409bool LowerInvoke::insertExpensiveEHSupport(Function &F) {
410  SmallVector<ReturnInst*,16> Returns;
411  SmallVector<UnwindInst*,16> Unwinds;
412  SmallVector<InvokeInst*,16> Invokes;
413
414  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
415    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
416      // Remember all return instructions in case we insert an invoke into this
417      // function.
418      Returns.push_back(RI);
419    } else if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
420      Invokes.push_back(II);
421    } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
422      Unwinds.push_back(UI);
423    }
424
425  if (Unwinds.empty() && Invokes.empty()) return false;
426
427  NumInvokes += Invokes.size();
428  NumUnwinds += Unwinds.size();
429
430  // TODO: This is not an optimal way to do this.  In particular, this always
431  // inserts setjmp calls into the entries of functions with invoke instructions
432  // even though there are possibly paths through the function that do not
433  // execute any invokes.  In particular, for functions with early exits, e.g.
434  // the 'addMove' method in hexxagon, it would be nice to not have to do the
435  // setjmp stuff on the early exit path.  This requires a bit of dataflow, but
436  // would not be too hard to do.
437
438  // If we have an invoke instruction, insert a setjmp that dominates all
439  // invokes.  After the setjmp, use a cond branch that goes to the original
440  // code path on zero, and to a designated 'catch' block of nonzero.
441  Value *OldJmpBufPtr = 0;
442  if (!Invokes.empty()) {
443    // First thing we need to do is scan the whole function for values that are
444    // live across unwind edges.  Each value that is live across an unwind edge
445    // we spill into a stack location, guaranteeing that there is nothing live
446    // across the unwind edge.  This process also splits all critical edges
447    // coming out of invoke's.
448    splitLiveRangesLiveAcrossInvokes(Invokes);
449
450    BasicBlock *EntryBB = F.begin();
451
452    // Create an alloca for the incoming jump buffer ptr and the new jump buffer
453    // that needs to be restored on all exits from the function.  This is an
454    // alloca because the value needs to be live across invokes.
455    unsigned Align = TLI ? TLI->getJumpBufAlignment() : 0;
456    AllocaInst *JmpBuf =
457      new AllocaInst(JBLinkTy, 0, Align,
458                     "jblink", F.begin()->begin());
459
460    Value *Idx[] = { Constant::getNullValue(Type::getInt32Ty(F.getContext())),
461                     ConstantInt::get(Type::getInt32Ty(F.getContext()), 1) };
462    OldJmpBufPtr = GetElementPtrInst::Create(JmpBuf, &Idx[0], &Idx[2],
463                                             "OldBuf",
464                                             EntryBB->getTerminator());
465
466    // Copy the JBListHead to the alloca.
467    Value *OldBuf = new LoadInst(JBListHead, "oldjmpbufptr", true,
468                                 EntryBB->getTerminator());
469    new StoreInst(OldBuf, OldJmpBufPtr, true, EntryBB->getTerminator());
470
471    // Add the new jumpbuf to the list.
472    new StoreInst(JmpBuf, JBListHead, true, EntryBB->getTerminator());
473
474    // Create the catch block.  The catch block is basically a big switch
475    // statement that goes to all of the invoke catch blocks.
476    BasicBlock *CatchBB =
477            BasicBlock::Create(F.getContext(), "setjmp.catch", &F);
478
479    // Create an alloca which keeps track of the stack pointer before every
480    // invoke, this allows us to properly restore the stack pointer after
481    // long jumping.
482    AllocaInst *StackPtr = new AllocaInst(Type::getInt8PtrTy(F.getContext()), 0,
483                                          "stackptr", EntryBB->begin());
484
485    // Create an alloca which keeps track of which invoke is currently
486    // executing.  For normal calls it contains zero.
487    AllocaInst *InvokeNum = new AllocaInst(Type::getInt32Ty(F.getContext()), 0,
488                                           "invokenum",EntryBB->begin());
489    new StoreInst(ConstantInt::get(Type::getInt32Ty(F.getContext()), 0),
490                  InvokeNum, true, EntryBB->getTerminator());
491
492    // Insert a load in the Catch block, and a switch on its value.  By default,
493    // we go to a block that just does an unwind (which is the correct action
494    // for a standard call).
495    BasicBlock *UnwindBB = BasicBlock::Create(F.getContext(), "unwindbb", &F);
496    Unwinds.push_back(new UnwindInst(F.getContext(), UnwindBB));
497
498    Value *CatchLoad = new LoadInst(InvokeNum, "invoke.num", true, CatchBB);
499    SwitchInst *CatchSwitch =
500      SwitchInst::Create(CatchLoad, UnwindBB, Invokes.size(), CatchBB);
501
502    // Now that things are set up, insert the setjmp call itself.
503
504    // Split the entry block to insert the conditional branch for the setjmp.
505    BasicBlock *ContBlock = EntryBB->splitBasicBlock(EntryBB->getTerminator(),
506                                                     "setjmp.cont");
507
508    Idx[1] = ConstantInt::get(Type::getInt32Ty(F.getContext()), 0);
509    Value *JmpBufPtr = GetElementPtrInst::Create(JmpBuf, &Idx[0], &Idx[2],
510                                                 "TheJmpBuf",
511                                                 EntryBB->getTerminator());
512    JmpBufPtr = new BitCastInst(JmpBufPtr,
513                        Type::getInt8PtrTy(F.getContext()),
514                                "tmp", EntryBB->getTerminator());
515    Value *SJRet = CallInst::Create(SetJmpFn, JmpBufPtr, "sjret",
516                                    EntryBB->getTerminator());
517
518    // Compare the return value to zero.
519    Value *IsNormal = new ICmpInst(EntryBB->getTerminator(),
520                                   ICmpInst::ICMP_EQ, SJRet,
521                                   Constant::getNullValue(SJRet->getType()),
522                                   "notunwind");
523    // Nuke the uncond branch.
524    EntryBB->getTerminator()->eraseFromParent();
525
526    // Put in a new condbranch in its place.
527    BranchInst::Create(ContBlock, CatchBB, IsNormal, EntryBB);
528
529    // At this point, we are all set up, rewrite each invoke instruction.
530    for (unsigned i = 0, e = Invokes.size(); i != e; ++i)
531      rewriteExpensiveInvoke(Invokes[i], i+1, InvokeNum, StackPtr, CatchSwitch);
532  }
533
534  // We know that there is at least one unwind.
535
536  // Create three new blocks, the block to load the jmpbuf ptr and compare
537  // against null, the block to do the longjmp, and the error block for if it
538  // is null.  Add them at the end of the function because they are not hot.
539  BasicBlock *UnwindHandler = BasicBlock::Create(F.getContext(),
540                                                "dounwind", &F);
541  BasicBlock *UnwindBlock = BasicBlock::Create(F.getContext(), "unwind", &F);
542  BasicBlock *TermBlock = BasicBlock::Create(F.getContext(), "unwinderror", &F);
543
544  // If this function contains an invoke, restore the old jumpbuf ptr.
545  Value *BufPtr;
546  if (OldJmpBufPtr) {
547    // Before the return, insert a copy from the saved value to the new value.
548    BufPtr = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", UnwindHandler);
549    new StoreInst(BufPtr, JBListHead, UnwindHandler);
550  } else {
551    BufPtr = new LoadInst(JBListHead, "ehlist", UnwindHandler);
552  }
553
554  // Load the JBList, if it's null, then there was no catch!
555  Value *NotNull = new ICmpInst(*UnwindHandler, ICmpInst::ICMP_NE, BufPtr,
556                                Constant::getNullValue(BufPtr->getType()),
557                                "notnull");
558  BranchInst::Create(UnwindBlock, TermBlock, NotNull, UnwindHandler);
559
560  // Create the block to do the longjmp.
561  // Get a pointer to the jmpbuf and longjmp.
562  Value *Idx[] = { Constant::getNullValue(Type::getInt32Ty(F.getContext())),
563                   ConstantInt::get(Type::getInt32Ty(F.getContext()), 0) };
564  Idx[0] = GetElementPtrInst::Create(BufPtr, &Idx[0], &Idx[2], "JmpBuf",
565                                     UnwindBlock);
566  Idx[0] = new BitCastInst(Idx[0],
567             Type::getInt8PtrTy(F.getContext()),
568                           "tmp", UnwindBlock);
569  Idx[1] = ConstantInt::get(Type::getInt32Ty(F.getContext()), 1);
570  CallInst::Create(LongJmpFn, &Idx[0], &Idx[2], "", UnwindBlock);
571  new UnreachableInst(F.getContext(), UnwindBlock);
572
573  // Set up the term block ("throw without a catch").
574  new UnreachableInst(F.getContext(), TermBlock);
575
576  // Insert a call to abort()
577  CallInst::Create(AbortFn, "",
578                   TermBlock->getTerminator())->setTailCall();
579
580
581  // Replace all unwinds with a branch to the unwind handler.
582  for (unsigned i = 0, e = Unwinds.size(); i != e; ++i) {
583    BranchInst::Create(UnwindHandler, Unwinds[i]);
584    Unwinds[i]->eraseFromParent();
585  }
586
587  // Finally, for any returns from this function, if this function contains an
588  // invoke, restore the old jmpbuf pointer to its input value.
589  if (OldJmpBufPtr) {
590    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
591      ReturnInst *R = Returns[i];
592
593      // Before the return, insert a copy from the saved value to the new value.
594      Value *OldBuf = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", true, R);
595      new StoreInst(OldBuf, JBListHead, true, R);
596    }
597  }
598
599  return true;
600}
601
602bool LowerInvoke::runOnFunction(Function &F) {
603  if (useExpensiveEHSupport)
604    return insertExpensiveEHSupport(F);
605  else
606    return insertCheapEHSupport(F);
607}
608