LowerInvoke.cpp revision 3bcb3a6b8d95a19a3b4d61e7a59c38ac2fd392c1
1//===- LowerInvoke.cpp - Eliminate Invoke & Unwind instructions -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation is designed for use by code generators which do not yet
11// support stack unwinding.  This pass supports two models of exception handling
12// lowering, the 'cheap' support and the 'expensive' support.
13//
14// 'Cheap' exception handling support gives the program the ability to execute
15// any program which does not "throw an exception", by turning 'invoke'
16// instructions into calls and by turning 'unwind' instructions into calls to
17// abort().  If the program does dynamically use the unwind instruction, the
18// program will print a message then abort.
19//
20// 'Expensive' exception handling support gives the full exception handling
21// support to the program at the cost of making the 'invoke' instruction
22// really expensive.  It basically inserts setjmp/longjmp calls to emulate the
23// exception handling as necessary.
24//
25// Because the 'expensive' support slows down programs a lot, and EH is only
26// used for a subset of the programs, it must be specifically enabled by an
27// option.
28//
29// Note that after this pass runs the CFG is not entirely accurate (exceptional
30// control flow edges are not correct anymore) so only very simple things should
31// be done after the lowerinvoke pass has run (like generation of native code).
32// This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't
33// support the invoke instruction yet" lowering pass.
34//
35//===----------------------------------------------------------------------===//
36
37#define DEBUG_TYPE "lowerinvoke"
38#include "llvm/Transforms/Scalar.h"
39#include "llvm/Constants.h"
40#include "llvm/DerivedTypes.h"
41#include "llvm/Instructions.h"
42#include "llvm/Intrinsics.h"
43#include "llvm/LLVMContext.h"
44#include "llvm/Module.h"
45#include "llvm/Pass.h"
46#include "llvm/Transforms/Utils/BasicBlockUtils.h"
47#include "llvm/Transforms/Utils/Local.h"
48#include "llvm/ADT/SmallVector.h"
49#include "llvm/ADT/Statistic.h"
50#include "llvm/Support/CommandLine.h"
51#include "llvm/Target/TargetLowering.h"
52#include <csetjmp>
53#include <set>
54using namespace llvm;
55
56STATISTIC(NumInvokes, "Number of invokes replaced");
57STATISTIC(NumUnwinds, "Number of unwinds replaced");
58STATISTIC(NumSpilled, "Number of registers live across unwind edges");
59
60static cl::opt<bool> ExpensiveEHSupport("enable-correct-eh-support",
61 cl::desc("Make the -lowerinvoke pass insert expensive, but correct, EH code"));
62
63namespace {
64  class LowerInvoke : public FunctionPass {
65    // Used for both models.
66    Constant *AbortFn;
67
68    // Used for expensive EH support.
69    const Type *JBLinkTy;
70    GlobalVariable *JBListHead;
71    Constant *SetJmpFn, *LongJmpFn, *StackSaveFn, *StackRestoreFn;
72    bool useExpensiveEHSupport;
73
74    // We peek in TLI to grab the target's jmp_buf size and alignment
75    const TargetLowering *TLI;
76
77  public:
78    static char ID; // Pass identification, replacement for typeid
79    explicit LowerInvoke(const TargetLowering *tli = NULL,
80                         bool useExpensiveEHSupport = ExpensiveEHSupport)
81      : FunctionPass(ID), useExpensiveEHSupport(useExpensiveEHSupport),
82        TLI(tli) { }
83    bool doInitialization(Module &M);
84    bool runOnFunction(Function &F);
85
86    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
87      // This is a cluster of orthogonal Transforms
88      AU.addPreserved("mem2reg");
89      AU.addPreservedID(LowerSwitchID);
90    }
91
92  private:
93    bool insertCheapEHSupport(Function &F);
94    void splitLiveRangesLiveAcrossInvokes(SmallVectorImpl<InvokeInst*>&Invokes);
95    void rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo,
96                                AllocaInst *InvokeNum, AllocaInst *StackPtr,
97                                SwitchInst *CatchSwitch);
98    bool insertExpensiveEHSupport(Function &F);
99  };
100}
101
102char LowerInvoke::ID = 0;
103INITIALIZE_PASS(LowerInvoke, "lowerinvoke",
104                "Lower invoke and unwind, for unwindless code generators",
105                false, false)
106
107char &llvm::LowerInvokePassID = LowerInvoke::ID;
108
109// Public Interface To the LowerInvoke pass.
110FunctionPass *llvm::createLowerInvokePass(const TargetLowering *TLI) {
111  return new LowerInvoke(TLI, ExpensiveEHSupport);
112}
113FunctionPass *llvm::createLowerInvokePass(const TargetLowering *TLI,
114                                          bool useExpensiveEHSupport) {
115  return new LowerInvoke(TLI, useExpensiveEHSupport);
116}
117
118// doInitialization - Make sure that there is a prototype for abort in the
119// current module.
120bool LowerInvoke::doInitialization(Module &M) {
121  const Type *VoidPtrTy =
122          Type::getInt8PtrTy(M.getContext());
123  if (useExpensiveEHSupport) {
124    // Insert a type for the linked list of jump buffers.
125    unsigned JBSize = TLI ? TLI->getJumpBufSize() : 0;
126    JBSize = JBSize ? JBSize : 200;
127    const Type *JmpBufTy = ArrayType::get(VoidPtrTy, JBSize);
128
129    { // The type is recursive, so use a type holder.
130      std::vector<const Type*> Elements;
131      Elements.push_back(JmpBufTy);
132      OpaqueType *OT = OpaqueType::get(M.getContext());
133      Elements.push_back(PointerType::getUnqual(OT));
134      PATypeHolder JBLType(StructType::get(M.getContext(), Elements));
135      OT->refineAbstractTypeTo(JBLType.get());  // Complete the cycle.
136      JBLinkTy = JBLType.get();
137      M.addTypeName("llvm.sjljeh.jmpbufty", JBLinkTy);
138    }
139
140    const Type *PtrJBList = PointerType::getUnqual(JBLinkTy);
141
142    // Now that we've done that, insert the jmpbuf list head global, unless it
143    // already exists.
144    if (!(JBListHead = M.getGlobalVariable("llvm.sjljeh.jblist", PtrJBList))) {
145      JBListHead = new GlobalVariable(M, PtrJBList, false,
146                                      GlobalValue::LinkOnceAnyLinkage,
147                                      Constant::getNullValue(PtrJBList),
148                                      "llvm.sjljeh.jblist");
149    }
150
151// VisualStudio defines setjmp as _setjmp
152#if defined(_MSC_VER) && defined(setjmp) && \
153                         !defined(setjmp_undefined_for_msvc)
154#  pragma push_macro("setjmp")
155#  undef setjmp
156#  define setjmp_undefined_for_msvc
157#endif
158
159    SetJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::setjmp);
160
161#if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc)
162   // let's return it to _setjmp state
163#  pragma pop_macro("setjmp")
164#  undef setjmp_undefined_for_msvc
165#endif
166
167    LongJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::longjmp);
168    StackSaveFn = Intrinsic::getDeclaration(&M, Intrinsic::stacksave);
169    StackRestoreFn = Intrinsic::getDeclaration(&M, Intrinsic::stackrestore);
170  }
171
172  // We need the 'write' and 'abort' functions for both models.
173  AbortFn = M.getOrInsertFunction("abort", Type::getVoidTy(M.getContext()),
174                                  (Type *)0);
175  return true;
176}
177
178bool LowerInvoke::insertCheapEHSupport(Function &F) {
179  bool Changed = false;
180  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
181    if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
182      SmallVector<Value*,16> CallArgs(II->op_begin(), II->op_end() - 3);
183      // Insert a normal call instruction...
184      CallInst *NewCall = CallInst::Create(II->getCalledValue(),
185                                           CallArgs.begin(), CallArgs.end(),
186                                           "",II);
187      NewCall->takeName(II);
188      NewCall->setCallingConv(II->getCallingConv());
189      NewCall->setAttributes(II->getAttributes());
190      NewCall->setDebugLoc(II->getDebugLoc());
191      II->replaceAllUsesWith(NewCall);
192
193      // Insert an unconditional branch to the normal destination.
194      BranchInst::Create(II->getNormalDest(), II);
195
196      // Remove any PHI node entries from the exception destination.
197      II->getUnwindDest()->removePredecessor(BB);
198
199      // Remove the invoke instruction now.
200      BB->getInstList().erase(II);
201
202      ++NumInvokes; Changed = true;
203    } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
204      // Insert a call to abort()
205      CallInst::Create(AbortFn, "", UI)->setTailCall();
206
207      // Insert a return instruction.  This really should be a "barrier", as it
208      // is unreachable.
209      ReturnInst::Create(F.getContext(),
210                         F.getReturnType()->isVoidTy() ?
211                          0 : Constant::getNullValue(F.getReturnType()), UI);
212
213      // Remove the unwind instruction now.
214      BB->getInstList().erase(UI);
215
216      ++NumUnwinds; Changed = true;
217    }
218  return Changed;
219}
220
221/// rewriteExpensiveInvoke - Insert code and hack the function to replace the
222/// specified invoke instruction with a call.
223void LowerInvoke::rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo,
224                                         AllocaInst *InvokeNum,
225                                         AllocaInst *StackPtr,
226                                         SwitchInst *CatchSwitch) {
227  ConstantInt *InvokeNoC = ConstantInt::get(Type::getInt32Ty(II->getContext()),
228                                            InvokeNo);
229
230  // If the unwind edge has phi nodes, split the edge.
231  if (isa<PHINode>(II->getUnwindDest()->begin())) {
232    SplitCriticalEdge(II, 1, this);
233
234    // If there are any phi nodes left, they must have a single predecessor.
235    while (PHINode *PN = dyn_cast<PHINode>(II->getUnwindDest()->begin())) {
236      PN->replaceAllUsesWith(PN->getIncomingValue(0));
237      PN->eraseFromParent();
238    }
239  }
240
241  // Insert a store of the invoke num before the invoke and store zero into the
242  // location afterward.
243  new StoreInst(InvokeNoC, InvokeNum, true, II);  // volatile
244
245  // Insert a store of the stack ptr before the invoke, so we can restore it
246  // later in the exception case.
247  CallInst* StackSaveRet = CallInst::Create(StackSaveFn, "ssret", II);
248  new StoreInst(StackSaveRet, StackPtr, true, II); // volatile
249
250  BasicBlock::iterator NI = II->getNormalDest()->getFirstNonPHI();
251  // nonvolatile.
252  new StoreInst(Constant::getNullValue(Type::getInt32Ty(II->getContext())),
253                InvokeNum, false, NI);
254
255  Instruction* StackPtrLoad = new LoadInst(StackPtr, "stackptr.restore", true,
256                                           II->getUnwindDest()->getFirstNonPHI()
257                                           );
258  CallInst::Create(StackRestoreFn, StackPtrLoad, "")->insertAfter(StackPtrLoad);
259
260  // Add a switch case to our unwind block.
261  CatchSwitch->addCase(InvokeNoC, II->getUnwindDest());
262
263  // Insert a normal call instruction.
264  SmallVector<Value*,16> CallArgs(II->op_begin(), II->op_end() - 3);
265  CallInst *NewCall = CallInst::Create(II->getCalledValue(),
266                                       CallArgs.begin(), CallArgs.end(), "",
267                                       II);
268  NewCall->takeName(II);
269  NewCall->setCallingConv(II->getCallingConv());
270  NewCall->setAttributes(II->getAttributes());
271  NewCall->setDebugLoc(II->getDebugLoc());
272  II->replaceAllUsesWith(NewCall);
273
274  // Replace the invoke with an uncond branch.
275  BranchInst::Create(II->getNormalDest(), NewCall->getParent());
276  II->eraseFromParent();
277}
278
279/// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until
280/// we reach blocks we've already seen.
281static void MarkBlocksLiveIn(BasicBlock *BB, std::set<BasicBlock*> &LiveBBs) {
282  if (!LiveBBs.insert(BB).second) return; // already been here.
283
284  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
285    MarkBlocksLiveIn(*PI, LiveBBs);
286}
287
288// First thing we need to do is scan the whole function for values that are
289// live across unwind edges.  Each value that is live across an unwind edge
290// we spill into a stack location, guaranteeing that there is nothing live
291// across the unwind edge.  This process also splits all critical edges
292// coming out of invoke's.
293void LowerInvoke::
294splitLiveRangesLiveAcrossInvokes(SmallVectorImpl<InvokeInst*> &Invokes) {
295  // First step, split all critical edges from invoke instructions.
296  for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
297    InvokeInst *II = Invokes[i];
298    SplitCriticalEdge(II, 0, this);
299    SplitCriticalEdge(II, 1, this);
300    assert(!isa<PHINode>(II->getNormalDest()) &&
301           !isa<PHINode>(II->getUnwindDest()) &&
302           "critical edge splitting left single entry phi nodes?");
303  }
304
305  Function *F = Invokes.back()->getParent()->getParent();
306
307  // To avoid having to handle incoming arguments specially, we lower each arg
308  // to a copy instruction in the entry block.  This ensures that the argument
309  // value itself cannot be live across the entry block.
310  BasicBlock::iterator AfterAllocaInsertPt = F->begin()->begin();
311  while (isa<AllocaInst>(AfterAllocaInsertPt) &&
312        isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsertPt)->getArraySize()))
313    ++AfterAllocaInsertPt;
314  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
315       AI != E; ++AI) {
316    const Type *Ty = AI->getType();
317    // Aggregate types can't be cast, but are legal argument types, so we have
318    // to handle them differently. We use an extract/insert pair as a
319    // lightweight method to achieve the same goal.
320    if (isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) {
321      Instruction *EI = ExtractValueInst::Create(AI, 0, "",AfterAllocaInsertPt);
322      Instruction *NI = InsertValueInst::Create(AI, EI, 0);
323      NI->insertAfter(EI);
324      AI->replaceAllUsesWith(NI);
325      // Set the operand of the instructions back to the AllocaInst.
326      EI->setOperand(0, AI);
327      NI->setOperand(0, AI);
328    } else {
329      // This is always a no-op cast because we're casting AI to AI->getType()
330      // so src and destination types are identical. BitCast is the only
331      // possibility.
332      CastInst *NC = new BitCastInst(
333        AI, AI->getType(), AI->getName()+".tmp", AfterAllocaInsertPt);
334      AI->replaceAllUsesWith(NC);
335      // Set the operand of the cast instruction back to the AllocaInst.
336      // Normally it's forbidden to replace a CastInst's operand because it
337      // could cause the opcode to reflect an illegal conversion. However,
338      // we're replacing it here with the same value it was constructed with.
339      // We do this because the above replaceAllUsesWith() clobbered the
340      // operand, but we want this one to remain.
341      NC->setOperand(0, AI);
342    }
343  }
344
345  // Finally, scan the code looking for instructions with bad live ranges.
346  for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
347    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
348      // Ignore obvious cases we don't have to handle.  In particular, most
349      // instructions either have no uses or only have a single use inside the
350      // current block.  Ignore them quickly.
351      Instruction *Inst = II;
352      if (Inst->use_empty()) continue;
353      if (Inst->hasOneUse() &&
354          cast<Instruction>(Inst->use_back())->getParent() == BB &&
355          !isa<PHINode>(Inst->use_back())) continue;
356
357      // If this is an alloca in the entry block, it's not a real register
358      // value.
359      if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst))
360        if (isa<ConstantInt>(AI->getArraySize()) && BB == F->begin())
361          continue;
362
363      // Avoid iterator invalidation by copying users to a temporary vector.
364      SmallVector<Instruction*,16> Users;
365      for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end();
366           UI != E; ++UI) {
367        Instruction *User = cast<Instruction>(*UI);
368        if (User->getParent() != BB || isa<PHINode>(User))
369          Users.push_back(User);
370      }
371
372      // Scan all of the uses and see if the live range is live across an unwind
373      // edge.  If we find a use live across an invoke edge, create an alloca
374      // and spill the value.
375      std::set<InvokeInst*> InvokesWithStoreInserted;
376
377      // Find all of the blocks that this value is live in.
378      std::set<BasicBlock*> LiveBBs;
379      LiveBBs.insert(Inst->getParent());
380      while (!Users.empty()) {
381        Instruction *U = Users.back();
382        Users.pop_back();
383
384        if (!isa<PHINode>(U)) {
385          MarkBlocksLiveIn(U->getParent(), LiveBBs);
386        } else {
387          // Uses for a PHI node occur in their predecessor block.
388          PHINode *PN = cast<PHINode>(U);
389          for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
390            if (PN->getIncomingValue(i) == Inst)
391              MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs);
392        }
393      }
394
395      // Now that we know all of the blocks that this thing is live in, see if
396      // it includes any of the unwind locations.
397      bool NeedsSpill = false;
398      for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
399        BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest();
400        if (UnwindBlock != BB && LiveBBs.count(UnwindBlock)) {
401          NeedsSpill = true;
402        }
403      }
404
405      // If we decided we need a spill, do it.
406      if (NeedsSpill) {
407        ++NumSpilled;
408        DemoteRegToStack(*Inst, true);
409      }
410    }
411}
412
413bool LowerInvoke::insertExpensiveEHSupport(Function &F) {
414  SmallVector<ReturnInst*,16> Returns;
415  SmallVector<UnwindInst*,16> Unwinds;
416  SmallVector<InvokeInst*,16> Invokes;
417
418  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
419    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
420      // Remember all return instructions in case we insert an invoke into this
421      // function.
422      Returns.push_back(RI);
423    } else if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
424      Invokes.push_back(II);
425    } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
426      Unwinds.push_back(UI);
427    }
428
429  if (Unwinds.empty() && Invokes.empty()) return false;
430
431  NumInvokes += Invokes.size();
432  NumUnwinds += Unwinds.size();
433
434  // TODO: This is not an optimal way to do this.  In particular, this always
435  // inserts setjmp calls into the entries of functions with invoke instructions
436  // even though there are possibly paths through the function that do not
437  // execute any invokes.  In particular, for functions with early exits, e.g.
438  // the 'addMove' method in hexxagon, it would be nice to not have to do the
439  // setjmp stuff on the early exit path.  This requires a bit of dataflow, but
440  // would not be too hard to do.
441
442  // If we have an invoke instruction, insert a setjmp that dominates all
443  // invokes.  After the setjmp, use a cond branch that goes to the original
444  // code path on zero, and to a designated 'catch' block of nonzero.
445  Value *OldJmpBufPtr = 0;
446  if (!Invokes.empty()) {
447    // First thing we need to do is scan the whole function for values that are
448    // live across unwind edges.  Each value that is live across an unwind edge
449    // we spill into a stack location, guaranteeing that there is nothing live
450    // across the unwind edge.  This process also splits all critical edges
451    // coming out of invoke's.
452    splitLiveRangesLiveAcrossInvokes(Invokes);
453
454    BasicBlock *EntryBB = F.begin();
455
456    // Create an alloca for the incoming jump buffer ptr and the new jump buffer
457    // that needs to be restored on all exits from the function.  This is an
458    // alloca because the value needs to be live across invokes.
459    unsigned Align = TLI ? TLI->getJumpBufAlignment() : 0;
460    AllocaInst *JmpBuf =
461      new AllocaInst(JBLinkTy, 0, Align,
462                     "jblink", F.begin()->begin());
463
464    Value *Idx[] = { Constant::getNullValue(Type::getInt32Ty(F.getContext())),
465                     ConstantInt::get(Type::getInt32Ty(F.getContext()), 1) };
466    OldJmpBufPtr = GetElementPtrInst::Create(JmpBuf, &Idx[0], &Idx[2],
467                                             "OldBuf",
468                                             EntryBB->getTerminator());
469
470    // Copy the JBListHead to the alloca.
471    Value *OldBuf = new LoadInst(JBListHead, "oldjmpbufptr", true,
472                                 EntryBB->getTerminator());
473    new StoreInst(OldBuf, OldJmpBufPtr, true, EntryBB->getTerminator());
474
475    // Add the new jumpbuf to the list.
476    new StoreInst(JmpBuf, JBListHead, true, EntryBB->getTerminator());
477
478    // Create the catch block.  The catch block is basically a big switch
479    // statement that goes to all of the invoke catch blocks.
480    BasicBlock *CatchBB =
481            BasicBlock::Create(F.getContext(), "setjmp.catch", &F);
482
483    // Create an alloca which keeps track of the stack pointer before every
484    // invoke, this allows us to properly restore the stack pointer after
485    // long jumping.
486    AllocaInst *StackPtr = new AllocaInst(Type::getInt8PtrTy(F.getContext()), 0,
487                                          "stackptr", EntryBB->begin());
488
489    // Create an alloca which keeps track of which invoke is currently
490    // executing.  For normal calls it contains zero.
491    AllocaInst *InvokeNum = new AllocaInst(Type::getInt32Ty(F.getContext()), 0,
492                                           "invokenum",EntryBB->begin());
493    new StoreInst(ConstantInt::get(Type::getInt32Ty(F.getContext()), 0),
494                  InvokeNum, true, EntryBB->getTerminator());
495
496    // Insert a load in the Catch block, and a switch on its value.  By default,
497    // we go to a block that just does an unwind (which is the correct action
498    // for a standard call).
499    BasicBlock *UnwindBB = BasicBlock::Create(F.getContext(), "unwindbb", &F);
500    Unwinds.push_back(new UnwindInst(F.getContext(), UnwindBB));
501
502    Value *CatchLoad = new LoadInst(InvokeNum, "invoke.num", true, CatchBB);
503    SwitchInst *CatchSwitch =
504      SwitchInst::Create(CatchLoad, UnwindBB, Invokes.size(), CatchBB);
505
506    // Now that things are set up, insert the setjmp call itself.
507
508    // Split the entry block to insert the conditional branch for the setjmp.
509    BasicBlock *ContBlock = EntryBB->splitBasicBlock(EntryBB->getTerminator(),
510                                                     "setjmp.cont");
511
512    Idx[1] = ConstantInt::get(Type::getInt32Ty(F.getContext()), 0);
513    Value *JmpBufPtr = GetElementPtrInst::Create(JmpBuf, &Idx[0], &Idx[2],
514                                                 "TheJmpBuf",
515                                                 EntryBB->getTerminator());
516    JmpBufPtr = new BitCastInst(JmpBufPtr,
517                        Type::getInt8PtrTy(F.getContext()),
518                                "tmp", EntryBB->getTerminator());
519    Value *SJRet = CallInst::Create(SetJmpFn, JmpBufPtr, "sjret",
520                                    EntryBB->getTerminator());
521
522    // Compare the return value to zero.
523    Value *IsNormal = new ICmpInst(EntryBB->getTerminator(),
524                                   ICmpInst::ICMP_EQ, SJRet,
525                                   Constant::getNullValue(SJRet->getType()),
526                                   "notunwind");
527    // Nuke the uncond branch.
528    EntryBB->getTerminator()->eraseFromParent();
529
530    // Put in a new condbranch in its place.
531    BranchInst::Create(ContBlock, CatchBB, IsNormal, EntryBB);
532
533    // At this point, we are all set up, rewrite each invoke instruction.
534    for (unsigned i = 0, e = Invokes.size(); i != e; ++i)
535      rewriteExpensiveInvoke(Invokes[i], i+1, InvokeNum, StackPtr, CatchSwitch);
536  }
537
538  // We know that there is at least one unwind.
539
540  // Create three new blocks, the block to load the jmpbuf ptr and compare
541  // against null, the block to do the longjmp, and the error block for if it
542  // is null.  Add them at the end of the function because they are not hot.
543  BasicBlock *UnwindHandler = BasicBlock::Create(F.getContext(),
544                                                "dounwind", &F);
545  BasicBlock *UnwindBlock = BasicBlock::Create(F.getContext(), "unwind", &F);
546  BasicBlock *TermBlock = BasicBlock::Create(F.getContext(), "unwinderror", &F);
547
548  // If this function contains an invoke, restore the old jumpbuf ptr.
549  Value *BufPtr;
550  if (OldJmpBufPtr) {
551    // Before the return, insert a copy from the saved value to the new value.
552    BufPtr = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", UnwindHandler);
553    new StoreInst(BufPtr, JBListHead, UnwindHandler);
554  } else {
555    BufPtr = new LoadInst(JBListHead, "ehlist", UnwindHandler);
556  }
557
558  // Load the JBList, if it's null, then there was no catch!
559  Value *NotNull = new ICmpInst(*UnwindHandler, ICmpInst::ICMP_NE, BufPtr,
560                                Constant::getNullValue(BufPtr->getType()),
561                                "notnull");
562  BranchInst::Create(UnwindBlock, TermBlock, NotNull, UnwindHandler);
563
564  // Create the block to do the longjmp.
565  // Get a pointer to the jmpbuf and longjmp.
566  Value *Idx[] = { Constant::getNullValue(Type::getInt32Ty(F.getContext())),
567                   ConstantInt::get(Type::getInt32Ty(F.getContext()), 0) };
568  Idx[0] = GetElementPtrInst::Create(BufPtr, &Idx[0], &Idx[2], "JmpBuf",
569                                     UnwindBlock);
570  Idx[0] = new BitCastInst(Idx[0],
571             Type::getInt8PtrTy(F.getContext()),
572                           "tmp", UnwindBlock);
573  Idx[1] = ConstantInt::get(Type::getInt32Ty(F.getContext()), 1);
574  CallInst::Create(LongJmpFn, &Idx[0], &Idx[2], "", UnwindBlock);
575  new UnreachableInst(F.getContext(), UnwindBlock);
576
577  // Set up the term block ("throw without a catch").
578  new UnreachableInst(F.getContext(), TermBlock);
579
580  // Insert a call to abort()
581  CallInst::Create(AbortFn, "",
582                   TermBlock->getTerminator())->setTailCall();
583
584
585  // Replace all unwinds with a branch to the unwind handler.
586  for (unsigned i = 0, e = Unwinds.size(); i != e; ++i) {
587    BranchInst::Create(UnwindHandler, Unwinds[i]);
588    Unwinds[i]->eraseFromParent();
589  }
590
591  // Finally, for any returns from this function, if this function contains an
592  // invoke, restore the old jmpbuf pointer to its input value.
593  if (OldJmpBufPtr) {
594    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
595      ReturnInst *R = Returns[i];
596
597      // Before the return, insert a copy from the saved value to the new value.
598      Value *OldBuf = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", true, R);
599      new StoreInst(OldBuf, JBListHead, true, R);
600    }
601  }
602
603  return true;
604}
605
606bool LowerInvoke::runOnFunction(Function &F) {
607  if (useExpensiveEHSupport)
608    return insertExpensiveEHSupport(F);
609  else
610    return insertCheapEHSupport(F);
611}
612