LowerInvoke.cpp revision 844731a7f1909f55935e3514c9e713a62d67662e
1//===- LowerInvoke.cpp - Eliminate Invoke & Unwind instructions -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation is designed for use by code generators which do not yet
11// support stack unwinding.  This pass supports two models of exception handling
12// lowering, the 'cheap' support and the 'expensive' support.
13//
14// 'Cheap' exception handling support gives the program the ability to execute
15// any program which does not "throw an exception", by turning 'invoke'
16// instructions into calls and by turning 'unwind' instructions into calls to
17// abort().  If the program does dynamically use the unwind instruction, the
18// program will print a message then abort.
19//
20// 'Expensive' exception handling support gives the full exception handling
21// support to the program at the cost of making the 'invoke' instruction
22// really expensive.  It basically inserts setjmp/longjmp calls to emulate the
23// exception handling as necessary.
24//
25// Because the 'expensive' support slows down programs a lot, and EH is only
26// used for a subset of the programs, it must be specifically enabled by an
27// option.
28//
29// Note that after this pass runs the CFG is not entirely accurate (exceptional
30// control flow edges are not correct anymore) so only very simple things should
31// be done after the lowerinvoke pass has run (like generation of native code).
32// This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't
33// support the invoke instruction yet" lowering pass.
34//
35//===----------------------------------------------------------------------===//
36
37#define DEBUG_TYPE "lowerinvoke"
38#include "llvm/Transforms/Scalar.h"
39#include "llvm/Constants.h"
40#include "llvm/DerivedTypes.h"
41#include "llvm/Instructions.h"
42#include "llvm/Intrinsics.h"
43#include "llvm/Module.h"
44#include "llvm/Pass.h"
45#include "llvm/Transforms/Utils/BasicBlockUtils.h"
46#include "llvm/Transforms/Utils/Local.h"
47#include "llvm/ADT/Statistic.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Support/Compiler.h"
50#include "llvm/Target/TargetLowering.h"
51#include <csetjmp>
52#include <set>
53using namespace llvm;
54
55STATISTIC(NumInvokes, "Number of invokes replaced");
56STATISTIC(NumUnwinds, "Number of unwinds replaced");
57STATISTIC(NumSpilled, "Number of registers live across unwind edges");
58
59static cl::opt<bool> ExpensiveEHSupport("enable-correct-eh-support",
60 cl::desc("Make the -lowerinvoke pass insert expensive, but correct, EH code"));
61
62namespace {
63  class VISIBILITY_HIDDEN LowerInvoke : public FunctionPass {
64    // Used for both models.
65    Constant *WriteFn;
66    Constant *AbortFn;
67    Value *AbortMessage;
68    unsigned AbortMessageLength;
69
70    // Used for expensive EH support.
71    const Type *JBLinkTy;
72    GlobalVariable *JBListHead;
73    Constant *SetJmpFn, *LongJmpFn;
74
75    // We peek in TLI to grab the target's jmp_buf size and alignment
76    const TargetLowering *TLI;
77
78  public:
79    static char ID; // Pass identification, replacement for typeid
80    explicit LowerInvoke(const TargetLowering *tli = NULL)
81      : FunctionPass((intptr_t)&ID), TLI(tli) { }
82    bool doInitialization(Module &M);
83    bool runOnFunction(Function &F);
84
85    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
86      // This is a cluster of orthogonal Transforms
87      AU.addPreservedID(PromoteMemoryToRegisterID);
88      AU.addPreservedID(LowerSwitchID);
89      AU.addPreservedID(LowerAllocationsID);
90    }
91
92  private:
93    void createAbortMessage(Module *M);
94    void writeAbortMessage(Instruction *IB);
95    bool insertCheapEHSupport(Function &F);
96    void splitLiveRangesLiveAcrossInvokes(std::vector<InvokeInst*> &Invokes);
97    void rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo,
98                                AllocaInst *InvokeNum, SwitchInst *CatchSwitch);
99    bool insertExpensiveEHSupport(Function &F);
100  };
101}
102
103char LowerInvoke::ID = 0;
104static RegisterPass<LowerInvoke>
105X("lowerinvoke", "Lower invoke and unwind, for unwindless code generators");
106
107const PassInfo *llvm::LowerInvokePassID = X.getPassInfo();
108
109// Public Interface To the LowerInvoke pass.
110FunctionPass *llvm::createLowerInvokePass(const TargetLowering *TLI) {
111  return new LowerInvoke(TLI);
112}
113
114// doInitialization - Make sure that there is a prototype for abort in the
115// current module.
116bool LowerInvoke::doInitialization(Module &M) {
117  const Type *VoidPtrTy = PointerType::getUnqual(Type::Int8Ty);
118  AbortMessage = 0;
119  if (ExpensiveEHSupport) {
120    // Insert a type for the linked list of jump buffers.
121    unsigned JBSize = TLI ? TLI->getJumpBufSize() : 0;
122    JBSize = JBSize ? JBSize : 200;
123    const Type *JmpBufTy = ArrayType::get(VoidPtrTy, JBSize);
124
125    { // The type is recursive, so use a type holder.
126      std::vector<const Type*> Elements;
127      Elements.push_back(JmpBufTy);
128      OpaqueType *OT = OpaqueType::get();
129      Elements.push_back(PointerType::getUnqual(OT));
130      PATypeHolder JBLType(StructType::get(Elements));
131      OT->refineAbstractTypeTo(JBLType.get());  // Complete the cycle.
132      JBLinkTy = JBLType.get();
133      M.addTypeName("llvm.sjljeh.jmpbufty", JBLinkTy);
134    }
135
136    const Type *PtrJBList = PointerType::getUnqual(JBLinkTy);
137
138    // Now that we've done that, insert the jmpbuf list head global, unless it
139    // already exists.
140    if (!(JBListHead = M.getGlobalVariable("llvm.sjljeh.jblist", PtrJBList))) {
141      JBListHead = new GlobalVariable(PtrJBList, false,
142                                      GlobalValue::LinkOnceLinkage,
143                                      Constant::getNullValue(PtrJBList),
144                                      "llvm.sjljeh.jblist", &M);
145    }
146
147// VisualStudio defines setjmp as _setjmp via #include <csetjmp> / <setjmp.h>,
148// so it looks like Intrinsic::_setjmp
149#if defined(_MSC_VER) && defined(setjmp)
150#define setjmp_undefined_for_visual_studio
151#undef setjmp
152#endif
153
154    SetJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::setjmp);
155
156#if defined(_MSC_VER) && defined(setjmp_undefined_for_visual_studio)
157// let's return it to _setjmp state in case anyone ever needs it after this
158// point under VisualStudio
159#define setjmp _setjmp
160#endif
161
162    LongJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::longjmp);
163  }
164
165  // We need the 'write' and 'abort' functions for both models.
166  AbortFn = M.getOrInsertFunction("abort", Type::VoidTy, (Type *)0);
167#if 0 // "write" is Unix-specific.. code is going away soon anyway.
168  WriteFn = M.getOrInsertFunction("write", Type::VoidTy, Type::Int32Ty,
169                                  VoidPtrTy, Type::Int32Ty, (Type *)0);
170#else
171  WriteFn = 0;
172#endif
173  return true;
174}
175
176void LowerInvoke::createAbortMessage(Module *M) {
177  if (ExpensiveEHSupport) {
178    // The abort message for expensive EH support tells the user that the
179    // program 'unwound' without an 'invoke' instruction.
180    Constant *Msg =
181      ConstantArray::get("ERROR: Exception thrown, but not caught!\n");
182    AbortMessageLength = Msg->getNumOperands()-1;  // don't include \0
183
184    GlobalVariable *MsgGV = new GlobalVariable(Msg->getType(), true,
185                                               GlobalValue::InternalLinkage,
186                                               Msg, "abortmsg", M);
187    std::vector<Constant*> GEPIdx(2, Constant::getNullValue(Type::Int32Ty));
188    AbortMessage = ConstantExpr::getGetElementPtr(MsgGV, &GEPIdx[0], 2);
189  } else {
190    // The abort message for cheap EH support tells the user that EH is not
191    // enabled.
192    Constant *Msg =
193      ConstantArray::get("Exception handler needed, but not enabled.  Recompile"
194                         " program with -enable-correct-eh-support.\n");
195    AbortMessageLength = Msg->getNumOperands()-1;  // don't include \0
196
197    GlobalVariable *MsgGV = new GlobalVariable(Msg->getType(), true,
198                                               GlobalValue::InternalLinkage,
199                                               Msg, "abortmsg", M);
200    std::vector<Constant*> GEPIdx(2, Constant::getNullValue(Type::Int32Ty));
201    AbortMessage = ConstantExpr::getGetElementPtr(MsgGV, &GEPIdx[0], 2);
202  }
203}
204
205
206void LowerInvoke::writeAbortMessage(Instruction *IB) {
207#if 0
208  if (AbortMessage == 0)
209    createAbortMessage(IB->getParent()->getParent()->getParent());
210
211  // These are the arguments we WANT...
212  Value* Args[3];
213  Args[0] = ConstantInt::get(Type::Int32Ty, 2);
214  Args[1] = AbortMessage;
215  Args[2] = ConstantInt::get(Type::Int32Ty, AbortMessageLength);
216  (new CallInst(WriteFn, Args, 3, "", IB))->setTailCall();
217#endif
218}
219
220bool LowerInvoke::insertCheapEHSupport(Function &F) {
221  bool Changed = false;
222  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
223    if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
224      std::vector<Value*> CallArgs(II->op_begin()+3, II->op_end());
225      // Insert a normal call instruction...
226      CallInst *NewCall = CallInst::Create(II->getCalledValue(),
227                                           CallArgs.begin(), CallArgs.end(), "",II);
228      NewCall->takeName(II);
229      NewCall->setCallingConv(II->getCallingConv());
230      NewCall->setParamAttrs(II->getParamAttrs());
231      II->replaceAllUsesWith(NewCall);
232
233      // Insert an unconditional branch to the normal destination.
234      BranchInst::Create(II->getNormalDest(), II);
235
236      // Remove any PHI node entries from the exception destination.
237      II->getUnwindDest()->removePredecessor(BB);
238
239      // Remove the invoke instruction now.
240      BB->getInstList().erase(II);
241
242      ++NumInvokes; Changed = true;
243    } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
244      // Insert a new call to write(2, AbortMessage, AbortMessageLength);
245      writeAbortMessage(UI);
246
247      // Insert a call to abort()
248      CallInst::Create(AbortFn, "", UI)->setTailCall();
249
250      // Insert a return instruction.  This really should be a "barrier", as it
251      // is unreachable.
252      ReturnInst::Create(F.getReturnType() == Type::VoidTy ? 0 :
253                         Constant::getNullValue(F.getReturnType()), UI);
254
255      // Remove the unwind instruction now.
256      BB->getInstList().erase(UI);
257
258      ++NumUnwinds; Changed = true;
259    }
260  return Changed;
261}
262
263/// rewriteExpensiveInvoke - Insert code and hack the function to replace the
264/// specified invoke instruction with a call.
265void LowerInvoke::rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo,
266                                         AllocaInst *InvokeNum,
267                                         SwitchInst *CatchSwitch) {
268  ConstantInt *InvokeNoC = ConstantInt::get(Type::Int32Ty, InvokeNo);
269
270  // If the unwind edge has phi nodes, split the edge.
271  if (isa<PHINode>(II->getUnwindDest()->begin())) {
272    SplitCriticalEdge(II, 1, this);
273
274    // If there are any phi nodes left, they must have a single predecessor.
275    while (PHINode *PN = dyn_cast<PHINode>(II->getUnwindDest()->begin())) {
276      PN->replaceAllUsesWith(PN->getIncomingValue(0));
277      PN->eraseFromParent();
278    }
279  }
280
281  // Insert a store of the invoke num before the invoke and store zero into the
282  // location afterward.
283  new StoreInst(InvokeNoC, InvokeNum, true, II);  // volatile
284
285  BasicBlock::iterator NI = II->getNormalDest()->begin();
286  while (isa<PHINode>(NI)) ++NI;
287  // nonvolatile.
288  new StoreInst(Constant::getNullValue(Type::Int32Ty), InvokeNum, false, NI);
289
290  // Add a switch case to our unwind block.
291  CatchSwitch->addCase(InvokeNoC, II->getUnwindDest());
292
293  // Insert a normal call instruction.
294  std::vector<Value*> CallArgs(II->op_begin()+3, II->op_end());
295  CallInst *NewCall = CallInst::Create(II->getCalledValue(),
296                                       CallArgs.begin(), CallArgs.end(), "",
297                                       II);
298  NewCall->takeName(II);
299  NewCall->setCallingConv(II->getCallingConv());
300  NewCall->setParamAttrs(II->getParamAttrs());
301  II->replaceAllUsesWith(NewCall);
302
303  // Replace the invoke with an uncond branch.
304  BranchInst::Create(II->getNormalDest(), NewCall->getParent());
305  II->eraseFromParent();
306}
307
308/// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until
309/// we reach blocks we've already seen.
310static void MarkBlocksLiveIn(BasicBlock *BB, std::set<BasicBlock*> &LiveBBs) {
311  if (!LiveBBs.insert(BB).second) return; // already been here.
312
313  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
314    MarkBlocksLiveIn(*PI, LiveBBs);
315}
316
317// First thing we need to do is scan the whole function for values that are
318// live across unwind edges.  Each value that is live across an unwind edge
319// we spill into a stack location, guaranteeing that there is nothing live
320// across the unwind edge.  This process also splits all critical edges
321// coming out of invoke's.
322void LowerInvoke::
323splitLiveRangesLiveAcrossInvokes(std::vector<InvokeInst*> &Invokes) {
324  // First step, split all critical edges from invoke instructions.
325  for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
326    InvokeInst *II = Invokes[i];
327    SplitCriticalEdge(II, 0, this);
328    SplitCriticalEdge(II, 1, this);
329    assert(!isa<PHINode>(II->getNormalDest()) &&
330           !isa<PHINode>(II->getUnwindDest()) &&
331           "critical edge splitting left single entry phi nodes?");
332  }
333
334  Function *F = Invokes.back()->getParent()->getParent();
335
336  // To avoid having to handle incoming arguments specially, we lower each arg
337  // to a copy instruction in the entry block.  This ensures that the argument
338  // value itself cannot be live across the entry block.
339  BasicBlock::iterator AfterAllocaInsertPt = F->begin()->begin();
340  while (isa<AllocaInst>(AfterAllocaInsertPt) &&
341        isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsertPt)->getArraySize()))
342    ++AfterAllocaInsertPt;
343  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
344       AI != E; ++AI) {
345    // This is always a no-op cast because we're casting AI to AI->getType() so
346    // src and destination types are identical. BitCast is the only possibility.
347    CastInst *NC = new BitCastInst(
348      AI, AI->getType(), AI->getName()+".tmp", AfterAllocaInsertPt);
349    AI->replaceAllUsesWith(NC);
350    // Normally its is forbidden to replace a CastInst's operand because it
351    // could cause the opcode to reflect an illegal conversion. However, we're
352    // replacing it here with the same value it was constructed with to simply
353    // make NC its user.
354    NC->setOperand(0, AI);
355  }
356
357  // Finally, scan the code looking for instructions with bad live ranges.
358  for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
359    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
360      // Ignore obvious cases we don't have to handle.  In particular, most
361      // instructions either have no uses or only have a single use inside the
362      // current block.  Ignore them quickly.
363      Instruction *Inst = II;
364      if (Inst->use_empty()) continue;
365      if (Inst->hasOneUse() &&
366          cast<Instruction>(Inst->use_back())->getParent() == BB &&
367          !isa<PHINode>(Inst->use_back())) continue;
368
369      // If this is an alloca in the entry block, it's not a real register
370      // value.
371      if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst))
372        if (isa<ConstantInt>(AI->getArraySize()) && BB == F->begin())
373          continue;
374
375      // Avoid iterator invalidation by copying users to a temporary vector.
376      std::vector<Instruction*> Users;
377      for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end();
378           UI != E; ++UI) {
379        Instruction *User = cast<Instruction>(*UI);
380        if (User->getParent() != BB || isa<PHINode>(User))
381          Users.push_back(User);
382      }
383
384      // Scan all of the uses and see if the live range is live across an unwind
385      // edge.  If we find a use live across an invoke edge, create an alloca
386      // and spill the value.
387      std::set<InvokeInst*> InvokesWithStoreInserted;
388
389      // Find all of the blocks that this value is live in.
390      std::set<BasicBlock*> LiveBBs;
391      LiveBBs.insert(Inst->getParent());
392      while (!Users.empty()) {
393        Instruction *U = Users.back();
394        Users.pop_back();
395
396        if (!isa<PHINode>(U)) {
397          MarkBlocksLiveIn(U->getParent(), LiveBBs);
398        } else {
399          // Uses for a PHI node occur in their predecessor block.
400          PHINode *PN = cast<PHINode>(U);
401          for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
402            if (PN->getIncomingValue(i) == Inst)
403              MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs);
404        }
405      }
406
407      // Now that we know all of the blocks that this thing is live in, see if
408      // it includes any of the unwind locations.
409      bool NeedsSpill = false;
410      for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
411        BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest();
412        if (UnwindBlock != BB && LiveBBs.count(UnwindBlock)) {
413          NeedsSpill = true;
414        }
415      }
416
417      // If we decided we need a spill, do it.
418      if (NeedsSpill) {
419        ++NumSpilled;
420        DemoteRegToStack(*Inst, true);
421      }
422    }
423}
424
425bool LowerInvoke::insertExpensiveEHSupport(Function &F) {
426  std::vector<ReturnInst*> Returns;
427  std::vector<UnwindInst*> Unwinds;
428  std::vector<InvokeInst*> Invokes;
429
430  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
431    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
432      // Remember all return instructions in case we insert an invoke into this
433      // function.
434      Returns.push_back(RI);
435    } else if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
436      Invokes.push_back(II);
437    } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
438      Unwinds.push_back(UI);
439    }
440
441  if (Unwinds.empty() && Invokes.empty()) return false;
442
443  NumInvokes += Invokes.size();
444  NumUnwinds += Unwinds.size();
445
446  // TODO: This is not an optimal way to do this.  In particular, this always
447  // inserts setjmp calls into the entries of functions with invoke instructions
448  // even though there are possibly paths through the function that do not
449  // execute any invokes.  In particular, for functions with early exits, e.g.
450  // the 'addMove' method in hexxagon, it would be nice to not have to do the
451  // setjmp stuff on the early exit path.  This requires a bit of dataflow, but
452  // would not be too hard to do.
453
454  // If we have an invoke instruction, insert a setjmp that dominates all
455  // invokes.  After the setjmp, use a cond branch that goes to the original
456  // code path on zero, and to a designated 'catch' block of nonzero.
457  Value *OldJmpBufPtr = 0;
458  if (!Invokes.empty()) {
459    // First thing we need to do is scan the whole function for values that are
460    // live across unwind edges.  Each value that is live across an unwind edge
461    // we spill into a stack location, guaranteeing that there is nothing live
462    // across the unwind edge.  This process also splits all critical edges
463    // coming out of invoke's.
464    splitLiveRangesLiveAcrossInvokes(Invokes);
465
466    BasicBlock *EntryBB = F.begin();
467
468    // Create an alloca for the incoming jump buffer ptr and the new jump buffer
469    // that needs to be restored on all exits from the function.  This is an
470    // alloca because the value needs to be live across invokes.
471    unsigned Align = TLI ? TLI->getJumpBufAlignment() : 0;
472    AllocaInst *JmpBuf =
473      new AllocaInst(JBLinkTy, 0, Align, "jblink", F.begin()->begin());
474
475    std::vector<Value*> Idx;
476    Idx.push_back(Constant::getNullValue(Type::Int32Ty));
477    Idx.push_back(ConstantInt::get(Type::Int32Ty, 1));
478    OldJmpBufPtr = GetElementPtrInst::Create(JmpBuf, Idx.begin(), Idx.end(),
479                                             "OldBuf", EntryBB->getTerminator());
480
481    // Copy the JBListHead to the alloca.
482    Value *OldBuf = new LoadInst(JBListHead, "oldjmpbufptr", true,
483                                 EntryBB->getTerminator());
484    new StoreInst(OldBuf, OldJmpBufPtr, true, EntryBB->getTerminator());
485
486    // Add the new jumpbuf to the list.
487    new StoreInst(JmpBuf, JBListHead, true, EntryBB->getTerminator());
488
489    // Create the catch block.  The catch block is basically a big switch
490    // statement that goes to all of the invoke catch blocks.
491    BasicBlock *CatchBB = BasicBlock::Create("setjmp.catch", &F);
492
493    // Create an alloca which keeps track of which invoke is currently
494    // executing.  For normal calls it contains zero.
495    AllocaInst *InvokeNum = new AllocaInst(Type::Int32Ty, 0, "invokenum",
496                                           EntryBB->begin());
497    new StoreInst(ConstantInt::get(Type::Int32Ty, 0), InvokeNum, true,
498                  EntryBB->getTerminator());
499
500    // Insert a load in the Catch block, and a switch on its value.  By default,
501    // we go to a block that just does an unwind (which is the correct action
502    // for a standard call).
503    BasicBlock *UnwindBB = BasicBlock::Create("unwindbb", &F);
504    Unwinds.push_back(new UnwindInst(UnwindBB));
505
506    Value *CatchLoad = new LoadInst(InvokeNum, "invoke.num", true, CatchBB);
507    SwitchInst *CatchSwitch =
508      SwitchInst::Create(CatchLoad, UnwindBB, Invokes.size(), CatchBB);
509
510    // Now that things are set up, insert the setjmp call itself.
511
512    // Split the entry block to insert the conditional branch for the setjmp.
513    BasicBlock *ContBlock = EntryBB->splitBasicBlock(EntryBB->getTerminator(),
514                                                     "setjmp.cont");
515
516    Idx[1] = ConstantInt::get(Type::Int32Ty, 0);
517    Value *JmpBufPtr = GetElementPtrInst::Create(JmpBuf, Idx.begin(), Idx.end(),
518                                                 "TheJmpBuf",
519                                                 EntryBB->getTerminator());
520    JmpBufPtr = new BitCastInst(JmpBufPtr, PointerType::getUnqual(Type::Int8Ty),
521                                "tmp", EntryBB->getTerminator());
522    Value *SJRet = CallInst::Create(SetJmpFn, JmpBufPtr, "sjret",
523                                    EntryBB->getTerminator());
524
525    // Compare the return value to zero.
526    Value *IsNormal = new ICmpInst(ICmpInst::ICMP_EQ, SJRet,
527                                   Constant::getNullValue(SJRet->getType()),
528      "notunwind", EntryBB->getTerminator());
529    // Nuke the uncond branch.
530    EntryBB->getTerminator()->eraseFromParent();
531
532    // Put in a new condbranch in its place.
533    BranchInst::Create(ContBlock, CatchBB, IsNormal, EntryBB);
534
535    // At this point, we are all set up, rewrite each invoke instruction.
536    for (unsigned i = 0, e = Invokes.size(); i != e; ++i)
537      rewriteExpensiveInvoke(Invokes[i], i+1, InvokeNum, CatchSwitch);
538  }
539
540  // We know that there is at least one unwind.
541
542  // Create three new blocks, the block to load the jmpbuf ptr and compare
543  // against null, the block to do the longjmp, and the error block for if it
544  // is null.  Add them at the end of the function because they are not hot.
545  BasicBlock *UnwindHandler = BasicBlock::Create("dounwind", &F);
546  BasicBlock *UnwindBlock = BasicBlock::Create("unwind", &F);
547  BasicBlock *TermBlock = BasicBlock::Create("unwinderror", &F);
548
549  // If this function contains an invoke, restore the old jumpbuf ptr.
550  Value *BufPtr;
551  if (OldJmpBufPtr) {
552    // Before the return, insert a copy from the saved value to the new value.
553    BufPtr = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", UnwindHandler);
554    new StoreInst(BufPtr, JBListHead, UnwindHandler);
555  } else {
556    BufPtr = new LoadInst(JBListHead, "ehlist", UnwindHandler);
557  }
558
559  // Load the JBList, if it's null, then there was no catch!
560  Value *NotNull = new ICmpInst(ICmpInst::ICMP_NE, BufPtr,
561                                Constant::getNullValue(BufPtr->getType()),
562    "notnull", UnwindHandler);
563  BranchInst::Create(UnwindBlock, TermBlock, NotNull, UnwindHandler);
564
565  // Create the block to do the longjmp.
566  // Get a pointer to the jmpbuf and longjmp.
567  std::vector<Value*> Idx;
568  Idx.push_back(Constant::getNullValue(Type::Int32Ty));
569  Idx.push_back(ConstantInt::get(Type::Int32Ty, 0));
570  Idx[0] = GetElementPtrInst::Create(BufPtr, Idx.begin(), Idx.end(), "JmpBuf",
571                                     UnwindBlock);
572  Idx[0] = new BitCastInst(Idx[0], PointerType::getUnqual(Type::Int8Ty),
573                           "tmp", UnwindBlock);
574  Idx[1] = ConstantInt::get(Type::Int32Ty, 1);
575  CallInst::Create(LongJmpFn, Idx.begin(), Idx.end(), "", UnwindBlock);
576  new UnreachableInst(UnwindBlock);
577
578  // Set up the term block ("throw without a catch").
579  new UnreachableInst(TermBlock);
580
581  // Insert a new call to write(2, AbortMessage, AbortMessageLength);
582  writeAbortMessage(TermBlock->getTerminator());
583
584  // Insert a call to abort()
585  CallInst::Create(AbortFn, "",
586                   TermBlock->getTerminator())->setTailCall();
587
588
589  // Replace all unwinds with a branch to the unwind handler.
590  for (unsigned i = 0, e = Unwinds.size(); i != e; ++i) {
591    BranchInst::Create(UnwindHandler, Unwinds[i]);
592    Unwinds[i]->eraseFromParent();
593  }
594
595  // Finally, for any returns from this function, if this function contains an
596  // invoke, restore the old jmpbuf pointer to its input value.
597  if (OldJmpBufPtr) {
598    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
599      ReturnInst *R = Returns[i];
600
601      // Before the return, insert a copy from the saved value to the new value.
602      Value *OldBuf = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", true, R);
603      new StoreInst(OldBuf, JBListHead, true, R);
604    }
605  }
606
607  return true;
608}
609
610bool LowerInvoke::runOnFunction(Function &F) {
611  if (ExpensiveEHSupport)
612    return insertExpensiveEHSupport(F);
613  else
614    return insertCheapEHSupport(F);
615}
616