LowerInvoke.cpp revision a4f0b3a084d120cfc5b5bb06f64b222f5cb72740
1//===- LowerInvoke.cpp - Eliminate Invoke & Unwind instructions -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation is designed for use by code generators which do not yet
11// support stack unwinding.  This pass supports two models of exception handling
12// lowering, the 'cheap' support and the 'expensive' support.
13//
14// 'Cheap' exception handling support gives the program the ability to execute
15// any program which does not "throw an exception", by turning 'invoke'
16// instructions into calls and by turning 'unwind' instructions into calls to
17// abort().  If the program does dynamically use the unwind instruction, the
18// program will print a message then abort.
19//
20// 'Expensive' exception handling support gives the full exception handling
21// support to the program at the cost of making the 'invoke' instruction
22// really expensive.  It basically inserts setjmp/longjmp calls to emulate the
23// exception handling as necessary.
24//
25// Because the 'expensive' support slows down programs a lot, and EH is only
26// used for a subset of the programs, it must be specifically enabled by an
27// option.
28//
29// Note that after this pass runs the CFG is not entirely accurate (exceptional
30// control flow edges are not correct anymore) so only very simple things should
31// be done after the lowerinvoke pass has run (like generation of native code).
32// This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't
33// support the invoke instruction yet" lowering pass.
34//
35//===----------------------------------------------------------------------===//
36
37#include "llvm/Transforms/Scalar.h"
38#include "llvm/Constants.h"
39#include "llvm/DerivedTypes.h"
40#include "llvm/Instructions.h"
41#include "llvm/Module.h"
42#include "llvm/Pass.h"
43#include "llvm/Transforms/Utils/BasicBlockUtils.h"
44#include "llvm/Transforms/Utils/Local.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/Compiler.h"
48#include <csetjmp>
49using namespace llvm;
50
51namespace {
52  Statistic<> NumInvokes("lowerinvoke", "Number of invokes replaced");
53  Statistic<> NumUnwinds("lowerinvoke", "Number of unwinds replaced");
54  Statistic<> NumSpilled("lowerinvoke",
55                         "Number of registers live across unwind edges");
56  cl::opt<bool> ExpensiveEHSupport("enable-correct-eh-support",
57 cl::desc("Make the -lowerinvoke pass insert expensive, but correct, EH code"));
58
59  class VISIBILITY_HIDDEN LowerInvoke : public FunctionPass {
60    // Used for both models.
61    Function *WriteFn;
62    Function *AbortFn;
63    Value *AbortMessage;
64    unsigned AbortMessageLength;
65
66    // Used for expensive EH support.
67    const Type *JBLinkTy;
68    GlobalVariable *JBListHead;
69    Function *SetJmpFn, *LongJmpFn;
70  public:
71    LowerInvoke(unsigned Size = 200, unsigned Align = 0) : JumpBufSize(Size),
72      JumpBufAlign(Align) {}
73    bool doInitialization(Module &M);
74    bool runOnFunction(Function &F);
75
76    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
77      // This is a cluster of orthogonal Transforms
78      AU.addPreservedID(PromoteMemoryToRegisterID);
79      AU.addPreservedID(LowerSelectID);
80      AU.addPreservedID(LowerSwitchID);
81      AU.addPreservedID(LowerAllocationsID);
82    }
83
84  private:
85    void createAbortMessage();
86    void writeAbortMessage(Instruction *IB);
87    bool insertCheapEHSupport(Function &F);
88    void splitLiveRangesLiveAcrossInvokes(std::vector<InvokeInst*> &Invokes);
89    void rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo,
90                                AllocaInst *InvokeNum, SwitchInst *CatchSwitch);
91    bool insertExpensiveEHSupport(Function &F);
92
93    unsigned JumpBufSize;
94    unsigned JumpBufAlign;
95  };
96
97  RegisterOpt<LowerInvoke>
98  X("lowerinvoke", "Lower invoke and unwind, for unwindless code generators");
99}
100
101const PassInfo *llvm::LowerInvokePassID = X.getPassInfo();
102
103// Public Interface To the LowerInvoke pass.
104FunctionPass *llvm::createLowerInvokePass(unsigned JumpBufSize,
105                                          unsigned JumpBufAlign) {
106  return new LowerInvoke(JumpBufSize, JumpBufAlign);
107}
108
109// doInitialization - Make sure that there is a prototype for abort in the
110// current module.
111bool LowerInvoke::doInitialization(Module &M) {
112  const Type *VoidPtrTy = PointerType::get(Type::SByteTy);
113  AbortMessage = 0;
114  if (ExpensiveEHSupport) {
115    // Insert a type for the linked list of jump buffers.
116    const Type *JmpBufTy = ArrayType::get(VoidPtrTy, JumpBufSize);
117
118    { // The type is recursive, so use a type holder.
119      std::vector<const Type*> Elements;
120      Elements.push_back(JmpBufTy);
121      OpaqueType *OT = OpaqueType::get();
122      Elements.push_back(PointerType::get(OT));
123      PATypeHolder JBLType(StructType::get(Elements));
124      OT->refineAbstractTypeTo(JBLType.get());  // Complete the cycle.
125      JBLinkTy = JBLType.get();
126      M.addTypeName("llvm.sjljeh.jmpbufty", JBLinkTy);
127    }
128
129    const Type *PtrJBList = PointerType::get(JBLinkTy);
130
131    // Now that we've done that, insert the jmpbuf list head global, unless it
132    // already exists.
133    if (!(JBListHead = M.getGlobalVariable("llvm.sjljeh.jblist", PtrJBList)))
134      JBListHead = new GlobalVariable(PtrJBList, false,
135                                      GlobalValue::LinkOnceLinkage,
136                                      Constant::getNullValue(PtrJBList),
137                                      "llvm.sjljeh.jblist", &M);
138    SetJmpFn = M.getOrInsertFunction("llvm.setjmp", Type::IntTy,
139                                     PointerType::get(JmpBufTy), (Type *)0);
140    LongJmpFn = M.getOrInsertFunction("llvm.longjmp", Type::VoidTy,
141                                      PointerType::get(JmpBufTy),
142                                      Type::IntTy, (Type *)0);
143  }
144
145  // We need the 'write' and 'abort' functions for both models.
146  AbortFn = M.getOrInsertFunction("abort", Type::VoidTy, (Type *)0);
147
148  // Unfortunately, 'write' can end up being prototyped in several different
149  // ways.  If the user defines a three (or more) operand function named 'write'
150  // we will use their prototype.  We _do not_ want to insert another instance
151  // of a write prototype, because we don't know that the funcresolve pass will
152  // run after us.  If there is a definition of a write function, but it's not
153  // suitable for our uses, we just don't emit write calls.  If there is no
154  // write prototype at all, we just add one.
155  if (Function *WF = M.getNamedFunction("write")) {
156    if (WF->getFunctionType()->getNumParams() > 3 ||
157        WF->getFunctionType()->isVarArg())
158      WriteFn = WF;
159    else
160      WriteFn = 0;
161  } else {
162    WriteFn = M.getOrInsertFunction("write", Type::VoidTy, Type::IntTy,
163                                    VoidPtrTy, Type::IntTy, (Type *)0);
164  }
165  return true;
166}
167
168void LowerInvoke::createAbortMessage() {
169  Module &M = *WriteFn->getParent();
170  if (ExpensiveEHSupport) {
171    // The abort message for expensive EH support tells the user that the
172    // program 'unwound' without an 'invoke' instruction.
173    Constant *Msg =
174      ConstantArray::get("ERROR: Exception thrown, but not caught!\n");
175    AbortMessageLength = Msg->getNumOperands()-1;  // don't include \0
176
177    GlobalVariable *MsgGV = new GlobalVariable(Msg->getType(), true,
178                                               GlobalValue::InternalLinkage,
179                                               Msg, "abortmsg", &M);
180    std::vector<Constant*> GEPIdx(2, Constant::getNullValue(Type::IntTy));
181    AbortMessage = ConstantExpr::getGetElementPtr(MsgGV, GEPIdx);
182  } else {
183    // The abort message for cheap EH support tells the user that EH is not
184    // enabled.
185    Constant *Msg =
186      ConstantArray::get("Exception handler needed, but not enabled.  Recompile"
187                         " program with -enable-correct-eh-support.\n");
188    AbortMessageLength = Msg->getNumOperands()-1;  // don't include \0
189
190    GlobalVariable *MsgGV = new GlobalVariable(Msg->getType(), true,
191                                               GlobalValue::InternalLinkage,
192                                               Msg, "abortmsg", &M);
193    std::vector<Constant*> GEPIdx(2, Constant::getNullValue(Type::IntTy));
194    AbortMessage = ConstantExpr::getGetElementPtr(MsgGV, GEPIdx);
195  }
196}
197
198
199void LowerInvoke::writeAbortMessage(Instruction *IB) {
200  if (WriteFn) {
201    if (AbortMessage == 0) createAbortMessage();
202
203    // These are the arguments we WANT...
204    std::vector<Value*> Args;
205    Args.push_back(ConstantInt::get(Type::IntTy, 2));
206    Args.push_back(AbortMessage);
207    Args.push_back(ConstantInt::get(Type::IntTy, AbortMessageLength));
208
209    // If the actual declaration of write disagrees, insert casts as
210    // appropriate.
211    const FunctionType *FT = WriteFn->getFunctionType();
212    unsigned NumArgs = FT->getNumParams();
213    for (unsigned i = 0; i != 3; ++i)
214      if (i < NumArgs && FT->getParamType(i) != Args[i]->getType())
215        Args[i] = ConstantExpr::getCast(cast<Constant>(Args[i]),
216                                        FT->getParamType(i));
217
218    (new CallInst(WriteFn, Args, "", IB))->setTailCall();
219  }
220}
221
222bool LowerInvoke::insertCheapEHSupport(Function &F) {
223  bool Changed = false;
224  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
225    if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
226      // Insert a normal call instruction...
227      std::string Name = II->getName(); II->setName("");
228      CallInst *NewCall = new CallInst(II->getCalledValue(),
229                                       std::vector<Value*>(II->op_begin()+3,
230                                                       II->op_end()), Name, II);
231      NewCall->setCallingConv(II->getCallingConv());
232      II->replaceAllUsesWith(NewCall);
233
234      // Insert an unconditional branch to the normal destination.
235      new BranchInst(II->getNormalDest(), II);
236
237      // Remove any PHI node entries from the exception destination.
238      II->getUnwindDest()->removePredecessor(BB);
239
240      // Remove the invoke instruction now.
241      BB->getInstList().erase(II);
242
243      ++NumInvokes; Changed = true;
244    } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
245      // Insert a new call to write(2, AbortMessage, AbortMessageLength);
246      writeAbortMessage(UI);
247
248      // Insert a call to abort()
249      (new CallInst(AbortFn, std::vector<Value*>(), "", UI))->setTailCall();
250
251      // Insert a return instruction.  This really should be a "barrier", as it
252      // is unreachable.
253      new ReturnInst(F.getReturnType() == Type::VoidTy ? 0 :
254                            Constant::getNullValue(F.getReturnType()), UI);
255
256      // Remove the unwind instruction now.
257      BB->getInstList().erase(UI);
258
259      ++NumUnwinds; Changed = true;
260    }
261  return Changed;
262}
263
264/// rewriteExpensiveInvoke - Insert code and hack the function to replace the
265/// specified invoke instruction with a call.
266void LowerInvoke::rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo,
267                                         AllocaInst *InvokeNum,
268                                         SwitchInst *CatchSwitch) {
269  ConstantUInt *InvokeNoC = ConstantUInt::get(Type::UIntTy, InvokeNo);
270
271  // Insert a store of the invoke num before the invoke and store zero into the
272  // location afterward.
273  new StoreInst(InvokeNoC, InvokeNum, true, II);  // volatile
274
275  BasicBlock::iterator NI = II->getNormalDest()->begin();
276  while (isa<PHINode>(NI)) ++NI;
277  // nonvolatile.
278  new StoreInst(Constant::getNullValue(Type::UIntTy), InvokeNum, false, NI);
279
280  // Add a switch case to our unwind block.
281  CatchSwitch->addCase(InvokeNoC, II->getUnwindDest());
282
283  // Insert a normal call instruction.
284  std::string Name = II->getName(); II->setName("");
285  CallInst *NewCall = new CallInst(II->getCalledValue(),
286                                   std::vector<Value*>(II->op_begin()+3,
287                                                       II->op_end()), Name,
288                                   II);
289  NewCall->setCallingConv(II->getCallingConv());
290  II->replaceAllUsesWith(NewCall);
291
292  // Replace the invoke with an uncond branch.
293  new BranchInst(II->getNormalDest(), NewCall->getParent());
294  II->eraseFromParent();
295}
296
297/// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until
298/// we reach blocks we've already seen.
299static void MarkBlocksLiveIn(BasicBlock *BB, std::set<BasicBlock*> &LiveBBs) {
300  if (!LiveBBs.insert(BB).second) return; // already been here.
301
302  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
303    MarkBlocksLiveIn(*PI, LiveBBs);
304}
305
306// First thing we need to do is scan the whole function for values that are
307// live across unwind edges.  Each value that is live across an unwind edge
308// we spill into a stack location, guaranteeing that there is nothing live
309// across the unwind edge.  This process also splits all critical edges
310// coming out of invoke's.
311void LowerInvoke::
312splitLiveRangesLiveAcrossInvokes(std::vector<InvokeInst*> &Invokes) {
313  // First step, split all critical edges from invoke instructions.
314  for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
315    InvokeInst *II = Invokes[i];
316    SplitCriticalEdge(II, 0, this);
317    SplitCriticalEdge(II, 1, this);
318    assert(!isa<PHINode>(II->getNormalDest()) &&
319           !isa<PHINode>(II->getUnwindDest()) &&
320           "critical edge splitting left single entry phi nodes?");
321  }
322
323  Function *F = Invokes.back()->getParent()->getParent();
324
325  // To avoid having to handle incoming arguments specially, we lower each arg
326  // to a copy instruction in the entry block.  This ensure that the argument
327  // value itself cannot be live across the entry block.
328  BasicBlock::iterator AfterAllocaInsertPt = F->begin()->begin();
329  while (isa<AllocaInst>(AfterAllocaInsertPt) &&
330        isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsertPt)->getArraySize()))
331    ++AfterAllocaInsertPt;
332  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
333       AI != E; ++AI) {
334    CastInst *NC = new CastInst(AI, AI->getType(), AI->getName()+".tmp",
335                                AfterAllocaInsertPt);
336    AI->replaceAllUsesWith(NC);
337    NC->setOperand(0, AI);
338  }
339
340  // Finally, scan the code looking for instructions with bad live ranges.
341  for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
342    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
343      // Ignore obvious cases we don't have to handle.  In particular, most
344      // instructions either have no uses or only have a single use inside the
345      // current block.  Ignore them quickly.
346      Instruction *Inst = II;
347      if (Inst->use_empty()) continue;
348      if (Inst->hasOneUse() &&
349          cast<Instruction>(Inst->use_back())->getParent() == BB &&
350          !isa<PHINode>(Inst->use_back())) continue;
351
352      // If this is an alloca in the entry block, it's not a real register
353      // value.
354      if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst))
355        if (isa<ConstantInt>(AI->getArraySize()) && BB == F->begin())
356          continue;
357
358      // Avoid iterator invalidation by copying users to a temporary vector.
359      std::vector<Instruction*> Users;
360      for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end();
361           UI != E; ++UI) {
362        Instruction *User = cast<Instruction>(*UI);
363        if (User->getParent() != BB || isa<PHINode>(User))
364          Users.push_back(User);
365      }
366
367      // Scan all of the uses and see if the live range is live across an unwind
368      // edge.  If we find a use live across an invoke edge, create an alloca
369      // and spill the value.
370      AllocaInst *SpillLoc = 0;
371      std::set<InvokeInst*> InvokesWithStoreInserted;
372
373      // Find all of the blocks that this value is live in.
374      std::set<BasicBlock*> LiveBBs;
375      LiveBBs.insert(Inst->getParent());
376      while (!Users.empty()) {
377        Instruction *U = Users.back();
378        Users.pop_back();
379
380        if (!isa<PHINode>(U)) {
381          MarkBlocksLiveIn(U->getParent(), LiveBBs);
382        } else {
383          // Uses for a PHI node occur in their predecessor block.
384          PHINode *PN = cast<PHINode>(U);
385          for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
386            if (PN->getIncomingValue(i) == Inst)
387              MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs);
388        }
389      }
390
391      // Now that we know all of the blocks that this thing is live in, see if
392      // it includes any of the unwind locations.
393      bool NeedsSpill = false;
394      for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
395        BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest();
396        if (UnwindBlock != BB && LiveBBs.count(UnwindBlock)) {
397          NeedsSpill = true;
398        }
399      }
400
401      // If we decided we need a spill, do it.
402      if (NeedsSpill) {
403        ++NumSpilled;
404        DemoteRegToStack(*Inst, true);
405      }
406    }
407}
408
409bool LowerInvoke::insertExpensiveEHSupport(Function &F) {
410  std::vector<ReturnInst*> Returns;
411  std::vector<UnwindInst*> Unwinds;
412  std::vector<InvokeInst*> Invokes;
413
414  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
415    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
416      // Remember all return instructions in case we insert an invoke into this
417      // function.
418      Returns.push_back(RI);
419    } else if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
420      Invokes.push_back(II);
421    } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
422      Unwinds.push_back(UI);
423    }
424
425  if (Unwinds.empty() && Invokes.empty()) return false;
426
427  NumInvokes += Invokes.size();
428  NumUnwinds += Unwinds.size();
429
430  // TODO: This is not an optimal way to do this.  In particular, this always
431  // inserts setjmp calls into the entries of functions with invoke instructions
432  // even though there are possibly paths through the function that do not
433  // execute any invokes.  In particular, for functions with early exits, e.g.
434  // the 'addMove' method in hexxagon, it would be nice to not have to do the
435  // setjmp stuff on the early exit path.  This requires a bit of dataflow, but
436  // would not be too hard to do.
437
438  // If we have an invoke instruction, insert a setjmp that dominates all
439  // invokes.  After the setjmp, use a cond branch that goes to the original
440  // code path on zero, and to a designated 'catch' block of nonzero.
441  Value *OldJmpBufPtr = 0;
442  if (!Invokes.empty()) {
443    // First thing we need to do is scan the whole function for values that are
444    // live across unwind edges.  Each value that is live across an unwind edge
445    // we spill into a stack location, guaranteeing that there is nothing live
446    // across the unwind edge.  This process also splits all critical edges
447    // coming out of invoke's.
448    splitLiveRangesLiveAcrossInvokes(Invokes);
449
450    BasicBlock *EntryBB = F.begin();
451
452    // Create an alloca for the incoming jump buffer ptr and the new jump buffer
453    // that needs to be restored on all exits from the function.  This is an
454    // alloca because the value needs to be live across invokes.
455    AllocaInst *JmpBuf =
456      new AllocaInst(JBLinkTy, 0, JumpBufAlign, "jblink", F.begin()->begin());
457
458    std::vector<Value*> Idx;
459    Idx.push_back(Constant::getNullValue(Type::IntTy));
460    Idx.push_back(ConstantUInt::get(Type::UIntTy, 1));
461    OldJmpBufPtr = new GetElementPtrInst(JmpBuf, Idx, "OldBuf",
462                                         EntryBB->getTerminator());
463
464    // Copy the JBListHead to the alloca.
465    Value *OldBuf = new LoadInst(JBListHead, "oldjmpbufptr", true,
466                                 EntryBB->getTerminator());
467    new StoreInst(OldBuf, OldJmpBufPtr, true, EntryBB->getTerminator());
468
469    // Add the new jumpbuf to the list.
470    new StoreInst(JmpBuf, JBListHead, true, EntryBB->getTerminator());
471
472    // Create the catch block.  The catch block is basically a big switch
473    // statement that goes to all of the invoke catch blocks.
474    BasicBlock *CatchBB = new BasicBlock("setjmp.catch", &F);
475
476    // Create an alloca which keeps track of which invoke is currently
477    // executing.  For normal calls it contains zero.
478    AllocaInst *InvokeNum = new AllocaInst(Type::UIntTy, 0, "invokenum",
479                                           EntryBB->begin());
480    new StoreInst(ConstantInt::get(Type::UIntTy, 0), InvokeNum, true,
481                  EntryBB->getTerminator());
482
483    // Insert a load in the Catch block, and a switch on its value.  By default,
484    // we go to a block that just does an unwind (which is the correct action
485    // for a standard call).
486    BasicBlock *UnwindBB = new BasicBlock("unwindbb", &F);
487    Unwinds.push_back(new UnwindInst(UnwindBB));
488
489    Value *CatchLoad = new LoadInst(InvokeNum, "invoke.num", true, CatchBB);
490    SwitchInst *CatchSwitch =
491      new SwitchInst(CatchLoad, UnwindBB, Invokes.size(), CatchBB);
492
493    // Now that things are set up, insert the setjmp call itself.
494
495    // Split the entry block to insert the conditional branch for the setjmp.
496    BasicBlock *ContBlock = EntryBB->splitBasicBlock(EntryBB->getTerminator(),
497                                                     "setjmp.cont");
498
499    Idx[1] = ConstantUInt::get(Type::UIntTy, 0);
500    Value *JmpBufPtr = new GetElementPtrInst(JmpBuf, Idx, "TheJmpBuf",
501                                             EntryBB->getTerminator());
502    Value *SJRet = new CallInst(SetJmpFn, JmpBufPtr, "sjret",
503                                EntryBB->getTerminator());
504
505    // Compare the return value to zero.
506    Value *IsNormal = BinaryOperator::createSetEQ(SJRet,
507                                     Constant::getNullValue(SJRet->getType()),
508                                        "notunwind", EntryBB->getTerminator());
509    // Nuke the uncond branch.
510    EntryBB->getTerminator()->eraseFromParent();
511
512    // Put in a new condbranch in its place.
513    new BranchInst(ContBlock, CatchBB, IsNormal, EntryBB);
514
515    // At this point, we are all set up, rewrite each invoke instruction.
516    for (unsigned i = 0, e = Invokes.size(); i != e; ++i)
517      rewriteExpensiveInvoke(Invokes[i], i+1, InvokeNum, CatchSwitch);
518  }
519
520  // We know that there is at least one unwind.
521
522  // Create three new blocks, the block to load the jmpbuf ptr and compare
523  // against null, the block to do the longjmp, and the error block for if it
524  // is null.  Add them at the end of the function because they are not hot.
525  BasicBlock *UnwindHandler = new BasicBlock("dounwind", &F);
526  BasicBlock *UnwindBlock = new BasicBlock("unwind", &F);
527  BasicBlock *TermBlock = new BasicBlock("unwinderror", &F);
528
529  // If this function contains an invoke, restore the old jumpbuf ptr.
530  Value *BufPtr;
531  if (OldJmpBufPtr) {
532    // Before the return, insert a copy from the saved value to the new value.
533    BufPtr = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", UnwindHandler);
534    new StoreInst(BufPtr, JBListHead, UnwindHandler);
535  } else {
536    BufPtr = new LoadInst(JBListHead, "ehlist", UnwindHandler);
537  }
538
539  // Load the JBList, if it's null, then there was no catch!
540  Value *NotNull = BinaryOperator::createSetNE(BufPtr,
541                                      Constant::getNullValue(BufPtr->getType()),
542                                          "notnull", UnwindHandler);
543  new BranchInst(UnwindBlock, TermBlock, NotNull, UnwindHandler);
544
545  // Create the block to do the longjmp.
546  // Get a pointer to the jmpbuf and longjmp.
547  std::vector<Value*> Idx;
548  Idx.push_back(Constant::getNullValue(Type::IntTy));
549  Idx.push_back(ConstantUInt::get(Type::UIntTy, 0));
550  Idx[0] = new GetElementPtrInst(BufPtr, Idx, "JmpBuf", UnwindBlock);
551  Idx[1] = ConstantInt::get(Type::IntTy, 1);
552  new CallInst(LongJmpFn, Idx, "", UnwindBlock);
553  new UnreachableInst(UnwindBlock);
554
555  // Set up the term block ("throw without a catch").
556  new UnreachableInst(TermBlock);
557
558  // Insert a new call to write(2, AbortMessage, AbortMessageLength);
559  writeAbortMessage(TermBlock->getTerminator());
560
561  // Insert a call to abort()
562  (new CallInst(AbortFn, std::vector<Value*>(), "",
563                TermBlock->getTerminator()))->setTailCall();
564
565
566  // Replace all unwinds with a branch to the unwind handler.
567  for (unsigned i = 0, e = Unwinds.size(); i != e; ++i) {
568    new BranchInst(UnwindHandler, Unwinds[i]);
569    Unwinds[i]->eraseFromParent();
570  }
571
572  // Finally, for any returns from this function, if this function contains an
573  // invoke, restore the old jmpbuf pointer to its input value.
574  if (OldJmpBufPtr) {
575    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
576      ReturnInst *R = Returns[i];
577
578      // Before the return, insert a copy from the saved value to the new value.
579      Value *OldBuf = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", true, R);
580      new StoreInst(OldBuf, JBListHead, true, R);
581    }
582  }
583
584  return true;
585}
586
587bool LowerInvoke::runOnFunction(Function &F) {
588  if (ExpensiveEHSupport)
589    return insertExpensiveEHSupport(F);
590  else
591    return insertCheapEHSupport(F);
592}
593