LowerInvoke.cpp revision b76efb71d41dc1ae33e47d5d9ef79df25cde0b5d
1//===- LowerInvoke.cpp - Eliminate Invoke & Unwind instructions -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation is designed for use by code generators which do not yet
11// support stack unwinding.  This pass supports two models of exception handling
12// lowering, the 'cheap' support and the 'expensive' support.
13//
14// 'Cheap' exception handling support gives the program the ability to execute
15// any program which does not "throw an exception", by turning 'invoke'
16// instructions into calls and by turning 'unwind' instructions into calls to
17// abort().  If the program does dynamically use the unwind instruction, the
18// program will print a message then abort.
19//
20// 'Expensive' exception handling support gives the full exception handling
21// support to the program at the cost of making the 'invoke' instruction
22// really expensive.  It basically inserts setjmp/longjmp calls to emulate the
23// exception handling as necessary.
24//
25// Because the 'expensive' support slows down programs a lot, and EH is only
26// used for a subset of the programs, it must be specifically enabled by an
27// option.
28//
29// Note that after this pass runs the CFG is not entirely accurate (exceptional
30// control flow edges are not correct anymore) so only very simple things should
31// be done after the lowerinvoke pass has run (like generation of native code).
32// This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't
33// support the invoke instruction yet" lowering pass.
34//
35//===----------------------------------------------------------------------===//
36
37#define DEBUG_TYPE "lowerinvoke"
38#include "llvm/Transforms/Scalar.h"
39#include "llvm/Constants.h"
40#include "llvm/DerivedTypes.h"
41#include "llvm/Instructions.h"
42#include "llvm/Module.h"
43#include "llvm/Pass.h"
44#include "llvm/Transforms/Utils/BasicBlockUtils.h"
45#include "llvm/Transforms/Utils/Local.h"
46#include "llvm/ADT/Statistic.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/Compiler.h"
49#include "llvm/Target/TargetLowering.h"
50#include <csetjmp>
51using namespace llvm;
52
53STATISTIC(NumInvokes, "Number of invokes replaced");
54STATISTIC(NumUnwinds, "Number of unwinds replaced");
55STATISTIC(NumSpilled, "Number of registers live across unwind edges");
56
57static cl::opt<bool> ExpensiveEHSupport("enable-correct-eh-support",
58 cl::desc("Make the -lowerinvoke pass insert expensive, but correct, EH code"));
59
60namespace {
61  class VISIBILITY_HIDDEN LowerInvoke : public FunctionPass {
62    // Used for both models.
63    Constant *WriteFn;
64    Constant *AbortFn;
65    Value *AbortMessage;
66    unsigned AbortMessageLength;
67
68    // Used for expensive EH support.
69    const Type *JBLinkTy;
70    GlobalVariable *JBListHead;
71    Constant *SetJmpFn, *LongJmpFn;
72
73    // We peek in TLI to grab the target's jmp_buf size and alignment
74    const TargetLowering *TLI;
75
76  public:
77    LowerInvoke(const TargetLowering *tli = NULL) : TLI(tli) { }
78    bool doInitialization(Module &M);
79    bool runOnFunction(Function &F);
80
81    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
82      // This is a cluster of orthogonal Transforms
83      AU.addPreservedID(PromoteMemoryToRegisterID);
84      AU.addPreservedID(LowerSelectID);
85      AU.addPreservedID(LowerSwitchID);
86      AU.addPreservedID(LowerAllocationsID);
87    }
88
89  private:
90    void createAbortMessage(Module *M);
91    void writeAbortMessage(Instruction *IB);
92    bool insertCheapEHSupport(Function &F);
93    void splitLiveRangesLiveAcrossInvokes(std::vector<InvokeInst*> &Invokes);
94    void rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo,
95                                AllocaInst *InvokeNum, SwitchInst *CatchSwitch);
96    bool insertExpensiveEHSupport(Function &F);
97  };
98
99  RegisterPass<LowerInvoke>
100  X("lowerinvoke", "Lower invoke and unwind, for unwindless code generators");
101}
102
103const PassInfo *llvm::LowerInvokePassID = X.getPassInfo();
104
105// Public Interface To the LowerInvoke pass.
106FunctionPass *llvm::createLowerInvokePass(const TargetLowering *TLI) {
107  return new LowerInvoke(TLI);
108}
109
110// doInitialization - Make sure that there is a prototype for abort in the
111// current module.
112bool LowerInvoke::doInitialization(Module &M) {
113  const Type *VoidPtrTy = PointerType::get(Type::Int8Ty);
114  AbortMessage = 0;
115  if (ExpensiveEHSupport) {
116    // Insert a type for the linked list of jump buffers.
117    unsigned JBSize = TLI ? TLI->getJumpBufSize() : 0;
118    JBSize = JBSize ? JBSize : 200;
119    const Type *JmpBufTy = ArrayType::get(VoidPtrTy, JBSize);
120
121    { // The type is recursive, so use a type holder.
122      std::vector<const Type*> Elements;
123      Elements.push_back(JmpBufTy);
124      OpaqueType *OT = OpaqueType::get();
125      Elements.push_back(PointerType::get(OT));
126      PATypeHolder JBLType(StructType::get(Elements));
127      OT->refineAbstractTypeTo(JBLType.get());  // Complete the cycle.
128      JBLinkTy = JBLType.get();
129      M.addTypeName("llvm.sjljeh.jmpbufty", JBLinkTy);
130    }
131
132    const Type *PtrJBList = PointerType::get(JBLinkTy);
133
134    // Now that we've done that, insert the jmpbuf list head global, unless it
135    // already exists.
136    if (!(JBListHead = M.getGlobalVariable("llvm.sjljeh.jblist", PtrJBList))) {
137      JBListHead = new GlobalVariable(PtrJBList, false,
138                                      GlobalValue::LinkOnceLinkage,
139                                      Constant::getNullValue(PtrJBList),
140                                      "llvm.sjljeh.jblist", &M);
141    }
142    SetJmpFn = M.getOrInsertFunction("llvm.setjmp", Type::Int32Ty,
143                                     PointerType::get(JmpBufTy), (Type *)0);
144    LongJmpFn = M.getOrInsertFunction("llvm.longjmp", Type::VoidTy,
145                                      PointerType::get(JmpBufTy),
146                                      Type::Int32Ty, (Type *)0);
147  }
148
149  // We need the 'write' and 'abort' functions for both models.
150  AbortFn = M.getOrInsertFunction("abort", Type::VoidTy, (Type *)0);
151  WriteFn = M.getOrInsertFunction("write", Type::VoidTy, Type::Int32Ty,
152                                  VoidPtrTy, Type::Int32Ty, (Type *)0);
153  return true;
154}
155
156void LowerInvoke::createAbortMessage(Module *M) {
157  if (ExpensiveEHSupport) {
158    // The abort message for expensive EH support tells the user that the
159    // program 'unwound' without an 'invoke' instruction.
160    Constant *Msg =
161      ConstantArray::get("ERROR: Exception thrown, but not caught!\n");
162    AbortMessageLength = Msg->getNumOperands()-1;  // don't include \0
163
164    GlobalVariable *MsgGV = new GlobalVariable(Msg->getType(), true,
165                                               GlobalValue::InternalLinkage,
166                                               Msg, "abortmsg", M);
167    std::vector<Constant*> GEPIdx(2, Constant::getNullValue(Type::Int32Ty));
168    AbortMessage = ConstantExpr::getGetElementPtr(MsgGV, GEPIdx);
169  } else {
170    // The abort message for cheap EH support tells the user that EH is not
171    // enabled.
172    Constant *Msg =
173      ConstantArray::get("Exception handler needed, but not enabled.  Recompile"
174                         " program with -enable-correct-eh-support.\n");
175    AbortMessageLength = Msg->getNumOperands()-1;  // don't include \0
176
177    GlobalVariable *MsgGV = new GlobalVariable(Msg->getType(), true,
178                                               GlobalValue::InternalLinkage,
179                                               Msg, "abortmsg", M);
180    std::vector<Constant*> GEPIdx(2, Constant::getNullValue(Type::Int32Ty));
181    AbortMessage = ConstantExpr::getGetElementPtr(MsgGV, GEPIdx);
182  }
183}
184
185
186void LowerInvoke::writeAbortMessage(Instruction *IB) {
187  if (AbortMessage == 0)
188    createAbortMessage(IB->getParent()->getParent()->getParent());
189
190  // These are the arguments we WANT...
191  std::vector<Value*> Args;
192  Args.push_back(ConstantInt::get(Type::Int32Ty, 2));
193  Args.push_back(AbortMessage);
194  Args.push_back(ConstantInt::get(Type::Int32Ty, AbortMessageLength));
195  (new CallInst(WriteFn, Args, "", IB))->setTailCall();
196}
197
198bool LowerInvoke::insertCheapEHSupport(Function &F) {
199  bool Changed = false;
200  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
201    if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
202      // Insert a normal call instruction...
203      std::string Name = II->getName(); II->setName("");
204      CallInst *NewCall = new CallInst(II->getCalledValue(),
205                                       std::vector<Value*>(II->op_begin()+3,
206                                                       II->op_end()), Name, II);
207      NewCall->setCallingConv(II->getCallingConv());
208      II->replaceAllUsesWith(NewCall);
209
210      // Insert an unconditional branch to the normal destination.
211      new BranchInst(II->getNormalDest(), II);
212
213      // Remove any PHI node entries from the exception destination.
214      II->getUnwindDest()->removePredecessor(BB);
215
216      // Remove the invoke instruction now.
217      BB->getInstList().erase(II);
218
219      ++NumInvokes; Changed = true;
220    } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
221      // Insert a new call to write(2, AbortMessage, AbortMessageLength);
222      writeAbortMessage(UI);
223
224      // Insert a call to abort()
225      (new CallInst(AbortFn, std::vector<Value*>(), "", UI))->setTailCall();
226
227      // Insert a return instruction.  This really should be a "barrier", as it
228      // is unreachable.
229      new ReturnInst(F.getReturnType() == Type::VoidTy ? 0 :
230                            Constant::getNullValue(F.getReturnType()), UI);
231
232      // Remove the unwind instruction now.
233      BB->getInstList().erase(UI);
234
235      ++NumUnwinds; Changed = true;
236    }
237  return Changed;
238}
239
240/// rewriteExpensiveInvoke - Insert code and hack the function to replace the
241/// specified invoke instruction with a call.
242void LowerInvoke::rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo,
243                                         AllocaInst *InvokeNum,
244                                         SwitchInst *CatchSwitch) {
245  ConstantInt *InvokeNoC = ConstantInt::get(Type::Int32Ty, InvokeNo);
246
247  // Insert a store of the invoke num before the invoke and store zero into the
248  // location afterward.
249  new StoreInst(InvokeNoC, InvokeNum, true, II);  // volatile
250
251  BasicBlock::iterator NI = II->getNormalDest()->begin();
252  while (isa<PHINode>(NI)) ++NI;
253  // nonvolatile.
254  new StoreInst(Constant::getNullValue(Type::Int32Ty), InvokeNum, false, NI);
255
256  // Add a switch case to our unwind block.
257  CatchSwitch->addCase(InvokeNoC, II->getUnwindDest());
258
259  // Insert a normal call instruction.
260  std::string Name = II->getName(); II->setName("");
261  CallInst *NewCall = new CallInst(II->getCalledValue(),
262                                   std::vector<Value*>(II->op_begin()+3,
263                                                       II->op_end()), Name,
264                                   II);
265  NewCall->setCallingConv(II->getCallingConv());
266  II->replaceAllUsesWith(NewCall);
267
268  // Replace the invoke with an uncond branch.
269  new BranchInst(II->getNormalDest(), NewCall->getParent());
270  II->eraseFromParent();
271}
272
273/// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until
274/// we reach blocks we've already seen.
275static void MarkBlocksLiveIn(BasicBlock *BB, std::set<BasicBlock*> &LiveBBs) {
276  if (!LiveBBs.insert(BB).second) return; // already been here.
277
278  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
279    MarkBlocksLiveIn(*PI, LiveBBs);
280}
281
282// First thing we need to do is scan the whole function for values that are
283// live across unwind edges.  Each value that is live across an unwind edge
284// we spill into a stack location, guaranteeing that there is nothing live
285// across the unwind edge.  This process also splits all critical edges
286// coming out of invoke's.
287void LowerInvoke::
288splitLiveRangesLiveAcrossInvokes(std::vector<InvokeInst*> &Invokes) {
289  // First step, split all critical edges from invoke instructions.
290  for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
291    InvokeInst *II = Invokes[i];
292    SplitCriticalEdge(II, 0, this);
293    SplitCriticalEdge(II, 1, this);
294    assert(!isa<PHINode>(II->getNormalDest()) &&
295           !isa<PHINode>(II->getUnwindDest()) &&
296           "critical edge splitting left single entry phi nodes?");
297  }
298
299  Function *F = Invokes.back()->getParent()->getParent();
300
301  // To avoid having to handle incoming arguments specially, we lower each arg
302  // to a copy instruction in the entry block.  This ensures that the argument
303  // value itself cannot be live across the entry block.
304  BasicBlock::iterator AfterAllocaInsertPt = F->begin()->begin();
305  while (isa<AllocaInst>(AfterAllocaInsertPt) &&
306        isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsertPt)->getArraySize()))
307    ++AfterAllocaInsertPt;
308  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
309       AI != E; ++AI) {
310    // This is always a no-op cast because we're casting AI to AI->getType() so
311    // src and destination types are identical. BitCast is the only possibility.
312    CastInst *NC = new BitCastInst(
313      AI, AI->getType(), AI->getName()+".tmp", AfterAllocaInsertPt);
314    AI->replaceAllUsesWith(NC);
315    // Normally its is forbidden to replace a CastInst's operand because it
316    // could cause the opcode to reflect an illegal conversion. However, we're
317    // replacing it here with the same value it was constructed with to simply
318    // make NC its user.
319    NC->setOperand(0, AI);
320  }
321
322  // Finally, scan the code looking for instructions with bad live ranges.
323  for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
324    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
325      // Ignore obvious cases we don't have to handle.  In particular, most
326      // instructions either have no uses or only have a single use inside the
327      // current block.  Ignore them quickly.
328      Instruction *Inst = II;
329      if (Inst->use_empty()) continue;
330      if (Inst->hasOneUse() &&
331          cast<Instruction>(Inst->use_back())->getParent() == BB &&
332          !isa<PHINode>(Inst->use_back())) continue;
333
334      // If this is an alloca in the entry block, it's not a real register
335      // value.
336      if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst))
337        if (isa<ConstantInt>(AI->getArraySize()) && BB == F->begin())
338          continue;
339
340      // Avoid iterator invalidation by copying users to a temporary vector.
341      std::vector<Instruction*> Users;
342      for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end();
343           UI != E; ++UI) {
344        Instruction *User = cast<Instruction>(*UI);
345        if (User->getParent() != BB || isa<PHINode>(User))
346          Users.push_back(User);
347      }
348
349      // Scan all of the uses and see if the live range is live across an unwind
350      // edge.  If we find a use live across an invoke edge, create an alloca
351      // and spill the value.
352      std::set<InvokeInst*> InvokesWithStoreInserted;
353
354      // Find all of the blocks that this value is live in.
355      std::set<BasicBlock*> LiveBBs;
356      LiveBBs.insert(Inst->getParent());
357      while (!Users.empty()) {
358        Instruction *U = Users.back();
359        Users.pop_back();
360
361        if (!isa<PHINode>(U)) {
362          MarkBlocksLiveIn(U->getParent(), LiveBBs);
363        } else {
364          // Uses for a PHI node occur in their predecessor block.
365          PHINode *PN = cast<PHINode>(U);
366          for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
367            if (PN->getIncomingValue(i) == Inst)
368              MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs);
369        }
370      }
371
372      // Now that we know all of the blocks that this thing is live in, see if
373      // it includes any of the unwind locations.
374      bool NeedsSpill = false;
375      for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
376        BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest();
377        if (UnwindBlock != BB && LiveBBs.count(UnwindBlock)) {
378          NeedsSpill = true;
379        }
380      }
381
382      // If we decided we need a spill, do it.
383      if (NeedsSpill) {
384        ++NumSpilled;
385        DemoteRegToStack(*Inst, true);
386      }
387    }
388}
389
390bool LowerInvoke::insertExpensiveEHSupport(Function &F) {
391  std::vector<ReturnInst*> Returns;
392  std::vector<UnwindInst*> Unwinds;
393  std::vector<InvokeInst*> Invokes;
394
395  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
396    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
397      // Remember all return instructions in case we insert an invoke into this
398      // function.
399      Returns.push_back(RI);
400    } else if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
401      Invokes.push_back(II);
402    } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
403      Unwinds.push_back(UI);
404    }
405
406  if (Unwinds.empty() && Invokes.empty()) return false;
407
408  NumInvokes += Invokes.size();
409  NumUnwinds += Unwinds.size();
410
411  // TODO: This is not an optimal way to do this.  In particular, this always
412  // inserts setjmp calls into the entries of functions with invoke instructions
413  // even though there are possibly paths through the function that do not
414  // execute any invokes.  In particular, for functions with early exits, e.g.
415  // the 'addMove' method in hexxagon, it would be nice to not have to do the
416  // setjmp stuff on the early exit path.  This requires a bit of dataflow, but
417  // would not be too hard to do.
418
419  // If we have an invoke instruction, insert a setjmp that dominates all
420  // invokes.  After the setjmp, use a cond branch that goes to the original
421  // code path on zero, and to a designated 'catch' block of nonzero.
422  Value *OldJmpBufPtr = 0;
423  if (!Invokes.empty()) {
424    // First thing we need to do is scan the whole function for values that are
425    // live across unwind edges.  Each value that is live across an unwind edge
426    // we spill into a stack location, guaranteeing that there is nothing live
427    // across the unwind edge.  This process also splits all critical edges
428    // coming out of invoke's.
429    splitLiveRangesLiveAcrossInvokes(Invokes);
430
431    BasicBlock *EntryBB = F.begin();
432
433    // Create an alloca for the incoming jump buffer ptr and the new jump buffer
434    // that needs to be restored on all exits from the function.  This is an
435    // alloca because the value needs to be live across invokes.
436    unsigned Align = TLI ? TLI->getJumpBufAlignment() : 0;
437    AllocaInst *JmpBuf =
438      new AllocaInst(JBLinkTy, 0, Align, "jblink", F.begin()->begin());
439
440    std::vector<Value*> Idx;
441    Idx.push_back(Constant::getNullValue(Type::Int32Ty));
442    Idx.push_back(ConstantInt::get(Type::Int32Ty, 1));
443    OldJmpBufPtr = new GetElementPtrInst(JmpBuf, Idx, "OldBuf",
444                                         EntryBB->getTerminator());
445
446    // Copy the JBListHead to the alloca.
447    Value *OldBuf = new LoadInst(JBListHead, "oldjmpbufptr", true,
448                                 EntryBB->getTerminator());
449    new StoreInst(OldBuf, OldJmpBufPtr, true, EntryBB->getTerminator());
450
451    // Add the new jumpbuf to the list.
452    new StoreInst(JmpBuf, JBListHead, true, EntryBB->getTerminator());
453
454    // Create the catch block.  The catch block is basically a big switch
455    // statement that goes to all of the invoke catch blocks.
456    BasicBlock *CatchBB = new BasicBlock("setjmp.catch", &F);
457
458    // Create an alloca which keeps track of which invoke is currently
459    // executing.  For normal calls it contains zero.
460    AllocaInst *InvokeNum = new AllocaInst(Type::Int32Ty, 0, "invokenum",
461                                           EntryBB->begin());
462    new StoreInst(ConstantInt::get(Type::Int32Ty, 0), InvokeNum, true,
463                  EntryBB->getTerminator());
464
465    // Insert a load in the Catch block, and a switch on its value.  By default,
466    // we go to a block that just does an unwind (which is the correct action
467    // for a standard call).
468    BasicBlock *UnwindBB = new BasicBlock("unwindbb", &F);
469    Unwinds.push_back(new UnwindInst(UnwindBB));
470
471    Value *CatchLoad = new LoadInst(InvokeNum, "invoke.num", true, CatchBB);
472    SwitchInst *CatchSwitch =
473      new SwitchInst(CatchLoad, UnwindBB, Invokes.size(), CatchBB);
474
475    // Now that things are set up, insert the setjmp call itself.
476
477    // Split the entry block to insert the conditional branch for the setjmp.
478    BasicBlock *ContBlock = EntryBB->splitBasicBlock(EntryBB->getTerminator(),
479                                                     "setjmp.cont");
480
481    Idx[1] = ConstantInt::get(Type::Int32Ty, 0);
482    Value *JmpBufPtr = new GetElementPtrInst(JmpBuf, Idx, "TheJmpBuf",
483                                             EntryBB->getTerminator());
484    Value *SJRet = new CallInst(SetJmpFn, JmpBufPtr, "sjret",
485                                EntryBB->getTerminator());
486
487    // Compare the return value to zero.
488    Value *IsNormal = new ICmpInst(ICmpInst::ICMP_EQ, SJRet,
489                                   Constant::getNullValue(SJRet->getType()),
490      "notunwind", EntryBB->getTerminator());
491    // Nuke the uncond branch.
492    EntryBB->getTerminator()->eraseFromParent();
493
494    // Put in a new condbranch in its place.
495    new BranchInst(ContBlock, CatchBB, IsNormal, EntryBB);
496
497    // At this point, we are all set up, rewrite each invoke instruction.
498    for (unsigned i = 0, e = Invokes.size(); i != e; ++i)
499      rewriteExpensiveInvoke(Invokes[i], i+1, InvokeNum, CatchSwitch);
500  }
501
502  // We know that there is at least one unwind.
503
504  // Create three new blocks, the block to load the jmpbuf ptr and compare
505  // against null, the block to do the longjmp, and the error block for if it
506  // is null.  Add them at the end of the function because they are not hot.
507  BasicBlock *UnwindHandler = new BasicBlock("dounwind", &F);
508  BasicBlock *UnwindBlock = new BasicBlock("unwind", &F);
509  BasicBlock *TermBlock = new BasicBlock("unwinderror", &F);
510
511  // If this function contains an invoke, restore the old jumpbuf ptr.
512  Value *BufPtr;
513  if (OldJmpBufPtr) {
514    // Before the return, insert a copy from the saved value to the new value.
515    BufPtr = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", UnwindHandler);
516    new StoreInst(BufPtr, JBListHead, UnwindHandler);
517  } else {
518    BufPtr = new LoadInst(JBListHead, "ehlist", UnwindHandler);
519  }
520
521  // Load the JBList, if it's null, then there was no catch!
522  Value *NotNull = new ICmpInst(ICmpInst::ICMP_NE, BufPtr,
523                                Constant::getNullValue(BufPtr->getType()),
524    "notnull", UnwindHandler);
525  new BranchInst(UnwindBlock, TermBlock, NotNull, UnwindHandler);
526
527  // Create the block to do the longjmp.
528  // Get a pointer to the jmpbuf and longjmp.
529  std::vector<Value*> Idx;
530  Idx.push_back(Constant::getNullValue(Type::Int32Ty));
531  Idx.push_back(ConstantInt::get(Type::Int32Ty, 0));
532  Idx[0] = new GetElementPtrInst(BufPtr, Idx, "JmpBuf", UnwindBlock);
533  Idx[1] = ConstantInt::get(Type::Int32Ty, 1);
534  new CallInst(LongJmpFn, Idx, "", UnwindBlock);
535  new UnreachableInst(UnwindBlock);
536
537  // Set up the term block ("throw without a catch").
538  new UnreachableInst(TermBlock);
539
540  // Insert a new call to write(2, AbortMessage, AbortMessageLength);
541  writeAbortMessage(TermBlock->getTerminator());
542
543  // Insert a call to abort()
544  (new CallInst(AbortFn, std::vector<Value*>(), "",
545                TermBlock->getTerminator()))->setTailCall();
546
547
548  // Replace all unwinds with a branch to the unwind handler.
549  for (unsigned i = 0, e = Unwinds.size(); i != e; ++i) {
550    new BranchInst(UnwindHandler, Unwinds[i]);
551    Unwinds[i]->eraseFromParent();
552  }
553
554  // Finally, for any returns from this function, if this function contains an
555  // invoke, restore the old jmpbuf pointer to its input value.
556  if (OldJmpBufPtr) {
557    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
558      ReturnInst *R = Returns[i];
559
560      // Before the return, insert a copy from the saved value to the new value.
561      Value *OldBuf = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", true, R);
562      new StoreInst(OldBuf, JBListHead, true, R);
563    }
564  }
565
566  return true;
567}
568
569bool LowerInvoke::runOnFunction(Function &F) {
570  if (ExpensiveEHSupport)
571    return insertExpensiveEHSupport(F);
572  else
573    return insertCheapEHSupport(F);
574}
575