LowerInvoke.cpp revision bed2946a96ecb15b0b636fa74cb26ce61b1c648e
1//===- LowerInvoke.cpp - Eliminate Invoke & Unwind instructions -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation is designed for use by code generators which do not yet
11// support stack unwinding.  This pass supports two models of exception handling
12// lowering, the 'cheap' support and the 'expensive' support.
13//
14// 'Cheap' exception handling support gives the program the ability to execute
15// any program which does not "throw an exception", by turning 'invoke'
16// instructions into calls and by turning 'unwind' instructions into calls to
17// abort().  If the program does dynamically use the unwind instruction, the
18// program will print a message then abort.
19//
20// 'Expensive' exception handling support gives the full exception handling
21// support to the program at the cost of making the 'invoke' instruction
22// really expensive.  It basically inserts setjmp/longjmp calls to emulate the
23// exception handling as necessary.
24//
25// Because the 'expensive' support slows down programs a lot, and EH is only
26// used for a subset of the programs, it must be specifically enabled by an
27// option.
28//
29// Note that after this pass runs the CFG is not entirely accurate (exceptional
30// control flow edges are not correct anymore) so only very simple things should
31// be done after the lowerinvoke pass has run (like generation of native code).
32// This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't
33// support the invoke instruction yet" lowering pass.
34//
35//===----------------------------------------------------------------------===//
36
37#define DEBUG_TYPE "lowerinvoke"
38#include "llvm/Transforms/Scalar.h"
39#include "llvm/Constants.h"
40#include "llvm/DerivedTypes.h"
41#include "llvm/Instructions.h"
42#include "llvm/Module.h"
43#include "llvm/Pass.h"
44#include "llvm/Transforms/Utils/BasicBlockUtils.h"
45#include "llvm/Transforms/Utils/Local.h"
46#include "llvm/ADT/Statistic.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/Compiler.h"
49#include "llvm/Target/TargetLowering.h"
50#include <csetjmp>
51#include <set>
52using namespace llvm;
53
54STATISTIC(NumInvokes, "Number of invokes replaced");
55STATISTIC(NumUnwinds, "Number of unwinds replaced");
56STATISTIC(NumSpilled, "Number of registers live across unwind edges");
57
58static cl::opt<bool> ExpensiveEHSupport("enable-correct-eh-support",
59 cl::desc("Make the -lowerinvoke pass insert expensive, but correct, EH code"));
60
61namespace {
62  class VISIBILITY_HIDDEN LowerInvoke : public FunctionPass {
63    // Used for both models.
64    Constant *WriteFn;
65    Constant *AbortFn;
66    Value *AbortMessage;
67    unsigned AbortMessageLength;
68
69    // Used for expensive EH support.
70    const Type *JBLinkTy;
71    GlobalVariable *JBListHead;
72    Constant *SetJmpFn, *LongJmpFn;
73
74    // We peek in TLI to grab the target's jmp_buf size and alignment
75    const TargetLowering *TLI;
76
77  public:
78    LowerInvoke(const TargetLowering *tli = NULL) : TLI(tli) { }
79    bool doInitialization(Module &M);
80    bool runOnFunction(Function &F);
81
82    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
83      // This is a cluster of orthogonal Transforms
84      AU.addPreservedID(PromoteMemoryToRegisterID);
85      AU.addPreservedID(LowerSelectID);
86      AU.addPreservedID(LowerSwitchID);
87      AU.addPreservedID(LowerAllocationsID);
88    }
89
90  private:
91    void createAbortMessage(Module *M);
92    void writeAbortMessage(Instruction *IB);
93    bool insertCheapEHSupport(Function &F);
94    void splitLiveRangesLiveAcrossInvokes(std::vector<InvokeInst*> &Invokes);
95    void rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo,
96                                AllocaInst *InvokeNum, SwitchInst *CatchSwitch);
97    bool insertExpensiveEHSupport(Function &F);
98  };
99
100  RegisterPass<LowerInvoke>
101  X("lowerinvoke", "Lower invoke and unwind, for unwindless code generators");
102}
103
104const PassInfo *llvm::LowerInvokePassID = X.getPassInfo();
105
106// Public Interface To the LowerInvoke pass.
107FunctionPass *llvm::createLowerInvokePass(const TargetLowering *TLI) {
108  return new LowerInvoke(TLI);
109}
110
111// doInitialization - Make sure that there is a prototype for abort in the
112// current module.
113bool LowerInvoke::doInitialization(Module &M) {
114  const Type *VoidPtrTy = PointerType::get(Type::Int8Ty);
115  AbortMessage = 0;
116  if (ExpensiveEHSupport) {
117    // Insert a type for the linked list of jump buffers.
118    unsigned JBSize = TLI ? TLI->getJumpBufSize() : 0;
119    JBSize = JBSize ? JBSize : 200;
120    const Type *JmpBufTy = ArrayType::get(VoidPtrTy, JBSize);
121
122    { // The type is recursive, so use a type holder.
123      std::vector<const Type*> Elements;
124      Elements.push_back(JmpBufTy);
125      OpaqueType *OT = OpaqueType::get();
126      Elements.push_back(PointerType::get(OT));
127      PATypeHolder JBLType(StructType::get(Elements));
128      OT->refineAbstractTypeTo(JBLType.get());  // Complete the cycle.
129      JBLinkTy = JBLType.get();
130      M.addTypeName("llvm.sjljeh.jmpbufty", JBLinkTy);
131    }
132
133    const Type *PtrJBList = PointerType::get(JBLinkTy);
134
135    // Now that we've done that, insert the jmpbuf list head global, unless it
136    // already exists.
137    if (!(JBListHead = M.getGlobalVariable("llvm.sjljeh.jblist", PtrJBList))) {
138      JBListHead = new GlobalVariable(PtrJBList, false,
139                                      GlobalValue::LinkOnceLinkage,
140                                      Constant::getNullValue(PtrJBList),
141                                      "llvm.sjljeh.jblist", &M);
142    }
143    SetJmpFn = M.getOrInsertFunction("llvm.setjmp", Type::Int32Ty,
144                                     PointerType::get(JmpBufTy), (Type *)0);
145    LongJmpFn = M.getOrInsertFunction("llvm.longjmp", Type::VoidTy,
146                                      PointerType::get(JmpBufTy),
147                                      Type::Int32Ty, (Type *)0);
148  }
149
150  // We need the 'write' and 'abort' functions for both models.
151  AbortFn = M.getOrInsertFunction("abort", Type::VoidTy, (Type *)0);
152  WriteFn = M.getOrInsertFunction("write", Type::VoidTy, Type::Int32Ty,
153                                  VoidPtrTy, Type::Int32Ty, (Type *)0);
154  return true;
155}
156
157void LowerInvoke::createAbortMessage(Module *M) {
158  if (ExpensiveEHSupport) {
159    // The abort message for expensive EH support tells the user that the
160    // program 'unwound' without an 'invoke' instruction.
161    Constant *Msg =
162      ConstantArray::get("ERROR: Exception thrown, but not caught!\n");
163    AbortMessageLength = Msg->getNumOperands()-1;  // don't include \0
164
165    GlobalVariable *MsgGV = new GlobalVariable(Msg->getType(), true,
166                                               GlobalValue::InternalLinkage,
167                                               Msg, "abortmsg", M);
168    std::vector<Constant*> GEPIdx(2, Constant::getNullValue(Type::Int32Ty));
169    AbortMessage = ConstantExpr::getGetElementPtr(MsgGV, &GEPIdx[0], 2);
170  } else {
171    // The abort message for cheap EH support tells the user that EH is not
172    // enabled.
173    Constant *Msg =
174      ConstantArray::get("Exception handler needed, but not enabled.  Recompile"
175                         " program with -enable-correct-eh-support.\n");
176    AbortMessageLength = Msg->getNumOperands()-1;  // don't include \0
177
178    GlobalVariable *MsgGV = new GlobalVariable(Msg->getType(), true,
179                                               GlobalValue::InternalLinkage,
180                                               Msg, "abortmsg", M);
181    std::vector<Constant*> GEPIdx(2, Constant::getNullValue(Type::Int32Ty));
182    AbortMessage = ConstantExpr::getGetElementPtr(MsgGV, &GEPIdx[0], 2);
183  }
184}
185
186
187void LowerInvoke::writeAbortMessage(Instruction *IB) {
188  if (AbortMessage == 0)
189    createAbortMessage(IB->getParent()->getParent()->getParent());
190
191  // These are the arguments we WANT...
192  Value* Args[3];
193  Args[0] = ConstantInt::get(Type::Int32Ty, 2);
194  Args[1] = AbortMessage;
195  Args[2] = ConstantInt::get(Type::Int32Ty, AbortMessageLength);
196  (new CallInst(WriteFn, Args, 3, "", IB))->setTailCall();
197}
198
199bool LowerInvoke::insertCheapEHSupport(Function &F) {
200  bool Changed = false;
201  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
202    if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
203      std::vector<Value*> CallArgs(II->op_begin()+3, II->op_end());
204      // Insert a normal call instruction...
205      CallInst *NewCall = new CallInst(II->getCalledValue(),
206                                       &CallArgs[0], CallArgs.size(), "", II);
207      NewCall->takeName(II);
208      NewCall->setCallingConv(II->getCallingConv());
209      II->replaceAllUsesWith(NewCall);
210
211      // Insert an unconditional branch to the normal destination.
212      new BranchInst(II->getNormalDest(), II);
213
214      // Remove any PHI node entries from the exception destination.
215      II->getUnwindDest()->removePredecessor(BB);
216
217      // Remove the invoke instruction now.
218      BB->getInstList().erase(II);
219
220      ++NumInvokes; Changed = true;
221    } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
222      // Insert a new call to write(2, AbortMessage, AbortMessageLength);
223      writeAbortMessage(UI);
224
225      // Insert a call to abort()
226      (new CallInst(AbortFn, "", UI))->setTailCall();
227
228      // Insert a return instruction.  This really should be a "barrier", as it
229      // is unreachable.
230      new ReturnInst(F.getReturnType() == Type::VoidTy ? 0 :
231                            Constant::getNullValue(F.getReturnType()), UI);
232
233      // Remove the unwind instruction now.
234      BB->getInstList().erase(UI);
235
236      ++NumUnwinds; Changed = true;
237    }
238  return Changed;
239}
240
241/// rewriteExpensiveInvoke - Insert code and hack the function to replace the
242/// specified invoke instruction with a call.
243void LowerInvoke::rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo,
244                                         AllocaInst *InvokeNum,
245                                         SwitchInst *CatchSwitch) {
246  ConstantInt *InvokeNoC = ConstantInt::get(Type::Int32Ty, InvokeNo);
247
248  // Insert a store of the invoke num before the invoke and store zero into the
249  // location afterward.
250  new StoreInst(InvokeNoC, InvokeNum, true, II);  // volatile
251
252  BasicBlock::iterator NI = II->getNormalDest()->begin();
253  while (isa<PHINode>(NI)) ++NI;
254  // nonvolatile.
255  new StoreInst(Constant::getNullValue(Type::Int32Ty), InvokeNum, false, NI);
256
257  // Add a switch case to our unwind block.
258  CatchSwitch->addCase(InvokeNoC, II->getUnwindDest());
259
260  // Insert a normal call instruction.
261  std::vector<Value*> CallArgs(II->op_begin()+3, II->op_end());
262  CallInst *NewCall = new CallInst(II->getCalledValue(),
263                                   &CallArgs[0], CallArgs.size(), "",
264                                   II);
265  NewCall->takeName(II);
266  NewCall->setCallingConv(II->getCallingConv());
267  II->replaceAllUsesWith(NewCall);
268
269  // Replace the invoke with an uncond branch.
270  new BranchInst(II->getNormalDest(), NewCall->getParent());
271  II->eraseFromParent();
272}
273
274/// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until
275/// we reach blocks we've already seen.
276static void MarkBlocksLiveIn(BasicBlock *BB, std::set<BasicBlock*> &LiveBBs) {
277  if (!LiveBBs.insert(BB).second) return; // already been here.
278
279  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
280    MarkBlocksLiveIn(*PI, LiveBBs);
281}
282
283// First thing we need to do is scan the whole function for values that are
284// live across unwind edges.  Each value that is live across an unwind edge
285// we spill into a stack location, guaranteeing that there is nothing live
286// across the unwind edge.  This process also splits all critical edges
287// coming out of invoke's.
288void LowerInvoke::
289splitLiveRangesLiveAcrossInvokes(std::vector<InvokeInst*> &Invokes) {
290  // First step, split all critical edges from invoke instructions.
291  for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
292    InvokeInst *II = Invokes[i];
293    SplitCriticalEdge(II, 0, this);
294    SplitCriticalEdge(II, 1, this);
295    assert(!isa<PHINode>(II->getNormalDest()) &&
296           !isa<PHINode>(II->getUnwindDest()) &&
297           "critical edge splitting left single entry phi nodes?");
298  }
299
300  Function *F = Invokes.back()->getParent()->getParent();
301
302  // To avoid having to handle incoming arguments specially, we lower each arg
303  // to a copy instruction in the entry block.  This ensures that the argument
304  // value itself cannot be live across the entry block.
305  BasicBlock::iterator AfterAllocaInsertPt = F->begin()->begin();
306  while (isa<AllocaInst>(AfterAllocaInsertPt) &&
307        isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsertPt)->getArraySize()))
308    ++AfterAllocaInsertPt;
309  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
310       AI != E; ++AI) {
311    // This is always a no-op cast because we're casting AI to AI->getType() so
312    // src and destination types are identical. BitCast is the only possibility.
313    CastInst *NC = new BitCastInst(
314      AI, AI->getType(), AI->getName()+".tmp", AfterAllocaInsertPt);
315    AI->replaceAllUsesWith(NC);
316    // Normally its is forbidden to replace a CastInst's operand because it
317    // could cause the opcode to reflect an illegal conversion. However, we're
318    // replacing it here with the same value it was constructed with to simply
319    // make NC its user.
320    NC->setOperand(0, AI);
321  }
322
323  // Finally, scan the code looking for instructions with bad live ranges.
324  for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
325    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
326      // Ignore obvious cases we don't have to handle.  In particular, most
327      // instructions either have no uses or only have a single use inside the
328      // current block.  Ignore them quickly.
329      Instruction *Inst = II;
330      if (Inst->use_empty()) continue;
331      if (Inst->hasOneUse() &&
332          cast<Instruction>(Inst->use_back())->getParent() == BB &&
333          !isa<PHINode>(Inst->use_back())) continue;
334
335      // If this is an alloca in the entry block, it's not a real register
336      // value.
337      if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst))
338        if (isa<ConstantInt>(AI->getArraySize()) && BB == F->begin())
339          continue;
340
341      // Avoid iterator invalidation by copying users to a temporary vector.
342      std::vector<Instruction*> Users;
343      for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end();
344           UI != E; ++UI) {
345        Instruction *User = cast<Instruction>(*UI);
346        if (User->getParent() != BB || isa<PHINode>(User))
347          Users.push_back(User);
348      }
349
350      // Scan all of the uses and see if the live range is live across an unwind
351      // edge.  If we find a use live across an invoke edge, create an alloca
352      // and spill the value.
353      std::set<InvokeInst*> InvokesWithStoreInserted;
354
355      // Find all of the blocks that this value is live in.
356      std::set<BasicBlock*> LiveBBs;
357      LiveBBs.insert(Inst->getParent());
358      while (!Users.empty()) {
359        Instruction *U = Users.back();
360        Users.pop_back();
361
362        if (!isa<PHINode>(U)) {
363          MarkBlocksLiveIn(U->getParent(), LiveBBs);
364        } else {
365          // Uses for a PHI node occur in their predecessor block.
366          PHINode *PN = cast<PHINode>(U);
367          for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
368            if (PN->getIncomingValue(i) == Inst)
369              MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs);
370        }
371      }
372
373      // Now that we know all of the blocks that this thing is live in, see if
374      // it includes any of the unwind locations.
375      bool NeedsSpill = false;
376      for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
377        BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest();
378        if (UnwindBlock != BB && LiveBBs.count(UnwindBlock)) {
379          NeedsSpill = true;
380        }
381      }
382
383      // If we decided we need a spill, do it.
384      if (NeedsSpill) {
385        ++NumSpilled;
386        DemoteRegToStack(*Inst, true);
387      }
388    }
389}
390
391bool LowerInvoke::insertExpensiveEHSupport(Function &F) {
392  std::vector<ReturnInst*> Returns;
393  std::vector<UnwindInst*> Unwinds;
394  std::vector<InvokeInst*> Invokes;
395
396  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
397    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
398      // Remember all return instructions in case we insert an invoke into this
399      // function.
400      Returns.push_back(RI);
401    } else if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
402      Invokes.push_back(II);
403    } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
404      Unwinds.push_back(UI);
405    }
406
407  if (Unwinds.empty() && Invokes.empty()) return false;
408
409  NumInvokes += Invokes.size();
410  NumUnwinds += Unwinds.size();
411
412  // TODO: This is not an optimal way to do this.  In particular, this always
413  // inserts setjmp calls into the entries of functions with invoke instructions
414  // even though there are possibly paths through the function that do not
415  // execute any invokes.  In particular, for functions with early exits, e.g.
416  // the 'addMove' method in hexxagon, it would be nice to not have to do the
417  // setjmp stuff on the early exit path.  This requires a bit of dataflow, but
418  // would not be too hard to do.
419
420  // If we have an invoke instruction, insert a setjmp that dominates all
421  // invokes.  After the setjmp, use a cond branch that goes to the original
422  // code path on zero, and to a designated 'catch' block of nonzero.
423  Value *OldJmpBufPtr = 0;
424  if (!Invokes.empty()) {
425    // First thing we need to do is scan the whole function for values that are
426    // live across unwind edges.  Each value that is live across an unwind edge
427    // we spill into a stack location, guaranteeing that there is nothing live
428    // across the unwind edge.  This process also splits all critical edges
429    // coming out of invoke's.
430    splitLiveRangesLiveAcrossInvokes(Invokes);
431
432    BasicBlock *EntryBB = F.begin();
433
434    // Create an alloca for the incoming jump buffer ptr and the new jump buffer
435    // that needs to be restored on all exits from the function.  This is an
436    // alloca because the value needs to be live across invokes.
437    unsigned Align = TLI ? TLI->getJumpBufAlignment() : 0;
438    AllocaInst *JmpBuf =
439      new AllocaInst(JBLinkTy, 0, Align, "jblink", F.begin()->begin());
440
441    std::vector<Value*> Idx;
442    Idx.push_back(Constant::getNullValue(Type::Int32Ty));
443    Idx.push_back(ConstantInt::get(Type::Int32Ty, 1));
444    OldJmpBufPtr = new GetElementPtrInst(JmpBuf, &Idx[0], 2, "OldBuf",
445                                         EntryBB->getTerminator());
446
447    // Copy the JBListHead to the alloca.
448    Value *OldBuf = new LoadInst(JBListHead, "oldjmpbufptr", true,
449                                 EntryBB->getTerminator());
450    new StoreInst(OldBuf, OldJmpBufPtr, true, EntryBB->getTerminator());
451
452    // Add the new jumpbuf to the list.
453    new StoreInst(JmpBuf, JBListHead, true, EntryBB->getTerminator());
454
455    // Create the catch block.  The catch block is basically a big switch
456    // statement that goes to all of the invoke catch blocks.
457    BasicBlock *CatchBB = new BasicBlock("setjmp.catch", &F);
458
459    // Create an alloca which keeps track of which invoke is currently
460    // executing.  For normal calls it contains zero.
461    AllocaInst *InvokeNum = new AllocaInst(Type::Int32Ty, 0, "invokenum",
462                                           EntryBB->begin());
463    new StoreInst(ConstantInt::get(Type::Int32Ty, 0), InvokeNum, true,
464                  EntryBB->getTerminator());
465
466    // Insert a load in the Catch block, and a switch on its value.  By default,
467    // we go to a block that just does an unwind (which is the correct action
468    // for a standard call).
469    BasicBlock *UnwindBB = new BasicBlock("unwindbb", &F);
470    Unwinds.push_back(new UnwindInst(UnwindBB));
471
472    Value *CatchLoad = new LoadInst(InvokeNum, "invoke.num", true, CatchBB);
473    SwitchInst *CatchSwitch =
474      new SwitchInst(CatchLoad, UnwindBB, Invokes.size(), CatchBB);
475
476    // Now that things are set up, insert the setjmp call itself.
477
478    // Split the entry block to insert the conditional branch for the setjmp.
479    BasicBlock *ContBlock = EntryBB->splitBasicBlock(EntryBB->getTerminator(),
480                                                     "setjmp.cont");
481
482    Idx[1] = ConstantInt::get(Type::Int32Ty, 0);
483    Value *JmpBufPtr = new GetElementPtrInst(JmpBuf, &Idx[0], Idx.size(),
484                                             "TheJmpBuf",
485                                             EntryBB->getTerminator());
486    Value *SJRet = new CallInst(SetJmpFn, JmpBufPtr, "sjret",
487                                EntryBB->getTerminator());
488
489    // Compare the return value to zero.
490    Value *IsNormal = new ICmpInst(ICmpInst::ICMP_EQ, SJRet,
491                                   Constant::getNullValue(SJRet->getType()),
492      "notunwind", EntryBB->getTerminator());
493    // Nuke the uncond branch.
494    EntryBB->getTerminator()->eraseFromParent();
495
496    // Put in a new condbranch in its place.
497    new BranchInst(ContBlock, CatchBB, IsNormal, EntryBB);
498
499    // At this point, we are all set up, rewrite each invoke instruction.
500    for (unsigned i = 0, e = Invokes.size(); i != e; ++i)
501      rewriteExpensiveInvoke(Invokes[i], i+1, InvokeNum, CatchSwitch);
502  }
503
504  // We know that there is at least one unwind.
505
506  // Create three new blocks, the block to load the jmpbuf ptr and compare
507  // against null, the block to do the longjmp, and the error block for if it
508  // is null.  Add them at the end of the function because they are not hot.
509  BasicBlock *UnwindHandler = new BasicBlock("dounwind", &F);
510  BasicBlock *UnwindBlock = new BasicBlock("unwind", &F);
511  BasicBlock *TermBlock = new BasicBlock("unwinderror", &F);
512
513  // If this function contains an invoke, restore the old jumpbuf ptr.
514  Value *BufPtr;
515  if (OldJmpBufPtr) {
516    // Before the return, insert a copy from the saved value to the new value.
517    BufPtr = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", UnwindHandler);
518    new StoreInst(BufPtr, JBListHead, UnwindHandler);
519  } else {
520    BufPtr = new LoadInst(JBListHead, "ehlist", UnwindHandler);
521  }
522
523  // Load the JBList, if it's null, then there was no catch!
524  Value *NotNull = new ICmpInst(ICmpInst::ICMP_NE, BufPtr,
525                                Constant::getNullValue(BufPtr->getType()),
526    "notnull", UnwindHandler);
527  new BranchInst(UnwindBlock, TermBlock, NotNull, UnwindHandler);
528
529  // Create the block to do the longjmp.
530  // Get a pointer to the jmpbuf and longjmp.
531  std::vector<Value*> Idx;
532  Idx.push_back(Constant::getNullValue(Type::Int32Ty));
533  Idx.push_back(ConstantInt::get(Type::Int32Ty, 0));
534  Idx[0] = new GetElementPtrInst(BufPtr, &Idx[0], 2, "JmpBuf", UnwindBlock);
535  Idx[1] = ConstantInt::get(Type::Int32Ty, 1);
536  new CallInst(LongJmpFn, &Idx[0], Idx.size(), "", UnwindBlock);
537  new UnreachableInst(UnwindBlock);
538
539  // Set up the term block ("throw without a catch").
540  new UnreachableInst(TermBlock);
541
542  // Insert a new call to write(2, AbortMessage, AbortMessageLength);
543  writeAbortMessage(TermBlock->getTerminator());
544
545  // Insert a call to abort()
546  (new CallInst(AbortFn, "",
547                TermBlock->getTerminator()))->setTailCall();
548
549
550  // Replace all unwinds with a branch to the unwind handler.
551  for (unsigned i = 0, e = Unwinds.size(); i != e; ++i) {
552    new BranchInst(UnwindHandler, Unwinds[i]);
553    Unwinds[i]->eraseFromParent();
554  }
555
556  // Finally, for any returns from this function, if this function contains an
557  // invoke, restore the old jmpbuf pointer to its input value.
558  if (OldJmpBufPtr) {
559    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
560      ReturnInst *R = Returns[i];
561
562      // Before the return, insert a copy from the saved value to the new value.
563      Value *OldBuf = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", true, R);
564      new StoreInst(OldBuf, JBListHead, true, R);
565    }
566  }
567
568  return true;
569}
570
571bool LowerInvoke::runOnFunction(Function &F) {
572  if (ExpensiveEHSupport)
573    return insertExpensiveEHSupport(F);
574  else
575    return insertCheapEHSupport(F);
576}
577