LowerInvoke.cpp revision c6f0aadc3b4f7e79bd3f4e59b1192f770fc63a5d
1//===- LowerInvoke.cpp - Eliminate Invoke & Unwind instructions -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation is designed for use by code generators which do not yet
11// support stack unwinding.  This pass supports two models of exception handling
12// lowering, the 'cheap' support and the 'expensive' support.
13//
14// 'Cheap' exception handling support gives the program the ability to execute
15// any program which does not "throw an exception", by turning 'invoke'
16// instructions into calls and by turning 'unwind' instructions into calls to
17// abort().  If the program does dynamically use the unwind instruction, the
18// program will print a message then abort.
19//
20// 'Expensive' exception handling support gives the full exception handling
21// support to the program at the cost of making the 'invoke' instruction
22// really expensive.  It basically inserts setjmp/longjmp calls to emulate the
23// exception handling as necessary.
24//
25// Because the 'expensive' support slows down programs a lot, and EH is only
26// used for a subset of the programs, it must be specifically enabled by an
27// option.
28//
29// Note that after this pass runs the CFG is not entirely accurate (exceptional
30// control flow edges are not correct anymore) so only very simple things should
31// be done after the lowerinvoke pass has run (like generation of native code).
32// This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't
33// support the invoke instruction yet" lowering pass.
34//
35//===----------------------------------------------------------------------===//
36
37#define DEBUG_TYPE "lowerinvoke"
38#include "llvm/Transforms/Scalar.h"
39#include "llvm/Constants.h"
40#include "llvm/DerivedTypes.h"
41#include "llvm/Instructions.h"
42#include "llvm/Intrinsics.h"
43#include "llvm/LLVMContext.h"
44#include "llvm/Module.h"
45#include "llvm/Pass.h"
46#include "llvm/Transforms/Utils/BasicBlockUtils.h"
47#include "llvm/Transforms/Utils/Local.h"
48#include "llvm/ADT/Statistic.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Target/TargetLowering.h"
51#include <csetjmp>
52#include <set>
53using namespace llvm;
54
55STATISTIC(NumInvokes, "Number of invokes replaced");
56STATISTIC(NumUnwinds, "Number of unwinds replaced");
57STATISTIC(NumSpilled, "Number of registers live across unwind edges");
58
59static cl::opt<bool> ExpensiveEHSupport("enable-correct-eh-support",
60 cl::desc("Make the -lowerinvoke pass insert expensive, but correct, EH code"));
61
62namespace {
63  class LowerInvoke : public FunctionPass {
64    // Used for both models.
65    Constant *WriteFn;
66    Constant *AbortFn;
67    Value *AbortMessage;
68    unsigned AbortMessageLength;
69
70    // Used for expensive EH support.
71    const Type *JBLinkTy;
72    GlobalVariable *JBListHead;
73    Constant *SetJmpFn, *LongJmpFn, *StackSaveFn, *StackRestoreFn;
74    bool useExpensiveEHSupport;
75
76    // We peek in TLI to grab the target's jmp_buf size and alignment
77    const TargetLowering *TLI;
78
79  public:
80    static char ID; // Pass identification, replacement for typeid
81    explicit LowerInvoke(const TargetLowering *tli = NULL,
82                         bool useExpensiveEHSupport = ExpensiveEHSupport)
83      : FunctionPass(&ID), useExpensiveEHSupport(useExpensiveEHSupport),
84        TLI(tli) { }
85    bool doInitialization(Module &M);
86    bool runOnFunction(Function &F);
87
88    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
89      // This is a cluster of orthogonal Transforms
90      AU.addPreservedID(PromoteMemoryToRegisterID);
91      AU.addPreservedID(LowerSwitchID);
92    }
93
94  private:
95    void createAbortMessage(Module *M);
96    void writeAbortMessage(Instruction *IB);
97    bool insertCheapEHSupport(Function &F);
98    void splitLiveRangesLiveAcrossInvokes(std::vector<InvokeInst*> &Invokes);
99    void rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo,
100                                AllocaInst *InvokeNum, AllocaInst *StackPtr,
101                                SwitchInst *CatchSwitch);
102    bool insertExpensiveEHSupport(Function &F);
103  };
104}
105
106char LowerInvoke::ID = 0;
107static RegisterPass<LowerInvoke>
108X("lowerinvoke", "Lower invoke and unwind, for unwindless code generators");
109
110const PassInfo *const llvm::LowerInvokePassID = &X;
111
112// Public Interface To the LowerInvoke pass.
113FunctionPass *llvm::createLowerInvokePass(const TargetLowering *TLI) {
114  return new LowerInvoke(TLI, ExpensiveEHSupport);
115}
116FunctionPass *llvm::createLowerInvokePass(const TargetLowering *TLI,
117                                          bool useExpensiveEHSupport) {
118  return new LowerInvoke(TLI, useExpensiveEHSupport);
119}
120
121// doInitialization - Make sure that there is a prototype for abort in the
122// current module.
123bool LowerInvoke::doInitialization(Module &M) {
124  const Type *VoidPtrTy =
125          Type::getInt8PtrTy(M.getContext());
126  AbortMessage = 0;
127  if (useExpensiveEHSupport) {
128    // Insert a type for the linked list of jump buffers.
129    unsigned JBSize = TLI ? TLI->getJumpBufSize() : 0;
130    JBSize = JBSize ? JBSize : 200;
131    const Type *JmpBufTy = ArrayType::get(VoidPtrTy, JBSize);
132
133    { // The type is recursive, so use a type holder.
134      std::vector<const Type*> Elements;
135      Elements.push_back(JmpBufTy);
136      OpaqueType *OT = OpaqueType::get(M.getContext());
137      Elements.push_back(PointerType::getUnqual(OT));
138      PATypeHolder JBLType(StructType::get(M.getContext(), Elements));
139      OT->refineAbstractTypeTo(JBLType.get());  // Complete the cycle.
140      JBLinkTy = JBLType.get();
141      M.addTypeName("llvm.sjljeh.jmpbufty", JBLinkTy);
142    }
143
144    const Type *PtrJBList = PointerType::getUnqual(JBLinkTy);
145
146    // Now that we've done that, insert the jmpbuf list head global, unless it
147    // already exists.
148    if (!(JBListHead = M.getGlobalVariable("llvm.sjljeh.jblist", PtrJBList))) {
149      JBListHead = new GlobalVariable(M, PtrJBList, false,
150                                      GlobalValue::LinkOnceAnyLinkage,
151                                      Constant::getNullValue(PtrJBList),
152                                      "llvm.sjljeh.jblist");
153    }
154
155// VisualStudio defines setjmp as _setjmp via #include <csetjmp> / <setjmp.h>,
156// so it looks like Intrinsic::_setjmp
157#if defined(_MSC_VER) && defined(setjmp)
158#define setjmp_undefined_for_visual_studio
159#undef setjmp
160#endif
161
162    SetJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::setjmp);
163
164#if defined(_MSC_VER) && defined(setjmp_undefined_for_visual_studio)
165// let's return it to _setjmp state in case anyone ever needs it after this
166// point under VisualStudio
167#define setjmp _setjmp
168#endif
169
170    LongJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::longjmp);
171    StackSaveFn = Intrinsic::getDeclaration(&M, Intrinsic::stacksave);
172    StackRestoreFn = Intrinsic::getDeclaration(&M, Intrinsic::stackrestore);
173  }
174
175  // We need the 'write' and 'abort' functions for both models.
176  AbortFn = M.getOrInsertFunction("abort", Type::getVoidTy(M.getContext()),
177                                  (Type *)0);
178#if 0 // "write" is Unix-specific.. code is going away soon anyway.
179  WriteFn = M.getOrInsertFunction("write", Type::VoidTy, Type::Int32Ty,
180                                  VoidPtrTy, Type::Int32Ty, (Type *)0);
181#else
182  WriteFn = 0;
183#endif
184  return true;
185}
186
187void LowerInvoke::createAbortMessage(Module *M) {
188  if (useExpensiveEHSupport) {
189    // The abort message for expensive EH support tells the user that the
190    // program 'unwound' without an 'invoke' instruction.
191    Constant *Msg =
192      ConstantArray::get(M->getContext(),
193                         "ERROR: Exception thrown, but not caught!\n");
194    AbortMessageLength = Msg->getNumOperands()-1;  // don't include \0
195
196    GlobalVariable *MsgGV = new GlobalVariable(*M, Msg->getType(), true,
197                                               GlobalValue::InternalLinkage,
198                                               Msg, "abortmsg");
199    std::vector<Constant*> GEPIdx(2,
200                     Constant::getNullValue(Type::getInt32Ty(M->getContext())));
201    AbortMessage = ConstantExpr::getGetElementPtr(MsgGV, &GEPIdx[0], 2);
202  } else {
203    // The abort message for cheap EH support tells the user that EH is not
204    // enabled.
205    Constant *Msg =
206      ConstantArray::get(M->getContext(),
207                        "Exception handler needed, but not enabled."
208                        "Recompile program with -enable-correct-eh-support.\n");
209    AbortMessageLength = Msg->getNumOperands()-1;  // don't include \0
210
211    GlobalVariable *MsgGV = new GlobalVariable(*M, Msg->getType(), true,
212                                               GlobalValue::InternalLinkage,
213                                               Msg, "abortmsg");
214    std::vector<Constant*> GEPIdx(2, Constant::getNullValue(
215                                            Type::getInt32Ty(M->getContext())));
216    AbortMessage = ConstantExpr::getGetElementPtr(MsgGV, &GEPIdx[0], 2);
217  }
218}
219
220
221void LowerInvoke::writeAbortMessage(Instruction *IB) {
222#if 0
223  if (AbortMessage == 0)
224    createAbortMessage(IB->getParent()->getParent()->getParent());
225
226  // These are the arguments we WANT...
227  Value* Args[3];
228  Args[0] = ConstantInt::get(Type::Int32Ty, 2);
229  Args[1] = AbortMessage;
230  Args[2] = ConstantInt::get(Type::Int32Ty, AbortMessageLength);
231  (new CallInst(WriteFn, Args, 3, "", IB))->setTailCall();
232#endif
233}
234
235bool LowerInvoke::insertCheapEHSupport(Function &F) {
236  bool Changed = false;
237  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
238    if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
239      std::vector<Value*> CallArgs(II->op_begin(), II->op_end() - 3);
240      // Insert a normal call instruction...
241      CallInst *NewCall = CallInst::Create(II->getCalledValue(),
242                                           CallArgs.begin(), CallArgs.end(),
243                                           "",II);
244      NewCall->takeName(II);
245      NewCall->setCallingConv(II->getCallingConv());
246      NewCall->setAttributes(II->getAttributes());
247      II->replaceAllUsesWith(NewCall);
248
249      // Insert an unconditional branch to the normal destination.
250      BranchInst::Create(II->getNormalDest(), II);
251
252      // Remove any PHI node entries from the exception destination.
253      II->getUnwindDest()->removePredecessor(BB);
254
255      // Remove the invoke instruction now.
256      BB->getInstList().erase(II);
257
258      ++NumInvokes; Changed = true;
259    } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
260      // Insert a new call to write(2, AbortMessage, AbortMessageLength);
261      writeAbortMessage(UI);
262
263      // Insert a call to abort()
264      CallInst::Create(AbortFn, "", UI)->setTailCall();
265
266      // Insert a return instruction.  This really should be a "barrier", as it
267      // is unreachable.
268      ReturnInst::Create(F.getContext(),
269                         F.getReturnType()->isVoidTy() ?
270                          0 : Constant::getNullValue(F.getReturnType()), UI);
271
272      // Remove the unwind instruction now.
273      BB->getInstList().erase(UI);
274
275      ++NumUnwinds; Changed = true;
276    }
277  return Changed;
278}
279
280/// rewriteExpensiveInvoke - Insert code and hack the function to replace the
281/// specified invoke instruction with a call.
282void LowerInvoke::rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo,
283                                         AllocaInst *InvokeNum,
284                                         AllocaInst *StackPtr,
285                                         SwitchInst *CatchSwitch) {
286  ConstantInt *InvokeNoC = ConstantInt::get(Type::getInt32Ty(II->getContext()),
287                                            InvokeNo);
288
289  // If the unwind edge has phi nodes, split the edge.
290  if (isa<PHINode>(II->getUnwindDest()->begin())) {
291    SplitCriticalEdge(II, 1, this);
292
293    // If there are any phi nodes left, they must have a single predecessor.
294    while (PHINode *PN = dyn_cast<PHINode>(II->getUnwindDest()->begin())) {
295      PN->replaceAllUsesWith(PN->getIncomingValue(0));
296      PN->eraseFromParent();
297    }
298  }
299
300  // Insert a store of the invoke num before the invoke and store zero into the
301  // location afterward.
302  new StoreInst(InvokeNoC, InvokeNum, true, II);  // volatile
303
304  // Insert a store of the stack ptr before the invoke, so we can restore it
305  // later in the exception case.
306  CallInst* StackSaveRet = CallInst::Create(StackSaveFn, "ssret", II);
307  new StoreInst(StackSaveRet, StackPtr, true, II); // volatile
308
309  BasicBlock::iterator NI = II->getNormalDest()->getFirstNonPHI();
310  // nonvolatile.
311  new StoreInst(Constant::getNullValue(Type::getInt32Ty(II->getContext())),
312                InvokeNum, false, NI);
313
314  Instruction* StackPtrLoad = new LoadInst(StackPtr, "stackptr.restore", true,
315                                           II->getUnwindDest()->getFirstNonPHI()
316                                           );
317  CallInst::Create(StackRestoreFn, StackPtrLoad, "")->insertAfter(StackPtrLoad);
318
319  // Add a switch case to our unwind block.
320  CatchSwitch->addCase(InvokeNoC, II->getUnwindDest());
321
322  // Insert a normal call instruction.
323  std::vector<Value*> CallArgs(II->op_begin(), II->op_end() - 3);
324  CallInst *NewCall = CallInst::Create(II->getCalledValue(),
325                                       CallArgs.begin(), CallArgs.end(), "",
326                                       II);
327  NewCall->takeName(II);
328  NewCall->setCallingConv(II->getCallingConv());
329  NewCall->setAttributes(II->getAttributes());
330  II->replaceAllUsesWith(NewCall);
331
332  // Replace the invoke with an uncond branch.
333  BranchInst::Create(II->getNormalDest(), NewCall->getParent());
334  II->eraseFromParent();
335}
336
337/// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until
338/// we reach blocks we've already seen.
339static void MarkBlocksLiveIn(BasicBlock *BB, std::set<BasicBlock*> &LiveBBs) {
340  if (!LiveBBs.insert(BB).second) return; // already been here.
341
342  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
343    MarkBlocksLiveIn(*PI, LiveBBs);
344}
345
346// First thing we need to do is scan the whole function for values that are
347// live across unwind edges.  Each value that is live across an unwind edge
348// we spill into a stack location, guaranteeing that there is nothing live
349// across the unwind edge.  This process also splits all critical edges
350// coming out of invoke's.
351void LowerInvoke::
352splitLiveRangesLiveAcrossInvokes(std::vector<InvokeInst*> &Invokes) {
353  // First step, split all critical edges from invoke instructions.
354  for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
355    InvokeInst *II = Invokes[i];
356    SplitCriticalEdge(II, 0, this);
357    SplitCriticalEdge(II, 1, this);
358    assert(!isa<PHINode>(II->getNormalDest()) &&
359           !isa<PHINode>(II->getUnwindDest()) &&
360           "critical edge splitting left single entry phi nodes?");
361  }
362
363  Function *F = Invokes.back()->getParent()->getParent();
364
365  // To avoid having to handle incoming arguments specially, we lower each arg
366  // to a copy instruction in the entry block.  This ensures that the argument
367  // value itself cannot be live across the entry block.
368  BasicBlock::iterator AfterAllocaInsertPt = F->begin()->begin();
369  while (isa<AllocaInst>(AfterAllocaInsertPt) &&
370        isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsertPt)->getArraySize()))
371    ++AfterAllocaInsertPt;
372  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
373       AI != E; ++AI) {
374    // This is always a no-op cast because we're casting AI to AI->getType() so
375    // src and destination types are identical. BitCast is the only possibility.
376    CastInst *NC = new BitCastInst(
377      AI, AI->getType(), AI->getName()+".tmp", AfterAllocaInsertPt);
378    AI->replaceAllUsesWith(NC);
379    // Normally its is forbidden to replace a CastInst's operand because it
380    // could cause the opcode to reflect an illegal conversion. However, we're
381    // replacing it here with the same value it was constructed with to simply
382    // make NC its user.
383    NC->setOperand(0, AI);
384  }
385
386  // Finally, scan the code looking for instructions with bad live ranges.
387  for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
388    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
389      // Ignore obvious cases we don't have to handle.  In particular, most
390      // instructions either have no uses or only have a single use inside the
391      // current block.  Ignore them quickly.
392      Instruction *Inst = II;
393      if (Inst->use_empty()) continue;
394      if (Inst->hasOneUse() &&
395          cast<Instruction>(Inst->use_back())->getParent() == BB &&
396          !isa<PHINode>(Inst->use_back())) continue;
397
398      // If this is an alloca in the entry block, it's not a real register
399      // value.
400      if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst))
401        if (isa<ConstantInt>(AI->getArraySize()) && BB == F->begin())
402          continue;
403
404      // Avoid iterator invalidation by copying users to a temporary vector.
405      std::vector<Instruction*> Users;
406      for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end();
407           UI != E; ++UI) {
408        Instruction *User = cast<Instruction>(*UI);
409        if (User->getParent() != BB || isa<PHINode>(User))
410          Users.push_back(User);
411      }
412
413      // Scan all of the uses and see if the live range is live across an unwind
414      // edge.  If we find a use live across an invoke edge, create an alloca
415      // and spill the value.
416      std::set<InvokeInst*> InvokesWithStoreInserted;
417
418      // Find all of the blocks that this value is live in.
419      std::set<BasicBlock*> LiveBBs;
420      LiveBBs.insert(Inst->getParent());
421      while (!Users.empty()) {
422        Instruction *U = Users.back();
423        Users.pop_back();
424
425        if (!isa<PHINode>(U)) {
426          MarkBlocksLiveIn(U->getParent(), LiveBBs);
427        } else {
428          // Uses for a PHI node occur in their predecessor block.
429          PHINode *PN = cast<PHINode>(U);
430          for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
431            if (PN->getIncomingValue(i) == Inst)
432              MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs);
433        }
434      }
435
436      // Now that we know all of the blocks that this thing is live in, see if
437      // it includes any of the unwind locations.
438      bool NeedsSpill = false;
439      for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
440        BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest();
441        if (UnwindBlock != BB && LiveBBs.count(UnwindBlock)) {
442          NeedsSpill = true;
443        }
444      }
445
446      // If we decided we need a spill, do it.
447      if (NeedsSpill) {
448        ++NumSpilled;
449        DemoteRegToStack(*Inst, true);
450      }
451    }
452}
453
454bool LowerInvoke::insertExpensiveEHSupport(Function &F) {
455  std::vector<ReturnInst*> Returns;
456  std::vector<UnwindInst*> Unwinds;
457  std::vector<InvokeInst*> Invokes;
458
459  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
460    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
461      // Remember all return instructions in case we insert an invoke into this
462      // function.
463      Returns.push_back(RI);
464    } else if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
465      Invokes.push_back(II);
466    } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
467      Unwinds.push_back(UI);
468    }
469
470  if (Unwinds.empty() && Invokes.empty()) return false;
471
472  NumInvokes += Invokes.size();
473  NumUnwinds += Unwinds.size();
474
475  // TODO: This is not an optimal way to do this.  In particular, this always
476  // inserts setjmp calls into the entries of functions with invoke instructions
477  // even though there are possibly paths through the function that do not
478  // execute any invokes.  In particular, for functions with early exits, e.g.
479  // the 'addMove' method in hexxagon, it would be nice to not have to do the
480  // setjmp stuff on the early exit path.  This requires a bit of dataflow, but
481  // would not be too hard to do.
482
483  // If we have an invoke instruction, insert a setjmp that dominates all
484  // invokes.  After the setjmp, use a cond branch that goes to the original
485  // code path on zero, and to a designated 'catch' block of nonzero.
486  Value *OldJmpBufPtr = 0;
487  if (!Invokes.empty()) {
488    // First thing we need to do is scan the whole function for values that are
489    // live across unwind edges.  Each value that is live across an unwind edge
490    // we spill into a stack location, guaranteeing that there is nothing live
491    // across the unwind edge.  This process also splits all critical edges
492    // coming out of invoke's.
493    splitLiveRangesLiveAcrossInvokes(Invokes);
494
495    BasicBlock *EntryBB = F.begin();
496
497    // Create an alloca for the incoming jump buffer ptr and the new jump buffer
498    // that needs to be restored on all exits from the function.  This is an
499    // alloca because the value needs to be live across invokes.
500    unsigned Align = TLI ? TLI->getJumpBufAlignment() : 0;
501    AllocaInst *JmpBuf =
502      new AllocaInst(JBLinkTy, 0, Align,
503                     "jblink", F.begin()->begin());
504
505    std::vector<Value*> Idx;
506    Idx.push_back(Constant::getNullValue(Type::getInt32Ty(F.getContext())));
507    Idx.push_back(ConstantInt::get(Type::getInt32Ty(F.getContext()), 1));
508    OldJmpBufPtr = GetElementPtrInst::Create(JmpBuf, Idx.begin(), Idx.end(),
509                                             "OldBuf",
510                                              EntryBB->getTerminator());
511
512    // Copy the JBListHead to the alloca.
513    Value *OldBuf = new LoadInst(JBListHead, "oldjmpbufptr", true,
514                                 EntryBB->getTerminator());
515    new StoreInst(OldBuf, OldJmpBufPtr, true, EntryBB->getTerminator());
516
517    // Add the new jumpbuf to the list.
518    new StoreInst(JmpBuf, JBListHead, true, EntryBB->getTerminator());
519
520    // Create the catch block.  The catch block is basically a big switch
521    // statement that goes to all of the invoke catch blocks.
522    BasicBlock *CatchBB =
523            BasicBlock::Create(F.getContext(), "setjmp.catch", &F);
524
525    // Create an alloca which keeps track of the stack pointer before every
526    // invoke, this allows us to properly restore the stack pointer after
527    // long jumping.
528    AllocaInst *StackPtr = new AllocaInst(Type::getInt8PtrTy(F.getContext()), 0,
529                                          "stackptr", EntryBB->begin());
530
531    // Create an alloca which keeps track of which invoke is currently
532    // executing.  For normal calls it contains zero.
533    AllocaInst *InvokeNum = new AllocaInst(Type::getInt32Ty(F.getContext()), 0,
534                                           "invokenum",EntryBB->begin());
535    new StoreInst(ConstantInt::get(Type::getInt32Ty(F.getContext()), 0),
536                  InvokeNum, true, EntryBB->getTerminator());
537
538    // Insert a load in the Catch block, and a switch on its value.  By default,
539    // we go to a block that just does an unwind (which is the correct action
540    // for a standard call).
541    BasicBlock *UnwindBB = BasicBlock::Create(F.getContext(), "unwindbb", &F);
542    Unwinds.push_back(new UnwindInst(F.getContext(), UnwindBB));
543
544    Value *CatchLoad = new LoadInst(InvokeNum, "invoke.num", true, CatchBB);
545    SwitchInst *CatchSwitch =
546      SwitchInst::Create(CatchLoad, UnwindBB, Invokes.size(), CatchBB);
547
548    // Now that things are set up, insert the setjmp call itself.
549
550    // Split the entry block to insert the conditional branch for the setjmp.
551    BasicBlock *ContBlock = EntryBB->splitBasicBlock(EntryBB->getTerminator(),
552                                                     "setjmp.cont");
553
554    Idx[1] = ConstantInt::get(Type::getInt32Ty(F.getContext()), 0);
555    Value *JmpBufPtr = GetElementPtrInst::Create(JmpBuf, Idx.begin(), Idx.end(),
556                                                 "TheJmpBuf",
557                                                 EntryBB->getTerminator());
558    JmpBufPtr = new BitCastInst(JmpBufPtr,
559                        Type::getInt8PtrTy(F.getContext()),
560                                "tmp", EntryBB->getTerminator());
561    Value *SJRet = CallInst::Create(SetJmpFn, JmpBufPtr, "sjret",
562                                    EntryBB->getTerminator());
563
564    // Compare the return value to zero.
565    Value *IsNormal = new ICmpInst(EntryBB->getTerminator(),
566                                   ICmpInst::ICMP_EQ, SJRet,
567                                   Constant::getNullValue(SJRet->getType()),
568                                   "notunwind");
569    // Nuke the uncond branch.
570    EntryBB->getTerminator()->eraseFromParent();
571
572    // Put in a new condbranch in its place.
573    BranchInst::Create(ContBlock, CatchBB, IsNormal, EntryBB);
574
575    // At this point, we are all set up, rewrite each invoke instruction.
576    for (unsigned i = 0, e = Invokes.size(); i != e; ++i)
577      rewriteExpensiveInvoke(Invokes[i], i+1, InvokeNum, StackPtr, CatchSwitch);
578  }
579
580  // We know that there is at least one unwind.
581
582  // Create three new blocks, the block to load the jmpbuf ptr and compare
583  // against null, the block to do the longjmp, and the error block for if it
584  // is null.  Add them at the end of the function because they are not hot.
585  BasicBlock *UnwindHandler = BasicBlock::Create(F.getContext(),
586                                                "dounwind", &F);
587  BasicBlock *UnwindBlock = BasicBlock::Create(F.getContext(), "unwind", &F);
588  BasicBlock *TermBlock = BasicBlock::Create(F.getContext(), "unwinderror", &F);
589
590  // If this function contains an invoke, restore the old jumpbuf ptr.
591  Value *BufPtr;
592  if (OldJmpBufPtr) {
593    // Before the return, insert a copy from the saved value to the new value.
594    BufPtr = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", UnwindHandler);
595    new StoreInst(BufPtr, JBListHead, UnwindHandler);
596  } else {
597    BufPtr = new LoadInst(JBListHead, "ehlist", UnwindHandler);
598  }
599
600  // Load the JBList, if it's null, then there was no catch!
601  Value *NotNull = new ICmpInst(*UnwindHandler, ICmpInst::ICMP_NE, BufPtr,
602                                Constant::getNullValue(BufPtr->getType()),
603                                "notnull");
604  BranchInst::Create(UnwindBlock, TermBlock, NotNull, UnwindHandler);
605
606  // Create the block to do the longjmp.
607  // Get a pointer to the jmpbuf and longjmp.
608  std::vector<Value*> Idx;
609  Idx.push_back(Constant::getNullValue(Type::getInt32Ty(F.getContext())));
610  Idx.push_back(ConstantInt::get(Type::getInt32Ty(F.getContext()), 0));
611  Idx[0] = GetElementPtrInst::Create(BufPtr, Idx.begin(), Idx.end(), "JmpBuf",
612                                     UnwindBlock);
613  Idx[0] = new BitCastInst(Idx[0],
614             Type::getInt8PtrTy(F.getContext()),
615                           "tmp", UnwindBlock);
616  Idx[1] = ConstantInt::get(Type::getInt32Ty(F.getContext()), 1);
617  CallInst::Create(LongJmpFn, Idx.begin(), Idx.end(), "", UnwindBlock);
618  new UnreachableInst(F.getContext(), UnwindBlock);
619
620  // Set up the term block ("throw without a catch").
621  new UnreachableInst(F.getContext(), TermBlock);
622
623  // Insert a new call to write(2, AbortMessage, AbortMessageLength);
624  writeAbortMessage(TermBlock->getTerminator());
625
626  // Insert a call to abort()
627  CallInst::Create(AbortFn, "",
628                   TermBlock->getTerminator())->setTailCall();
629
630
631  // Replace all unwinds with a branch to the unwind handler.
632  for (unsigned i = 0, e = Unwinds.size(); i != e; ++i) {
633    BranchInst::Create(UnwindHandler, Unwinds[i]);
634    Unwinds[i]->eraseFromParent();
635  }
636
637  // Finally, for any returns from this function, if this function contains an
638  // invoke, restore the old jmpbuf pointer to its input value.
639  if (OldJmpBufPtr) {
640    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
641      ReturnInst *R = Returns[i];
642
643      // Before the return, insert a copy from the saved value to the new value.
644      Value *OldBuf = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", true, R);
645      new StoreInst(OldBuf, JBListHead, true, R);
646    }
647  }
648
649  return true;
650}
651
652bool LowerInvoke::runOnFunction(Function &F) {
653  if (useExpensiveEHSupport)
654    return insertExpensiveEHSupport(F);
655  else
656    return insertCheapEHSupport(F);
657}
658