linker.cpp revision 586b4b500fed64fb724beb3753bc190cd1c676e0
1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24/**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type.  All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 *   - Undefined references in each shader are resolve to definitions in
36 *     another shader.
37 *   - Types and qualifiers of uniforms, outputs, and global variables defined
38 *     in multiple shaders with the same name are verified to be the same.
39 *   - Initializers for uniforms and global variables defined
40 *     in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 *   - Each shader executable must define a \c main function.
49 *   - Each vertex shader executable must write to \c gl_Position.
50 *   - Each fragment shader executable must write to either \c gl_FragData or
51 *     \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 *   - Types of uniforms defined in multiple shader stages with the same name
57 *     are verified to be the same.
58 *   - Initializers for uniforms defined in multiple shader stages with the
59 *     same name are verified to be the same.
60 *   - Types and qualifiers of outputs defined in one stage are verified to
61 *     be the same as the types and qualifiers of inputs defined with the same
62 *     name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66#include <cstdlib>
67#include <cstdio>
68#include <cstdarg>
69#include <climits>
70
71extern "C" {
72#include <talloc.h>
73}
74
75#include "main/core.h"
76#include "glsl_symbol_table.h"
77#include "ir.h"
78#include "program.h"
79#include "program/hash_table.h"
80#include "linker.h"
81#include "ir_optimization.h"
82
83/**
84 * Visitor that determines whether or not a variable is ever written.
85 */
86class find_assignment_visitor : public ir_hierarchical_visitor {
87public:
88   find_assignment_visitor(const char *name)
89      : name(name), found(false)
90   {
91      /* empty */
92   }
93
94   virtual ir_visitor_status visit_enter(ir_assignment *ir)
95   {
96      ir_variable *const var = ir->lhs->variable_referenced();
97
98      if (strcmp(name, var->name) == 0) {
99	 found = true;
100	 return visit_stop;
101      }
102
103      return visit_continue_with_parent;
104   }
105
106   virtual ir_visitor_status visit_enter(ir_call *ir)
107   {
108      exec_list_iterator sig_iter = ir->get_callee()->parameters.iterator();
109      foreach_iter(exec_list_iterator, iter, *ir) {
110	 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
111	 ir_variable *sig_param = (ir_variable *)sig_iter.get();
112
113	 if (sig_param->mode == ir_var_out ||
114	     sig_param->mode == ir_var_inout) {
115	    ir_variable *var = param_rval->variable_referenced();
116	    if (var && strcmp(name, var->name) == 0) {
117	       found = true;
118	       return visit_stop;
119	    }
120	 }
121	 sig_iter.next();
122      }
123
124      return visit_continue_with_parent;
125   }
126
127   bool variable_found()
128   {
129      return found;
130   }
131
132private:
133   const char *name;       /**< Find writes to a variable with this name. */
134   bool found;             /**< Was a write to the variable found? */
135};
136
137
138/**
139 * Visitor that determines whether or not a variable is ever read.
140 */
141class find_deref_visitor : public ir_hierarchical_visitor {
142public:
143   find_deref_visitor(const char *name)
144      : name(name), found(false)
145   {
146      /* empty */
147   }
148
149   virtual ir_visitor_status visit(ir_dereference_variable *ir)
150   {
151      if (strcmp(this->name, ir->var->name) == 0) {
152	 this->found = true;
153	 return visit_stop;
154      }
155
156      return visit_continue;
157   }
158
159   bool variable_found() const
160   {
161      return this->found;
162   }
163
164private:
165   const char *name;       /**< Find writes to a variable with this name. */
166   bool found;             /**< Was a write to the variable found? */
167};
168
169
170void
171linker_error_printf(gl_shader_program *prog, const char *fmt, ...)
172{
173   va_list ap;
174
175   prog->InfoLog = talloc_strdup_append(prog->InfoLog, "error: ");
176   va_start(ap, fmt);
177   prog->InfoLog = talloc_vasprintf_append(prog->InfoLog, fmt, ap);
178   va_end(ap);
179}
180
181
182void
183invalidate_variable_locations(gl_shader *sh, enum ir_variable_mode mode,
184			      int generic_base)
185{
186   foreach_list(node, sh->ir) {
187      ir_variable *const var = ((ir_instruction *) node)->as_variable();
188
189      if ((var == NULL) || (var->mode != (unsigned) mode))
190	 continue;
191
192      /* Only assign locations for generic attributes / varyings / etc.
193       */
194      if (var->location >= generic_base)
195	  var->location = -1;
196   }
197}
198
199
200/**
201 * Determine the number of attribute slots required for a particular type
202 *
203 * This code is here because it implements the language rules of a specific
204 * GLSL version.  Since it's a property of the language and not a property of
205 * types in general, it doesn't really belong in glsl_type.
206 */
207unsigned
208count_attribute_slots(const glsl_type *t)
209{
210   /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
211    *
212    *     "A scalar input counts the same amount against this limit as a vec4,
213    *     so applications may want to consider packing groups of four
214    *     unrelated float inputs together into a vector to better utilize the
215    *     capabilities of the underlying hardware. A matrix input will use up
216    *     multiple locations.  The number of locations used will equal the
217    *     number of columns in the matrix."
218    *
219    * The spec does not explicitly say how arrays are counted.  However, it
220    * should be safe to assume the total number of slots consumed by an array
221    * is the number of entries in the array multiplied by the number of slots
222    * consumed by a single element of the array.
223    */
224
225   if (t->is_array())
226      return t->array_size() * count_attribute_slots(t->element_type());
227
228   if (t->is_matrix())
229      return t->matrix_columns;
230
231   return 1;
232}
233
234
235/**
236 * Verify that a vertex shader executable meets all semantic requirements
237 *
238 * \param shader  Vertex shader executable to be verified
239 */
240bool
241validate_vertex_shader_executable(struct gl_shader_program *prog,
242				  struct gl_shader *shader)
243{
244   if (shader == NULL)
245      return true;
246
247   find_assignment_visitor find("gl_Position");
248   find.run(shader->ir);
249   if (!find.variable_found()) {
250      linker_error_printf(prog,
251			  "vertex shader does not write to `gl_Position'\n");
252      return false;
253   }
254
255   return true;
256}
257
258
259/**
260 * Verify that a fragment shader executable meets all semantic requirements
261 *
262 * \param shader  Fragment shader executable to be verified
263 */
264bool
265validate_fragment_shader_executable(struct gl_shader_program *prog,
266				    struct gl_shader *shader)
267{
268   if (shader == NULL)
269      return true;
270
271   find_assignment_visitor frag_color("gl_FragColor");
272   find_assignment_visitor frag_data("gl_FragData");
273
274   frag_color.run(shader->ir);
275   frag_data.run(shader->ir);
276
277   if (frag_color.variable_found() && frag_data.variable_found()) {
278      linker_error_printf(prog,  "fragment shader writes to both "
279			  "`gl_FragColor' and `gl_FragData'\n");
280      return false;
281   }
282
283   return true;
284}
285
286
287/**
288 * Generate a string describing the mode of a variable
289 */
290static const char *
291mode_string(const ir_variable *var)
292{
293   switch (var->mode) {
294   case ir_var_auto:
295      return (var->read_only) ? "global constant" : "global variable";
296
297   case ir_var_uniform: return "uniform";
298   case ir_var_in:      return "shader input";
299   case ir_var_out:     return "shader output";
300   case ir_var_inout:   return "shader inout";
301
302   case ir_var_temporary:
303   default:
304      assert(!"Should not get here.");
305      return "invalid variable";
306   }
307}
308
309
310/**
311 * Perform validation of global variables used across multiple shaders
312 */
313bool
314cross_validate_globals(struct gl_shader_program *prog,
315		       struct gl_shader **shader_list,
316		       unsigned num_shaders,
317		       bool uniforms_only)
318{
319   /* Examine all of the uniforms in all of the shaders and cross validate
320    * them.
321    */
322   glsl_symbol_table variables;
323   for (unsigned i = 0; i < num_shaders; i++) {
324      foreach_list(node, shader_list[i]->ir) {
325	 ir_variable *const var = ((ir_instruction *) node)->as_variable();
326
327	 if (var == NULL)
328	    continue;
329
330	 if (uniforms_only && (var->mode != ir_var_uniform))
331	    continue;
332
333	 /* Don't cross validate temporaries that are at global scope.  These
334	  * will eventually get pulled into the shaders 'main'.
335	  */
336	 if (var->mode == ir_var_temporary)
337	    continue;
338
339	 /* If a global with this name has already been seen, verify that the
340	  * new instance has the same type.  In addition, if the globals have
341	  * initializers, the values of the initializers must be the same.
342	  */
343	 ir_variable *const existing = variables.get_variable(var->name);
344	 if (existing != NULL) {
345	    if (var->type != existing->type) {
346	       /* Consider the types to be "the same" if both types are arrays
347		* of the same type and one of the arrays is implicitly sized.
348		* In addition, set the type of the linked variable to the
349		* explicitly sized array.
350		*/
351	       if (var->type->is_array()
352		   && existing->type->is_array()
353		   && (var->type->fields.array == existing->type->fields.array)
354		   && ((var->type->length == 0)
355		       || (existing->type->length == 0))) {
356		  if (existing->type->length == 0)
357		     existing->type = var->type;
358	       } else {
359		  linker_error_printf(prog, "%s `%s' declared as type "
360				      "`%s' and type `%s'\n",
361				      mode_string(var),
362				      var->name, var->type->name,
363				      existing->type->name);
364		  return false;
365	       }
366	    }
367
368	    /* FINISHME: Handle non-constant initializers.
369	     */
370	    if (var->constant_value != NULL) {
371	       if (existing->constant_value != NULL) {
372		  if (!var->constant_value->has_value(existing->constant_value)) {
373		     linker_error_printf(prog, "initializers for %s "
374					 "`%s' have differing values\n",
375					 mode_string(var), var->name);
376		     return false;
377		  }
378	       } else
379		  /* If the first-seen instance of a particular uniform did not
380		   * have an initializer but a later instance does, copy the
381		   * initializer to the version stored in the symbol table.
382		   */
383		  /* FINISHME: This is wrong.  The constant_value field should
384		   * FINISHME: not be modified!  Imagine a case where a shader
385		   * FINISHME: without an initializer is linked in two different
386		   * FINISHME: programs with shaders that have differing
387		   * FINISHME: initializers.  Linking with the first will
388		   * FINISHME: modify the shader, and linking with the second
389		   * FINISHME: will fail.
390		   */
391		  existing->constant_value =
392		     var->constant_value->clone(talloc_parent(existing), NULL);
393	    }
394	 } else
395	    variables.add_variable(var->name, var);
396      }
397   }
398
399   return true;
400}
401
402
403/**
404 * Perform validation of uniforms used across multiple shader stages
405 */
406bool
407cross_validate_uniforms(struct gl_shader_program *prog)
408{
409   return cross_validate_globals(prog, prog->_LinkedShaders,
410				 prog->_NumLinkedShaders, true);
411}
412
413
414/**
415 * Validate that outputs from one stage match inputs of another
416 */
417bool
418cross_validate_outputs_to_inputs(struct gl_shader_program *prog,
419				 gl_shader *producer, gl_shader *consumer)
420{
421   glsl_symbol_table parameters;
422   /* FINISHME: Figure these out dynamically. */
423   const char *const producer_stage = "vertex";
424   const char *const consumer_stage = "fragment";
425
426   /* Find all shader outputs in the "producer" stage.
427    */
428   foreach_list(node, producer->ir) {
429      ir_variable *const var = ((ir_instruction *) node)->as_variable();
430
431      /* FINISHME: For geometry shaders, this should also look for inout
432       * FINISHME: variables.
433       */
434      if ((var == NULL) || (var->mode != ir_var_out))
435	 continue;
436
437      parameters.add_variable(var->name, var);
438   }
439
440
441   /* Find all shader inputs in the "consumer" stage.  Any variables that have
442    * matching outputs already in the symbol table must have the same type and
443    * qualifiers.
444    */
445   foreach_list(node, consumer->ir) {
446      ir_variable *const input = ((ir_instruction *) node)->as_variable();
447
448      /* FINISHME: For geometry shaders, this should also look for inout
449       * FINISHME: variables.
450       */
451      if ((input == NULL) || (input->mode != ir_var_in))
452	 continue;
453
454      ir_variable *const output = parameters.get_variable(input->name);
455      if (output != NULL) {
456	 /* Check that the types match between stages.
457	  */
458	 if (input->type != output->type) {
459	    linker_error_printf(prog,
460				"%s shader output `%s' declared as "
461				"type `%s', but %s shader input declared "
462				"as type `%s'\n",
463				producer_stage, output->name,
464				output->type->name,
465				consumer_stage, input->type->name);
466	    return false;
467	 }
468
469	 /* Check that all of the qualifiers match between stages.
470	  */
471	 if (input->centroid != output->centroid) {
472	    linker_error_printf(prog,
473				"%s shader output `%s' %s centroid qualifier, "
474				"but %s shader input %s centroid qualifier\n",
475				producer_stage,
476				output->name,
477				(output->centroid) ? "has" : "lacks",
478				consumer_stage,
479				(input->centroid) ? "has" : "lacks");
480	    return false;
481	 }
482
483	 if (input->invariant != output->invariant) {
484	    linker_error_printf(prog,
485				"%s shader output `%s' %s invariant qualifier, "
486				"but %s shader input %s invariant qualifier\n",
487				producer_stage,
488				output->name,
489				(output->invariant) ? "has" : "lacks",
490				consumer_stage,
491				(input->invariant) ? "has" : "lacks");
492	    return false;
493	 }
494
495	 if (input->interpolation != output->interpolation) {
496	    linker_error_printf(prog,
497				"%s shader output `%s' specifies %s "
498				"interpolation qualifier, "
499				"but %s shader input specifies %s "
500				"interpolation qualifier\n",
501				producer_stage,
502				output->name,
503				output->interpolation_string(),
504				consumer_stage,
505				input->interpolation_string());
506	    return false;
507	 }
508      }
509   }
510
511   return true;
512}
513
514
515/**
516 * Populates a shaders symbol table with all global declarations
517 */
518static void
519populate_symbol_table(gl_shader *sh)
520{
521   sh->symbols = new(sh) glsl_symbol_table;
522
523   foreach_list(node, sh->ir) {
524      ir_instruction *const inst = (ir_instruction *) node;
525      ir_variable *var;
526      ir_function *func;
527
528      if ((func = inst->as_function()) != NULL) {
529	 sh->symbols->add_function(func->name, func);
530      } else if ((var = inst->as_variable()) != NULL) {
531	 sh->symbols->add_variable(var->name, var);
532      }
533   }
534}
535
536
537/**
538 * Remap variables referenced in an instruction tree
539 *
540 * This is used when instruction trees are cloned from one shader and placed in
541 * another.  These trees will contain references to \c ir_variable nodes that
542 * do not exist in the target shader.  This function finds these \c ir_variable
543 * references and replaces the references with matching variables in the target
544 * shader.
545 *
546 * If there is no matching variable in the target shader, a clone of the
547 * \c ir_variable is made and added to the target shader.  The new variable is
548 * added to \b both the instruction stream and the symbol table.
549 *
550 * \param inst         IR tree that is to be processed.
551 * \param symbols      Symbol table containing global scope symbols in the
552 *                     linked shader.
553 * \param instructions Instruction stream where new variable declarations
554 *                     should be added.
555 */
556void
557remap_variables(ir_instruction *inst, struct gl_shader *target,
558		hash_table *temps)
559{
560   class remap_visitor : public ir_hierarchical_visitor {
561   public:
562	 remap_visitor(struct gl_shader *target,
563		    hash_table *temps)
564      {
565	 this->target = target;
566	 this->symbols = target->symbols;
567	 this->instructions = target->ir;
568	 this->temps = temps;
569      }
570
571      virtual ir_visitor_status visit(ir_dereference_variable *ir)
572      {
573	 if (ir->var->mode == ir_var_temporary) {
574	    ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
575
576	    assert(var != NULL);
577	    ir->var = var;
578	    return visit_continue;
579	 }
580
581	 ir_variable *const existing =
582	    this->symbols->get_variable(ir->var->name);
583	 if (existing != NULL)
584	    ir->var = existing;
585	 else {
586	    ir_variable *copy = ir->var->clone(this->target, NULL);
587
588	    this->symbols->add_variable(copy->name, copy);
589	    this->instructions->push_head(copy);
590	    ir->var = copy;
591	 }
592
593	 return visit_continue;
594      }
595
596   private:
597      struct gl_shader *target;
598      glsl_symbol_table *symbols;
599      exec_list *instructions;
600      hash_table *temps;
601   };
602
603   remap_visitor v(target, temps);
604
605   inst->accept(&v);
606}
607
608
609/**
610 * Move non-declarations from one instruction stream to another
611 *
612 * The intended usage pattern of this function is to pass the pointer to the
613 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
614 * pointer) for \c last and \c false for \c make_copies on the first
615 * call.  Successive calls pass the return value of the previous call for
616 * \c last and \c true for \c make_copies.
617 *
618 * \param instructions Source instruction stream
619 * \param last         Instruction after which new instructions should be
620 *                     inserted in the target instruction stream
621 * \param make_copies  Flag selecting whether instructions in \c instructions
622 *                     should be copied (via \c ir_instruction::clone) into the
623 *                     target list or moved.
624 *
625 * \return
626 * The new "last" instruction in the target instruction stream.  This pointer
627 * is suitable for use as the \c last parameter of a later call to this
628 * function.
629 */
630exec_node *
631move_non_declarations(exec_list *instructions, exec_node *last,
632		      bool make_copies, gl_shader *target)
633{
634   hash_table *temps = NULL;
635
636   if (make_copies)
637      temps = hash_table_ctor(0, hash_table_pointer_hash,
638			      hash_table_pointer_compare);
639
640   foreach_list_safe(node, instructions) {
641      ir_instruction *inst = (ir_instruction *) node;
642
643      if (inst->as_function())
644	 continue;
645
646      ir_variable *var = inst->as_variable();
647      if ((var != NULL) && (var->mode != ir_var_temporary))
648	 continue;
649
650      assert(inst->as_assignment()
651	     || ((var != NULL) && (var->mode == ir_var_temporary)));
652
653      if (make_copies) {
654	 inst = inst->clone(target, NULL);
655
656	 if (var != NULL)
657	    hash_table_insert(temps, inst, var);
658	 else
659	    remap_variables(inst, target, temps);
660      } else {
661	 inst->remove();
662      }
663
664      last->insert_after(inst);
665      last = inst;
666   }
667
668   if (make_copies)
669      hash_table_dtor(temps);
670
671   return last;
672}
673
674/**
675 * Get the function signature for main from a shader
676 */
677static ir_function_signature *
678get_main_function_signature(gl_shader *sh)
679{
680   ir_function *const f = sh->symbols->get_function("main");
681   if (f != NULL) {
682      exec_list void_parameters;
683
684      /* Look for the 'void main()' signature and ensure that it's defined.
685       * This keeps the linker from accidentally pick a shader that just
686       * contains a prototype for main.
687       *
688       * We don't have to check for multiple definitions of main (in multiple
689       * shaders) because that would have already been caught above.
690       */
691      ir_function_signature *sig = f->matching_signature(&void_parameters);
692      if ((sig != NULL) && sig->is_defined) {
693	 return sig;
694      }
695   }
696
697   return NULL;
698}
699
700
701/**
702 * Combine a group of shaders for a single stage to generate a linked shader
703 *
704 * \note
705 * If this function is supplied a single shader, it is cloned, and the new
706 * shader is returned.
707 */
708static struct gl_shader *
709link_intrastage_shaders(GLcontext *ctx,
710			struct gl_shader_program *prog,
711			struct gl_shader **shader_list,
712			unsigned num_shaders)
713{
714   /* Check that global variables defined in multiple shaders are consistent.
715    */
716   if (!cross_validate_globals(prog, shader_list, num_shaders, false))
717      return NULL;
718
719   /* Check that there is only a single definition of each function signature
720    * across all shaders.
721    */
722   for (unsigned i = 0; i < (num_shaders - 1); i++) {
723      foreach_list(node, shader_list[i]->ir) {
724	 ir_function *const f = ((ir_instruction *) node)->as_function();
725
726	 if (f == NULL)
727	    continue;
728
729	 for (unsigned j = i + 1; j < num_shaders; j++) {
730	    ir_function *const other =
731	       shader_list[j]->symbols->get_function(f->name);
732
733	    /* If the other shader has no function (and therefore no function
734	     * signatures) with the same name, skip to the next shader.
735	     */
736	    if (other == NULL)
737	       continue;
738
739	    foreach_iter (exec_list_iterator, iter, *f) {
740	       ir_function_signature *sig =
741		  (ir_function_signature *) iter.get();
742
743	       if (!sig->is_defined || sig->is_builtin)
744		  continue;
745
746	       ir_function_signature *other_sig =
747		  other->exact_matching_signature(& sig->parameters);
748
749	       if ((other_sig != NULL) && other_sig->is_defined
750		   && !other_sig->is_builtin) {
751		  linker_error_printf(prog,
752				      "function `%s' is multiply defined",
753				      f->name);
754		  return NULL;
755	       }
756	    }
757	 }
758      }
759   }
760
761   /* Find the shader that defines main, and make a clone of it.
762    *
763    * Starting with the clone, search for undefined references.  If one is
764    * found, find the shader that defines it.  Clone the reference and add
765    * it to the shader.  Repeat until there are no undefined references or
766    * until a reference cannot be resolved.
767    */
768   gl_shader *main = NULL;
769   for (unsigned i = 0; i < num_shaders; i++) {
770      if (get_main_function_signature(shader_list[i]) != NULL) {
771	 main = shader_list[i];
772	 break;
773      }
774   }
775
776   if (main == NULL) {
777      linker_error_printf(prog, "%s shader lacks `main'\n",
778			  (shader_list[0]->Type == GL_VERTEX_SHADER)
779			  ? "vertex" : "fragment");
780      return NULL;
781   }
782
783   gl_shader *const linked = ctx->Driver.NewShader(NULL, 0, main->Type);
784   linked->ir = new(linked) exec_list;
785   clone_ir_list(linked, linked->ir, main->ir);
786
787   populate_symbol_table(linked);
788
789   /* The a pointer to the main function in the final linked shader (i.e., the
790    * copy of the original shader that contained the main function).
791    */
792   ir_function_signature *const main_sig = get_main_function_signature(linked);
793
794   /* Move any instructions other than variable declarations or function
795    * declarations into main.
796    */
797   exec_node *insertion_point =
798      move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
799			    linked);
800
801   for (unsigned i = 0; i < num_shaders; i++) {
802      if (shader_list[i] == main)
803	 continue;
804
805      insertion_point = move_non_declarations(shader_list[i]->ir,
806					      insertion_point, true, linked);
807   }
808
809   /* Resolve initializers for global variables in the linked shader.
810    */
811   unsigned num_linking_shaders = num_shaders;
812   for (unsigned i = 0; i < num_shaders; i++)
813      num_linking_shaders += shader_list[i]->num_builtins_to_link;
814
815   gl_shader **linking_shaders =
816      (gl_shader **) calloc(num_linking_shaders, sizeof(gl_shader *));
817
818   memcpy(linking_shaders, shader_list,
819	  sizeof(linking_shaders[0]) * num_shaders);
820
821   unsigned idx = num_shaders;
822   for (unsigned i = 0; i < num_shaders; i++) {
823      memcpy(&linking_shaders[idx], shader_list[i]->builtins_to_link,
824	     sizeof(linking_shaders[0]) * shader_list[i]->num_builtins_to_link);
825      idx += shader_list[i]->num_builtins_to_link;
826   }
827
828   assert(idx == num_linking_shaders);
829
830   link_function_calls(prog, linked, linking_shaders, num_linking_shaders);
831
832   free(linking_shaders);
833
834   return linked;
835}
836
837
838struct uniform_node {
839   exec_node link;
840   struct gl_uniform *u;
841   unsigned slots;
842};
843
844/**
845 * Update the sizes of linked shader uniform arrays to the maximum
846 * array index used.
847 *
848 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
849 *
850 *     If one or more elements of an array are active,
851 *     GetActiveUniform will return the name of the array in name,
852 *     subject to the restrictions listed above. The type of the array
853 *     is returned in type. The size parameter contains the highest
854 *     array element index used, plus one. The compiler or linker
855 *     determines the highest index used.  There will be only one
856 *     active uniform reported by the GL per uniform array.
857
858 */
859static void
860update_array_sizes(struct gl_shader_program *prog)
861{
862   for (unsigned i = 0; i < prog->_NumLinkedShaders; i++) {
863      foreach_list(node, prog->_LinkedShaders[i]->ir) {
864	 ir_variable *const var = ((ir_instruction *) node)->as_variable();
865
866	 if ((var == NULL) || (var->mode != ir_var_uniform &&
867			       var->mode != ir_var_in &&
868			       var->mode != ir_var_out) ||
869	     !var->type->is_array())
870	    continue;
871
872	 unsigned int size = var->max_array_access;
873	 for (unsigned j = 0; j < prog->_NumLinkedShaders; j++) {
874	    foreach_list(node2, prog->_LinkedShaders[j]->ir) {
875	       ir_variable *other_var = ((ir_instruction *) node2)->as_variable();
876	       if (!other_var)
877		  continue;
878
879	       if (strcmp(var->name, other_var->name) == 0 &&
880		   other_var->max_array_access > size) {
881		  size = other_var->max_array_access;
882	       }
883	    }
884	 }
885
886	 if (size + 1 != var->type->fields.array->length) {
887	    var->type = glsl_type::get_array_instance(var->type->fields.array,
888						      size + 1);
889	    /* FINISHME: We should update the types of array
890	     * dereferences of this variable now.
891	     */
892	 }
893      }
894   }
895}
896
897static void
898add_uniform(void *mem_ctx, exec_list *uniforms, struct hash_table *ht,
899	    const char *name, const glsl_type *type, GLenum shader_type,
900	    unsigned *next_shader_pos, unsigned *total_uniforms)
901{
902   if (type->is_record()) {
903      for (unsigned int i = 0; i < type->length; i++) {
904	 const glsl_type *field_type = type->fields.structure[i].type;
905	 char *field_name = talloc_asprintf(mem_ctx, "%s.%s", name,
906					    type->fields.structure[i].name);
907
908	 add_uniform(mem_ctx, uniforms, ht, field_name, field_type,
909		     shader_type, next_shader_pos, total_uniforms);
910      }
911   } else {
912      uniform_node *n = (uniform_node *) hash_table_find(ht, name);
913      unsigned int vec4_slots;
914      const glsl_type *array_elem_type = NULL;
915
916      if (type->is_array()) {
917	 array_elem_type = type->fields.array;
918	 /* Array of structures. */
919	 if (array_elem_type->is_record()) {
920	    for (unsigned int i = 0; i < type->length; i++) {
921	       char *elem_name = talloc_asprintf(mem_ctx, "%s[%d]", name, i);
922	       add_uniform(mem_ctx, uniforms, ht, elem_name, array_elem_type,
923			   shader_type, next_shader_pos, total_uniforms);
924	    }
925	    return;
926	 }
927      }
928
929      /* Fix the storage size of samplers at 1 vec4 each. Be sure to pad out
930       * vectors to vec4 slots.
931       */
932      if (type->is_array()) {
933	 if (array_elem_type->is_sampler())
934	    vec4_slots = type->length;
935	 else
936	    vec4_slots = type->length * array_elem_type->matrix_columns;
937      } else if (type->is_sampler()) {
938	 vec4_slots = 1;
939      } else {
940	 vec4_slots = type->matrix_columns;
941      }
942
943      if (n == NULL) {
944	 n = (uniform_node *) calloc(1, sizeof(struct uniform_node));
945	 n->u = (gl_uniform *) calloc(1, sizeof(struct gl_uniform));
946	 n->slots = vec4_slots;
947
948	 n->u->Name = strdup(name);
949	 n->u->Type = type;
950	 n->u->VertPos = -1;
951	 n->u->FragPos = -1;
952	 n->u->GeomPos = -1;
953	 (*total_uniforms)++;
954
955	 hash_table_insert(ht, n, name);
956	 uniforms->push_tail(& n->link);
957      }
958
959      switch (shader_type) {
960      case GL_VERTEX_SHADER:
961	 n->u->VertPos = *next_shader_pos;
962	 break;
963      case GL_FRAGMENT_SHADER:
964	 n->u->FragPos = *next_shader_pos;
965	 break;
966      case GL_GEOMETRY_SHADER:
967	 n->u->GeomPos = *next_shader_pos;
968	 break;
969      }
970
971      (*next_shader_pos) += vec4_slots;
972   }
973}
974
975void
976assign_uniform_locations(struct gl_shader_program *prog)
977{
978   /* */
979   exec_list uniforms;
980   unsigned total_uniforms = 0;
981   hash_table *ht = hash_table_ctor(32, hash_table_string_hash,
982				    hash_table_string_compare);
983   void *mem_ctx = talloc_new(NULL);
984
985   for (unsigned i = 0; i < prog->_NumLinkedShaders; i++) {
986      unsigned next_position = 0;
987
988      foreach_list(node, prog->_LinkedShaders[i]->ir) {
989	 ir_variable *const var = ((ir_instruction *) node)->as_variable();
990
991	 if ((var == NULL) || (var->mode != ir_var_uniform))
992	    continue;
993
994	 if (strncmp(var->name, "gl_", 3) == 0) {
995	    /* At the moment, we don't allocate uniform locations for
996	     * builtin uniforms.  It's permitted by spec, and we'll
997	     * likely switch to doing that at some point, but not yet.
998	     */
999	    continue;
1000	 }
1001
1002	 var->location = next_position;
1003	 add_uniform(mem_ctx, &uniforms, ht, var->name, var->type,
1004		     prog->_LinkedShaders[i]->Type,
1005		     &next_position, &total_uniforms);
1006      }
1007   }
1008
1009   talloc_free(mem_ctx);
1010
1011   gl_uniform_list *ul = (gl_uniform_list *)
1012      calloc(1, sizeof(gl_uniform_list));
1013
1014   ul->Size = total_uniforms;
1015   ul->NumUniforms = total_uniforms;
1016   ul->Uniforms = (gl_uniform *) calloc(total_uniforms, sizeof(gl_uniform));
1017
1018   unsigned idx = 0;
1019   uniform_node *next;
1020   for (uniform_node *node = (uniform_node *) uniforms.head
1021	   ; node->link.next != NULL
1022	   ; node = next) {
1023      next = (uniform_node *) node->link.next;
1024
1025      node->link.remove();
1026      memcpy(&ul->Uniforms[idx], node->u, sizeof(gl_uniform));
1027      idx++;
1028
1029      free(node->u);
1030      free(node);
1031   }
1032
1033   hash_table_dtor(ht);
1034
1035   prog->Uniforms = ul;
1036}
1037
1038
1039/**
1040 * Find a contiguous set of available bits in a bitmask
1041 *
1042 * \param used_mask     Bits representing used (1) and unused (0) locations
1043 * \param needed_count  Number of contiguous bits needed.
1044 *
1045 * \return
1046 * Base location of the available bits on success or -1 on failure.
1047 */
1048int
1049find_available_slots(unsigned used_mask, unsigned needed_count)
1050{
1051   unsigned needed_mask = (1 << needed_count) - 1;
1052   const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
1053
1054   /* The comparison to 32 is redundant, but without it GCC emits "warning:
1055    * cannot optimize possibly infinite loops" for the loop below.
1056    */
1057   if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
1058      return -1;
1059
1060   for (int i = 0; i <= max_bit_to_test; i++) {
1061      if ((needed_mask & ~used_mask) == needed_mask)
1062	 return i;
1063
1064      needed_mask <<= 1;
1065   }
1066
1067   return -1;
1068}
1069
1070
1071bool
1072assign_attribute_locations(gl_shader_program *prog, unsigned max_attribute_index)
1073{
1074   /* Mark invalid attribute locations as being used.
1075    */
1076   unsigned used_locations = (max_attribute_index >= 32)
1077      ? ~0 : ~((1 << max_attribute_index) - 1);
1078
1079   gl_shader *const sh = prog->_LinkedShaders[0];
1080   assert(sh->Type == GL_VERTEX_SHADER);
1081
1082   /* Operate in a total of four passes.
1083    *
1084    * 1. Invalidate the location assignments for all vertex shader inputs.
1085    *
1086    * 2. Assign locations for inputs that have user-defined (via
1087    *    glBindVertexAttribLocation) locatoins.
1088    *
1089    * 3. Sort the attributes without assigned locations by number of slots
1090    *    required in decreasing order.  Fragmentation caused by attribute
1091    *    locations assigned by the application may prevent large attributes
1092    *    from having enough contiguous space.
1093    *
1094    * 4. Assign locations to any inputs without assigned locations.
1095    */
1096
1097   invalidate_variable_locations(sh, ir_var_in, VERT_ATTRIB_GENERIC0);
1098
1099   if (prog->Attributes != NULL) {
1100      for (unsigned i = 0; i < prog->Attributes->NumParameters; i++) {
1101	 ir_variable *const var =
1102	    sh->symbols->get_variable(prog->Attributes->Parameters[i].Name);
1103
1104	 /* Note: attributes that occupy multiple slots, such as arrays or
1105	  * matrices, may appear in the attrib array multiple times.
1106	  */
1107	 if ((var == NULL) || (var->location != -1))
1108	    continue;
1109
1110	 /* From page 61 of the OpenGL 4.0 spec:
1111	  *
1112	  *     "LinkProgram will fail if the attribute bindings assigned by
1113	  *     BindAttribLocation do not leave not enough space to assign a
1114	  *     location for an active matrix attribute or an active attribute
1115	  *     array, both of which require multiple contiguous generic
1116	  *     attributes."
1117	  *
1118	  * Previous versions of the spec contain similar language but omit the
1119	  * bit about attribute arrays.
1120	  *
1121	  * Page 61 of the OpenGL 4.0 spec also says:
1122	  *
1123	  *     "It is possible for an application to bind more than one
1124	  *     attribute name to the same location. This is referred to as
1125	  *     aliasing. This will only work if only one of the aliased
1126	  *     attributes is active in the executable program, or if no path
1127	  *     through the shader consumes more than one attribute of a set
1128	  *     of attributes aliased to the same location. A link error can
1129	  *     occur if the linker determines that every path through the
1130	  *     shader consumes multiple aliased attributes, but
1131	  *     implementations are not required to generate an error in this
1132	  *     case."
1133	  *
1134	  * These two paragraphs are either somewhat contradictory, or I don't
1135	  * fully understand one or both of them.
1136	  */
1137	 /* FINISHME: The code as currently written does not support attribute
1138	  * FINISHME: location aliasing (see comment above).
1139	  */
1140	 const int attr = prog->Attributes->Parameters[i].StateIndexes[0];
1141	 const unsigned slots = count_attribute_slots(var->type);
1142
1143	 /* Mask representing the contiguous slots that will be used by this
1144	  * attribute.
1145	  */
1146	 const unsigned use_mask = (1 << slots) - 1;
1147
1148	 /* Generate a link error if the set of bits requested for this
1149	  * attribute overlaps any previously allocated bits.
1150	  */
1151	 if ((~(use_mask << attr) & used_locations) != used_locations) {
1152	    linker_error_printf(prog,
1153				"insufficient contiguous attribute locations "
1154				"available for vertex shader input `%s'",
1155				var->name);
1156	    return false;
1157	 }
1158
1159	 var->location = VERT_ATTRIB_GENERIC0 + attr;
1160	 used_locations |= (use_mask << attr);
1161      }
1162   }
1163
1164   /* Temporary storage for the set of attributes that need locations assigned.
1165    */
1166   struct temp_attr {
1167      unsigned slots;
1168      ir_variable *var;
1169
1170      /* Used below in the call to qsort. */
1171      static int compare(const void *a, const void *b)
1172      {
1173	 const temp_attr *const l = (const temp_attr *) a;
1174	 const temp_attr *const r = (const temp_attr *) b;
1175
1176	 /* Reversed because we want a descending order sort below. */
1177	 return r->slots - l->slots;
1178      }
1179   } to_assign[16];
1180
1181   unsigned num_attr = 0;
1182
1183   foreach_list(node, sh->ir) {
1184      ir_variable *const var = ((ir_instruction *) node)->as_variable();
1185
1186      if ((var == NULL) || (var->mode != ir_var_in))
1187	 continue;
1188
1189      /* The location was explicitly assigned, nothing to do here.
1190       */
1191      if (var->location != -1)
1192	 continue;
1193
1194      to_assign[num_attr].slots = count_attribute_slots(var->type);
1195      to_assign[num_attr].var = var;
1196      num_attr++;
1197   }
1198
1199   /* If all of the attributes were assigned locations by the application (or
1200    * are built-in attributes with fixed locations), return early.  This should
1201    * be the common case.
1202    */
1203   if (num_attr == 0)
1204      return true;
1205
1206   qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
1207
1208   /* VERT_ATTRIB_GENERIC0 is a psdueo-alias for VERT_ATTRIB_POS.  It can only
1209    * be explicitly assigned by via glBindAttribLocation.  Mark it as reserved
1210    * to prevent it from being automatically allocated below.
1211    */
1212   find_deref_visitor find("gl_Vertex");
1213   find.run(sh->ir);
1214   if (find.variable_found())
1215      used_locations |= (1 << 0);
1216
1217   for (unsigned i = 0; i < num_attr; i++) {
1218      /* Mask representing the contiguous slots that will be used by this
1219       * attribute.
1220       */
1221      const unsigned use_mask = (1 << to_assign[i].slots) - 1;
1222
1223      int location = find_available_slots(used_locations, to_assign[i].slots);
1224
1225      if (location < 0) {
1226	 linker_error_printf(prog,
1227			     "insufficient contiguous attribute locations "
1228			     "available for vertex shader input `%s'",
1229			     to_assign[i].var->name);
1230	 return false;
1231      }
1232
1233      to_assign[i].var->location = VERT_ATTRIB_GENERIC0 + location;
1234      used_locations |= (use_mask << location);
1235   }
1236
1237   return true;
1238}
1239
1240
1241/**
1242 * Demote shader outputs that are not read to being just plain global variables
1243 */
1244void
1245demote_unread_shader_outputs(gl_shader *sh)
1246{
1247   foreach_list(node, sh->ir) {
1248      ir_variable *const var = ((ir_instruction *) node)->as_variable();
1249
1250      if ((var == NULL) || (var->mode != ir_var_out))
1251	 continue;
1252
1253      /* An 'out' variable is only really a shader output if its value is read
1254       * by the following stage.
1255       */
1256      if (var->location == -1) {
1257	 var->mode = ir_var_auto;
1258      }
1259   }
1260}
1261
1262
1263void
1264assign_varying_locations(struct gl_shader_program *prog,
1265			 gl_shader *producer, gl_shader *consumer)
1266{
1267   /* FINISHME: Set dynamically when geometry shader support is added. */
1268   unsigned output_index = VERT_RESULT_VAR0;
1269   unsigned input_index = FRAG_ATTRIB_VAR0;
1270
1271   /* Operate in a total of three passes.
1272    *
1273    * 1. Assign locations for any matching inputs and outputs.
1274    *
1275    * 2. Mark output variables in the producer that do not have locations as
1276    *    not being outputs.  This lets the optimizer eliminate them.
1277    *
1278    * 3. Mark input variables in the consumer that do not have locations as
1279    *    not being inputs.  This lets the optimizer eliminate them.
1280    */
1281
1282   invalidate_variable_locations(producer, ir_var_out, VERT_RESULT_VAR0);
1283   invalidate_variable_locations(consumer, ir_var_in, FRAG_ATTRIB_VAR0);
1284
1285   foreach_list(node, producer->ir) {
1286      ir_variable *const output_var = ((ir_instruction *) node)->as_variable();
1287
1288      if ((output_var == NULL) || (output_var->mode != ir_var_out)
1289	  || (output_var->location != -1))
1290	 continue;
1291
1292      ir_variable *const input_var =
1293	 consumer->symbols->get_variable(output_var->name);
1294
1295      if ((input_var == NULL) || (input_var->mode != ir_var_in))
1296	 continue;
1297
1298      assert(input_var->location == -1);
1299
1300      output_var->location = output_index;
1301      input_var->location = input_index;
1302
1303      /* FINISHME: Support for "varying" records in GLSL 1.50. */
1304      assert(!output_var->type->is_record());
1305
1306      if (output_var->type->is_array()) {
1307	 const unsigned slots = output_var->type->length
1308	    * output_var->type->fields.array->matrix_columns;
1309
1310	 output_index += slots;
1311	 input_index += slots;
1312      } else {
1313	 const unsigned slots = output_var->type->matrix_columns;
1314
1315	 output_index += slots;
1316	 input_index += slots;
1317      }
1318   }
1319
1320   demote_unread_shader_outputs(producer);
1321
1322   foreach_list(node, consumer->ir) {
1323      ir_variable *const var = ((ir_instruction *) node)->as_variable();
1324
1325      if ((var == NULL) || (var->mode != ir_var_in))
1326	 continue;
1327
1328      if (var->location == -1) {
1329	 if (prog->Version <= 120) {
1330	    /* On page 25 (page 31 of the PDF) of the GLSL 1.20 spec:
1331	     *
1332	     *     Only those varying variables used (i.e. read) in
1333	     *     the fragment shader executable must be written to
1334	     *     by the vertex shader executable; declaring
1335	     *     superfluous varying variables in a vertex shader is
1336	     *     permissible.
1337	     *
1338	     * We interpret this text as meaning that the VS must
1339	     * write the variable for the FS to read it.  See
1340	     * "glsl1-varying read but not written" in piglit.
1341	     */
1342
1343	    linker_error_printf(prog, "fragment shader varying %s not written "
1344				"by vertex shader\n.", var->name);
1345	    prog->LinkStatus = false;
1346	 }
1347
1348	 /* An 'in' variable is only really a shader input if its
1349	  * value is written by the previous stage.
1350	  */
1351	 var->mode = ir_var_auto;
1352      }
1353   }
1354}
1355
1356
1357void
1358link_shaders(GLcontext *ctx, struct gl_shader_program *prog)
1359{
1360   prog->LinkStatus = false;
1361   prog->Validated = false;
1362   prog->_Used = false;
1363
1364   if (prog->InfoLog != NULL)
1365      talloc_free(prog->InfoLog);
1366
1367   prog->InfoLog = talloc_strdup(NULL, "");
1368
1369   /* Separate the shaders into groups based on their type.
1370    */
1371   struct gl_shader **vert_shader_list;
1372   unsigned num_vert_shaders = 0;
1373   struct gl_shader **frag_shader_list;
1374   unsigned num_frag_shaders = 0;
1375
1376   vert_shader_list = (struct gl_shader **)
1377      calloc(2 * prog->NumShaders, sizeof(struct gl_shader *));
1378   frag_shader_list =  &vert_shader_list[prog->NumShaders];
1379
1380   unsigned min_version = UINT_MAX;
1381   unsigned max_version = 0;
1382   for (unsigned i = 0; i < prog->NumShaders; i++) {
1383      min_version = MIN2(min_version, prog->Shaders[i]->Version);
1384      max_version = MAX2(max_version, prog->Shaders[i]->Version);
1385
1386      switch (prog->Shaders[i]->Type) {
1387      case GL_VERTEX_SHADER:
1388	 vert_shader_list[num_vert_shaders] = prog->Shaders[i];
1389	 num_vert_shaders++;
1390	 break;
1391      case GL_FRAGMENT_SHADER:
1392	 frag_shader_list[num_frag_shaders] = prog->Shaders[i];
1393	 num_frag_shaders++;
1394	 break;
1395      case GL_GEOMETRY_SHADER:
1396	 /* FINISHME: Support geometry shaders. */
1397	 assert(prog->Shaders[i]->Type != GL_GEOMETRY_SHADER);
1398	 break;
1399      }
1400   }
1401
1402   /* Previous to GLSL version 1.30, different compilation units could mix and
1403    * match shading language versions.  With GLSL 1.30 and later, the versions
1404    * of all shaders must match.
1405    */
1406   assert(min_version >= 100);
1407   assert(max_version <= 130);
1408   if ((max_version >= 130 || min_version == 100)
1409       && min_version != max_version) {
1410      linker_error_printf(prog, "all shaders must use same shading "
1411			  "language version\n");
1412      goto done;
1413   }
1414
1415   prog->Version = max_version;
1416
1417   for (unsigned int i = 0; i < prog->_NumLinkedShaders; i++) {
1418      ctx->Driver.DeleteShader(ctx, prog->_LinkedShaders[i]);
1419   }
1420
1421   /* Link all shaders for a particular stage and validate the result.
1422    */
1423   prog->_NumLinkedShaders = 0;
1424   if (num_vert_shaders > 0) {
1425      gl_shader *const sh =
1426	 link_intrastage_shaders(ctx, prog, vert_shader_list, num_vert_shaders);
1427
1428      if (sh == NULL)
1429	 goto done;
1430
1431      if (!validate_vertex_shader_executable(prog, sh))
1432	  goto done;
1433
1434      prog->_LinkedShaders[prog->_NumLinkedShaders] = sh;
1435      prog->_NumLinkedShaders++;
1436   }
1437
1438   if (num_frag_shaders > 0) {
1439      gl_shader *const sh =
1440	 link_intrastage_shaders(ctx, prog, frag_shader_list, num_frag_shaders);
1441
1442      if (sh == NULL)
1443	 goto done;
1444
1445      if (!validate_fragment_shader_executable(prog, sh))
1446	  goto done;
1447
1448      prog->_LinkedShaders[prog->_NumLinkedShaders] = sh;
1449      prog->_NumLinkedShaders++;
1450   }
1451
1452   /* Here begins the inter-stage linking phase.  Some initial validation is
1453    * performed, then locations are assigned for uniforms, attributes, and
1454    * varyings.
1455    */
1456   if (cross_validate_uniforms(prog)) {
1457      /* Validate the inputs of each stage with the output of the preceeding
1458       * stage.
1459       */
1460      for (unsigned i = 1; i < prog->_NumLinkedShaders; i++) {
1461	 if (!cross_validate_outputs_to_inputs(prog,
1462					       prog->_LinkedShaders[i - 1],
1463					       prog->_LinkedShaders[i]))
1464	    goto done;
1465      }
1466
1467      prog->LinkStatus = true;
1468   }
1469
1470   /* Do common optimization before assigning storage for attributes,
1471    * uniforms, and varyings.  Later optimization could possibly make
1472    * some of that unused.
1473    */
1474   for (unsigned i = 0; i < prog->_NumLinkedShaders; i++) {
1475      while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, 32))
1476	 ;
1477   }
1478
1479   update_array_sizes(prog);
1480
1481   assign_uniform_locations(prog);
1482
1483   if (prog->_NumLinkedShaders && prog->_LinkedShaders[0]->Type == GL_VERTEX_SHADER) {
1484      /* FINISHME: The value of the max_attribute_index parameter is
1485       * FINISHME: implementation dependent based on the value of
1486       * FINISHME: GL_MAX_VERTEX_ATTRIBS.  GL_MAX_VERTEX_ATTRIBS must be
1487       * FINISHME: at least 16, so hardcode 16 for now.
1488       */
1489      if (!assign_attribute_locations(prog, 16))
1490	 goto done;
1491
1492      if (prog->_NumLinkedShaders == 1)
1493	 demote_unread_shader_outputs(prog->_LinkedShaders[0]);
1494   }
1495
1496   for (unsigned i = 1; i < prog->_NumLinkedShaders; i++)
1497      assign_varying_locations(prog,
1498			       prog->_LinkedShaders[i - 1],
1499			       prog->_LinkedShaders[i]);
1500
1501   /* FINISHME: Assign fragment shader output locations. */
1502
1503done:
1504   free(vert_shader_list);
1505}
1506