s_aatritemp.h revision 02de45dcedc38b0e4ceacba440bfc11930ec90bb
1/* $Id: s_aatritemp.h,v 1.34 2003/01/28 00:14:32 brianp Exp $ */
2
3/*
4 * Mesa 3-D graphics library
5 * Version:  5.1
6 *
7 * Copyright (C) 1999-2003  Brian Paul   All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27
28/*
29 * Antialiased Triangle Rasterizer Template
30 *
31 * This file is #include'd to generate custom AA triangle rasterizers.
32 * NOTE: this code hasn't been optimized yet.  That'll come after it
33 * works correctly.
34 *
35 * The following macros may be defined to indicate what auxillary information
36 * must be copmuted across the triangle:
37 *    DO_Z         - if defined, compute Z values
38 *    DO_RGBA      - if defined, compute RGBA values
39 *    DO_INDEX     - if defined, compute color index values
40 *    DO_SPEC      - if defined, compute specular RGB values
41 *    DO_TEX       - if defined, compute unit 0 STRQ texcoords
42 *    DO_MULTITEX  - if defined, compute all unit's STRQ texcoords
43 */
44
45/*void triangle( GLcontext *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv )*/
46{
47   const GLfloat *p0 = v0->win;
48   const GLfloat *p1 = v1->win;
49   const GLfloat *p2 = v2->win;
50   const SWvertex *vMin, *vMid, *vMax;
51   GLint iyMin, iyMax;
52   GLfloat yMin, yMax;
53   GLboolean ltor;
54   GLfloat majDx, majDy;  /* major (i.e. long) edge dx and dy */
55
56   struct sw_span span;
57
58#ifdef DO_Z
59   GLfloat zPlane[4];
60#endif
61#ifdef DO_FOG
62   GLfloat fogPlane[4];
63#else
64   GLfloat *fog = NULL;
65#endif
66#ifdef DO_RGBA
67   GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4];
68#endif
69#ifdef DO_INDEX
70   GLfloat iPlane[4];
71#endif
72#ifdef DO_SPEC
73   GLfloat srPlane[4], sgPlane[4], sbPlane[4];
74#endif
75#ifdef DO_TEX
76   GLfloat sPlane[4], tPlane[4], uPlane[4], vPlane[4];
77   GLfloat texWidth, texHeight;
78#elif defined(DO_MULTITEX)
79   GLfloat sPlane[MAX_TEXTURE_COORD_UNITS][4];  /* texture S */
80   GLfloat tPlane[MAX_TEXTURE_COORD_UNITS][4];  /* texture T */
81   GLfloat uPlane[MAX_TEXTURE_COORD_UNITS][4];  /* texture R */
82   GLfloat vPlane[MAX_TEXTURE_COORD_UNITS][4];  /* texture Q */
83   GLfloat texWidth[MAX_TEXTURE_COORD_UNITS];
84   GLfloat texHeight[MAX_TEXTURE_COORD_UNITS];
85#endif
86   GLfloat bf = SWRAST_CONTEXT(ctx)->_backface_sign;
87
88
89   INIT_SPAN(span, GL_POLYGON, 0, 0, SPAN_COVERAGE);
90
91   /* determine bottom to top order of vertices */
92   {
93      GLfloat y0 = v0->win[1];
94      GLfloat y1 = v1->win[1];
95      GLfloat y2 = v2->win[1];
96      if (y0 <= y1) {
97	 if (y1 <= y2) {
98	    vMin = v0;   vMid = v1;   vMax = v2;   /* y0<=y1<=y2 */
99	 }
100	 else if (y2 <= y0) {
101	    vMin = v2;   vMid = v0;   vMax = v1;   /* y2<=y0<=y1 */
102	 }
103	 else {
104	    vMin = v0;   vMid = v2;   vMax = v1;  bf = -bf; /* y0<=y2<=y1 */
105	 }
106      }
107      else {
108	 if (y0 <= y2) {
109	    vMin = v1;   vMid = v0;   vMax = v2;  bf = -bf; /* y1<=y0<=y2 */
110	 }
111	 else if (y2 <= y1) {
112	    vMin = v2;   vMid = v1;   vMax = v0;  bf = -bf; /* y2<=y1<=y0 */
113	 }
114	 else {
115	    vMin = v1;   vMid = v2;   vMax = v0;   /* y1<=y2<=y0 */
116	 }
117      }
118   }
119
120   majDx = vMax->win[0] - vMin->win[0];
121   majDy = vMax->win[1] - vMin->win[1];
122
123   {
124      const GLfloat botDx = vMid->win[0] - vMin->win[0];
125      const GLfloat botDy = vMid->win[1] - vMin->win[1];
126      const GLfloat area = majDx * botDy - botDx * majDy;
127      /* Do backface culling */
128      if (area * bf < 0 || area == 0 || IS_INF_OR_NAN(area))
129	 return;
130      ltor = (GLboolean) (area < 0.0F);
131   }
132
133#ifndef DO_OCCLUSION_TEST
134   ctx->OcclusionResult = GL_TRUE;
135#endif
136
137   /* Plane equation setup:
138    * We evaluate plane equations at window (x,y) coordinates in order
139    * to compute color, Z, fog, texcoords, etc.  This isn't terribly
140    * efficient but it's easy and reliable.
141    */
142#ifdef DO_Z
143   compute_plane(p0, p1, p2, p0[2], p1[2], p2[2], zPlane);
144   span.arrayMask |= SPAN_Z;
145#endif
146#ifdef DO_FOG
147   compute_plane(p0, p1, p2, v0->fog, v1->fog, v2->fog, fogPlane);
148   span.arrayMask |= SPAN_FOG;
149#endif
150#ifdef DO_RGBA
151   if (ctx->Light.ShadeModel == GL_SMOOTH) {
152      compute_plane(p0, p1, p2, v0->color[RCOMP], v1->color[RCOMP], v2->color[RCOMP], rPlane);
153      compute_plane(p0, p1, p2, v0->color[GCOMP], v1->color[GCOMP], v2->color[GCOMP], gPlane);
154      compute_plane(p0, p1, p2, v0->color[BCOMP], v1->color[BCOMP], v2->color[BCOMP], bPlane);
155      compute_plane(p0, p1, p2, v0->color[ACOMP], v1->color[ACOMP], v2->color[ACOMP], aPlane);
156   }
157   else {
158      constant_plane(v2->color[RCOMP], rPlane);
159      constant_plane(v2->color[GCOMP], gPlane);
160      constant_plane(v2->color[BCOMP], bPlane);
161      constant_plane(v2->color[ACOMP], aPlane);
162   }
163   span.arrayMask |= SPAN_RGBA;
164#endif
165#ifdef DO_INDEX
166   if (ctx->Light.ShadeModel == GL_SMOOTH) {
167      compute_plane(p0, p1, p2, (GLfloat) v0->index,
168                    (GLfloat) v1->index, (GLfloat) v2->index, iPlane);
169   }
170   else {
171      constant_plane((GLfloat) v2->index, iPlane);
172   }
173   span.arrayMask |= SPAN_INDEX;
174#endif
175#ifdef DO_SPEC
176   if (ctx->Light.ShadeModel == GL_SMOOTH) {
177      compute_plane(p0, p1, p2, v0->specular[RCOMP], v1->specular[RCOMP], v2->specular[RCOMP], srPlane);
178      compute_plane(p0, p1, p2, v0->specular[GCOMP], v1->specular[GCOMP], v2->specular[GCOMP], sgPlane);
179      compute_plane(p0, p1, p2, v0->specular[BCOMP], v1->specular[BCOMP], v2->specular[BCOMP], sbPlane);
180   }
181   else {
182      constant_plane(v2->specular[RCOMP], srPlane);
183      constant_plane(v2->specular[GCOMP], sgPlane);
184      constant_plane(v2->specular[BCOMP], sbPlane);
185   }
186   span.arrayMask |= SPAN_SPEC;
187#endif
188#ifdef DO_TEX
189   {
190      const struct gl_texture_object *obj = ctx->Texture.Unit[0]._Current;
191      const struct gl_texture_image *texImage = obj->Image[obj->BaseLevel];
192      const GLfloat invW0 = v0->win[3];
193      const GLfloat invW1 = v1->win[3];
194      const GLfloat invW2 = v2->win[3];
195      const GLfloat s0 = v0->texcoord[0][0] * invW0;
196      const GLfloat s1 = v1->texcoord[0][0] * invW1;
197      const GLfloat s2 = v2->texcoord[0][0] * invW2;
198      const GLfloat t0 = v0->texcoord[0][1] * invW0;
199      const GLfloat t1 = v1->texcoord[0][1] * invW1;
200      const GLfloat t2 = v2->texcoord[0][1] * invW2;
201      const GLfloat r0 = v0->texcoord[0][2] * invW0;
202      const GLfloat r1 = v1->texcoord[0][2] * invW1;
203      const GLfloat r2 = v2->texcoord[0][2] * invW2;
204      const GLfloat q0 = v0->texcoord[0][3] * invW0;
205      const GLfloat q1 = v1->texcoord[0][3] * invW1;
206      const GLfloat q2 = v2->texcoord[0][3] * invW2;
207      compute_plane(p0, p1, p2, s0, s1, s2, sPlane);
208      compute_plane(p0, p1, p2, t0, t1, t2, tPlane);
209      compute_plane(p0, p1, p2, r0, r1, r2, uPlane);
210      compute_plane(p0, p1, p2, q0, q1, q2, vPlane);
211      texWidth = (GLfloat) texImage->Width;
212      texHeight = (GLfloat) texImage->Height;
213   }
214   span.arrayMask |= (SPAN_TEXTURE | SPAN_LAMBDA);
215#elif defined(DO_MULTITEX)
216   {
217      GLuint u;
218      for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
219         if (ctx->Texture.Unit[u]._ReallyEnabled) {
220            const struct gl_texture_object *obj = ctx->Texture.Unit[u]._Current;
221            const struct gl_texture_image *texImage = obj->Image[obj->BaseLevel];
222            const GLfloat invW0 = v0->win[3];
223            const GLfloat invW1 = v1->win[3];
224            const GLfloat invW2 = v2->win[3];
225            const GLfloat s0 = v0->texcoord[u][0] * invW0;
226            const GLfloat s1 = v1->texcoord[u][0] * invW1;
227            const GLfloat s2 = v2->texcoord[u][0] * invW2;
228            const GLfloat t0 = v0->texcoord[u][1] * invW0;
229            const GLfloat t1 = v1->texcoord[u][1] * invW1;
230            const GLfloat t2 = v2->texcoord[u][1] * invW2;
231            const GLfloat r0 = v0->texcoord[u][2] * invW0;
232            const GLfloat r1 = v1->texcoord[u][2] * invW1;
233            const GLfloat r2 = v2->texcoord[u][2] * invW2;
234            const GLfloat q0 = v0->texcoord[u][3] * invW0;
235            const GLfloat q1 = v1->texcoord[u][3] * invW1;
236            const GLfloat q2 = v2->texcoord[u][3] * invW2;
237            compute_plane(p0, p1, p2, s0, s1, s2, sPlane[u]);
238            compute_plane(p0, p1, p2, t0, t1, t2, tPlane[u]);
239            compute_plane(p0, p1, p2, r0, r1, r2, uPlane[u]);
240            compute_plane(p0, p1, p2, q0, q1, q2, vPlane[u]);
241            texWidth[u]  = (GLfloat) texImage->Width;
242            texHeight[u] = (GLfloat) texImage->Height;
243         }
244      }
245   }
246   span.arrayMask |= (SPAN_TEXTURE | SPAN_LAMBDA);
247#endif
248
249   /* Begin bottom-to-top scan over the triangle.
250    * The long edge will either be on the left or right side of the
251    * triangle.  We always scan from the long edge toward the shorter
252    * edges, stopping when we find that coverage = 0.  If the long edge
253    * is on the left we scan left-to-right.  Else, we scan right-to-left.
254    */
255   yMin = vMin->win[1];
256   yMax = vMax->win[1];
257   iyMin = (GLint) yMin;
258   iyMax = (GLint) yMax + 1;
259
260   if (ltor) {
261      /* scan left to right */
262      const GLfloat *pMin = vMin->win;
263      const GLfloat *pMid = vMid->win;
264      const GLfloat *pMax = vMax->win;
265      const GLfloat dxdy = majDx / majDy;
266      const GLfloat xAdj = dxdy < 0.0F ? -dxdy : 0.0F;
267      GLfloat x = pMin[0] - (yMin - iyMin) * dxdy;
268      GLint iy;
269      for (iy = iyMin; iy < iyMax; iy++, x += dxdy) {
270         GLint ix, startX = (GLint) (x - xAdj);
271         GLuint count;
272         GLfloat coverage = 0.0F;
273
274         /* skip over fragments with zero coverage */
275         while (startX < MAX_WIDTH) {
276            coverage = compute_coveragef(pMin, pMid, pMax, startX, iy);
277            if (coverage > 0.0F)
278               break;
279            startX++;
280         }
281
282         /* enter interior of triangle */
283         ix = startX;
284         count = 0;
285         while (coverage > 0.0F) {
286            /* (cx,cy) = center of fragment */
287            const GLfloat cx = ix + 0.5F, cy = iy + 0.5F;
288            struct span_arrays *array = span.array;
289#ifdef DO_INDEX
290            array->coverage[count] = (GLfloat) compute_coveragei(pMin, pMid, pMax, ix, iy);
291#else
292            array->coverage[count] = coverage;
293#endif
294#ifdef DO_Z
295            array->z[count] = (GLdepth) solve_plane(cx, cy, zPlane);
296#endif
297#ifdef DO_FOG
298	    array->fog[count] = solve_plane(cx, cy, fogPlane);
299#endif
300#ifdef DO_RGBA
301            array->rgba[count][RCOMP] = solve_plane_chan(cx, cy, rPlane);
302            array->rgba[count][GCOMP] = solve_plane_chan(cx, cy, gPlane);
303            array->rgba[count][BCOMP] = solve_plane_chan(cx, cy, bPlane);
304            array->rgba[count][ACOMP] = solve_plane_chan(cx, cy, aPlane);
305#endif
306#ifdef DO_INDEX
307            array->index[count] = (GLint) solve_plane(cx, cy, iPlane);
308#endif
309#ifdef DO_SPEC
310            array->spec[count][RCOMP] = solve_plane_chan(cx, cy, srPlane);
311            array->spec[count][GCOMP] = solve_plane_chan(cx, cy, sgPlane);
312            array->spec[count][BCOMP] = solve_plane_chan(cx, cy, sbPlane);
313#endif
314#ifdef DO_TEX
315            {
316               const GLfloat invQ = solve_plane_recip(cx, cy, vPlane);
317               array->texcoords[0][count][0] = solve_plane(cx, cy, sPlane) * invQ;
318               array->texcoords[0][count][1] = solve_plane(cx, cy, tPlane) * invQ;
319               array->texcoords[0][count][2] = solve_plane(cx, cy, uPlane) * invQ;
320               array->lambda[0][count] = compute_lambda(sPlane, tPlane, vPlane,
321                                                      cx, cy, invQ,
322                                                      texWidth, texHeight);
323            }
324#elif defined(DO_MULTITEX)
325            {
326               GLuint unit;
327               for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
328                  if (ctx->Texture.Unit[unit]._ReallyEnabled) {
329                     GLfloat invQ = solve_plane_recip(cx, cy, vPlane[unit]);
330                     array->texcoords[unit][count][0] = solve_plane(cx, cy, sPlane[unit]) * invQ;
331                     array->texcoords[unit][count][1] = solve_plane(cx, cy, tPlane[unit]) * invQ;
332                     array->texcoords[unit][count][2] = solve_plane(cx, cy, uPlane[unit]) * invQ;
333                     array->lambda[unit][count] = compute_lambda(sPlane[unit],
334                                      tPlane[unit], vPlane[unit], cx, cy, invQ,
335                                      texWidth[unit], texHeight[unit]);
336                  }
337               }
338            }
339#endif
340            ix++;
341            count++;
342            coverage = compute_coveragef(pMin, pMid, pMax, ix, iy);
343         }
344
345         if (ix <= startX)
346            continue;
347
348         span.x = startX;
349         span.y = iy;
350         span.end = (GLuint) ix - (GLuint) startX;
351         ASSERT(span.interpMask == 0);
352#if defined(DO_MULTITEX) || defined(DO_TEX)
353         _mesa_write_texture_span(ctx, &span);
354#elif defined(DO_RGBA)
355         _mesa_write_rgba_span(ctx, &span);
356#elif defined(DO_INDEX)
357         _mesa_write_index_span(ctx, &span);
358#endif
359      }
360   }
361   else {
362      /* scan right to left */
363      const GLfloat *pMin = vMin->win;
364      const GLfloat *pMid = vMid->win;
365      const GLfloat *pMax = vMax->win;
366      const GLfloat dxdy = majDx / majDy;
367      const GLfloat xAdj = dxdy > 0 ? dxdy : 0.0F;
368      GLfloat x = pMin[0] - (yMin - iyMin) * dxdy;
369      GLint iy;
370      for (iy = iyMin; iy < iyMax; iy++, x += dxdy) {
371         GLint ix, left, startX = (GLint) (x + xAdj);
372         GLuint count, n;
373         GLfloat coverage = 0.0F;
374
375         /* make sure we're not past the window edge */
376         if (startX >= ctx->DrawBuffer->_Xmax) {
377            startX = ctx->DrawBuffer->_Xmax - 1;
378         }
379
380         /* skip fragments with zero coverage */
381         while (startX >= 0) {
382            coverage = compute_coveragef(pMin, pMax, pMid, startX, iy);
383            if (coverage > 0.0F)
384               break;
385            startX--;
386         }
387
388         /* enter interior of triangle */
389         ix = startX;
390         count = 0;
391         while (coverage > 0.0F) {
392            /* (cx,cy) = center of fragment */
393            const GLfloat cx = ix + 0.5F, cy = iy + 0.5F;
394            struct span_arrays *array = span.array;
395#ifdef DO_INDEX
396            array->coverage[ix] = (GLfloat) compute_coveragei(pMin, pMax, pMid, ix, iy);
397#else
398            array->coverage[ix] = coverage;
399#endif
400#ifdef DO_Z
401            array->z[ix] = (GLdepth) solve_plane(cx, cy, zPlane);
402#endif
403#ifdef DO_FOG
404            array->fog[ix] = solve_plane(cx, cy, fogPlane);
405#endif
406#ifdef DO_RGBA
407            array->rgba[ix][RCOMP] = solve_plane_chan(cx, cy, rPlane);
408            array->rgba[ix][GCOMP] = solve_plane_chan(cx, cy, gPlane);
409            array->rgba[ix][BCOMP] = solve_plane_chan(cx, cy, bPlane);
410            array->rgba[ix][ACOMP] = solve_plane_chan(cx, cy, aPlane);
411#endif
412#ifdef DO_INDEX
413            array->index[ix] = (GLint) solve_plane(cx, cy, iPlane);
414#endif
415#ifdef DO_SPEC
416            array->spec[ix][RCOMP] = solve_plane_chan(cx, cy, srPlane);
417            array->spec[ix][GCOMP] = solve_plane_chan(cx, cy, sgPlane);
418            array->spec[ix][BCOMP] = solve_plane_chan(cx, cy, sbPlane);
419#endif
420#ifdef DO_TEX
421            {
422               const GLfloat invQ = solve_plane_recip(cx, cy, vPlane);
423               array->texcoords[0][ix][0] = solve_plane(cx, cy, sPlane) * invQ;
424               array->texcoords[0][ix][1] = solve_plane(cx, cy, tPlane) * invQ;
425               array->texcoords[0][ix][2] = solve_plane(cx, cy, uPlane) * invQ;
426               array->lambda[0][ix] = compute_lambda(sPlane, tPlane, vPlane,
427                                          cx, cy, invQ, texWidth, texHeight);
428            }
429#elif defined(DO_MULTITEX)
430            {
431               GLuint unit;
432               for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
433                  if (ctx->Texture.Unit[unit]._ReallyEnabled) {
434                     GLfloat invQ = solve_plane_recip(cx, cy, vPlane[unit]);
435                     array->texcoords[unit][ix][0] = solve_plane(cx, cy, sPlane[unit]) * invQ;
436                     array->texcoords[unit][ix][1] = solve_plane(cx, cy, tPlane[unit]) * invQ;
437                     array->texcoords[unit][ix][2] = solve_plane(cx, cy, uPlane[unit]) * invQ;
438                     array->lambda[unit][ix] = compute_lambda(sPlane[unit],
439                                                            tPlane[unit],
440                                                            vPlane[unit],
441                                                            cx, cy, invQ,
442                                                            texWidth[unit],
443                                                            texHeight[unit]);
444                  }
445               }
446            }
447#endif
448            ix--;
449            count++;
450            coverage = compute_coveragef(pMin, pMax, pMid, ix, iy);
451         }
452
453         if (startX <= ix)
454            continue;
455
456         n = (GLuint) startX - (GLuint) ix;
457
458         left = ix + 1;
459
460         /* shift all values to the left */
461         /* XXX this is temporary */
462         {
463            struct span_arrays *array = span.array;
464            GLint j;
465            for (j = 0; j < (GLint) n; j++) {
466#ifdef DO_RGBA
467               COPY_CHAN4(array->rgba[j], array->rgba[j + left]);
468#endif
469#ifdef DO_SPEC
470               COPY_CHAN4(array->spec[j], array->spec[j + left]);
471#endif
472#ifdef DO_INDEX
473               array->index[j] = array->index[j + left];
474#endif
475#ifdef DO_Z
476               array->z[j] = array->z[j + left];
477#endif
478#ifdef DO_FOG
479               array->fog[j] = array->fog[j + left];
480#endif
481#ifdef DO_TEX
482               COPY_4V(array->texcoords[0][j], array->texcoords[0][j + left]);
483#endif
484#if defined(DO_MULTITEX) || defined(DO_TEX)
485               array->lambda[0][j] = array->lambda[0][j + left];
486#endif
487               array->coverage[j] = array->coverage[j + left];
488            }
489         }
490#ifdef DO_MULTITEX
491         /* shift texcoords */
492         {
493            struct span_arrays *array = span.array;
494            GLuint unit;
495            for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
496               if (ctx->Texture.Unit[unit]._ReallyEnabled) {
497                  GLint j;
498                  for (j = 0; j < (GLint) n; j++) {
499		     array->texcoords[unit][j][0] = array->texcoords[unit][j + left][0];
500                     array->texcoords[unit][j][1] = array->texcoords[unit][j + left][1];
501                     array->texcoords[unit][j][2] = array->texcoords[unit][j + left][2];
502                     array->lambda[unit][j] = array->lambda[unit][j + left];
503                  }
504               }
505            }
506         }
507#endif
508
509         span.x = left;
510         span.y = iy;
511         span.end = n;
512         ASSERT(span.interpMask == 0);
513#if defined(DO_MULTITEX) || defined(DO_TEX)
514         _mesa_write_texture_span(ctx, &span);
515#elif defined(DO_RGBA)
516         _mesa_write_rgba_span(ctx, &span);
517#elif defined(DO_INDEX)
518         _mesa_write_index_span(ctx, &span);
519#endif
520      }
521   }
522}
523
524
525#ifdef DO_Z
526#undef DO_Z
527#endif
528
529#ifdef DO_FOG
530#undef DO_FOG
531#endif
532
533#ifdef DO_RGBA
534#undef DO_RGBA
535#endif
536
537#ifdef DO_INDEX
538#undef DO_INDEX
539#endif
540
541#ifdef DO_SPEC
542#undef DO_SPEC
543#endif
544
545#ifdef DO_TEX
546#undef DO_TEX
547#endif
548
549#ifdef DO_MULTITEX
550#undef DO_MULTITEX
551#endif
552
553#ifdef DO_OCCLUSION_TEST
554#undef DO_OCCLUSION_TEST
555#endif
556