s_aatritemp.h revision 1b3528fe635242f782fbcdde3ba74b5b7359a362
1/* $Id: s_aatritemp.h,v 1.10 2001/05/03 22:13:32 brianp Exp $ */
2
3/*
4 * Mesa 3-D graphics library
5 * Version:  3.5
6 *
7 * Copyright (C) 1999-2001  Brian Paul   All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27
28/*
29 * Antialiased Triangle Rasterizer Template
30 *
31 * This file is #include'd to generate custom AA triangle rasterizers.
32 * NOTE: this code hasn't been optimized yet.  That'll come after it
33 * works correctly.
34 *
35 * The following macros may be defined to indicate what auxillary information
36 * must be copmuted across the triangle:
37 *    DO_Z         - if defined, compute Z values
38 *    DO_RGBA      - if defined, compute RGBA values
39 *    DO_INDEX     - if defined, compute color index values
40 *    DO_SPEC      - if defined, compute specular RGB values
41 *    DO_TEX       - if defined, compute unit 0 STRQ texcoords
42 *    DO_MULTITEX  - if defined, compute all unit's STRQ texcoords
43 */
44
45/*void triangle( GLcontext *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv )*/
46{
47   const GLfloat *p0 = v0->win;
48   const GLfloat *p1 = v1->win;
49   const GLfloat *p2 = v2->win;
50   const SWvertex *vMin, *vMid, *vMax;
51   GLint iyMin, iyMax;
52   GLfloat yMin, yMax;
53   GLboolean ltor;
54   GLfloat majDx, majDy;
55#ifdef DO_Z
56   GLfloat zPlane[4];                                       /* Z (depth) */
57   GLdepth z[MAX_WIDTH];
58   GLfloat fogPlane[4];
59   GLfloat fog[MAX_WIDTH];
60#endif
61#ifdef DO_RGBA
62   GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4];      /* color */
63   GLchan rgba[MAX_WIDTH][4];
64#endif
65#ifdef DO_INDEX
66   GLfloat iPlane[4];                                       /* color index */
67   GLuint index[MAX_WIDTH];
68#endif
69#ifdef DO_SPEC
70   GLfloat srPlane[4], sgPlane[4], sbPlane[4];              /* spec color */
71   GLchan spec[MAX_WIDTH][4];
72#endif
73#ifdef DO_TEX
74   GLfloat sPlane[4], tPlane[4], uPlane[4], vPlane[4];
75   GLfloat texWidth, texHeight;
76   GLfloat s[MAX_WIDTH], t[MAX_WIDTH], u[MAX_WIDTH];
77   GLfloat lambda[MAX_WIDTH];
78#elif defined(DO_MULTITEX)
79   GLfloat sPlane[MAX_TEXTURE_UNITS][4];
80   GLfloat tPlane[MAX_TEXTURE_UNITS][4];
81   GLfloat uPlane[MAX_TEXTURE_UNITS][4];
82   GLfloat vPlane[MAX_TEXTURE_UNITS][4];
83   GLfloat texWidth[MAX_TEXTURE_UNITS], texHeight[MAX_TEXTURE_UNITS];
84   GLfloat s[MAX_TEXTURE_UNITS][MAX_WIDTH];
85   GLfloat t[MAX_TEXTURE_UNITS][MAX_WIDTH];
86   GLfloat u[MAX_TEXTURE_UNITS][MAX_WIDTH];
87   GLfloat lambda[MAX_TEXTURE_UNITS][MAX_WIDTH];
88#endif
89   GLfloat bf = SWRAST_CONTEXT(ctx)->_backface_sign;
90
91   /* determine bottom to top order of vertices */
92   {
93      GLfloat y0 = v0->win[1];
94      GLfloat y1 = v1->win[1];
95      GLfloat y2 = v2->win[1];
96      if (y0 <= y1) {
97	 if (y1 <= y2) {
98	    vMin = v0;   vMid = v1;   vMax = v2;   /* y0<=y1<=y2 */
99	 }
100	 else if (y2 <= y0) {
101	    vMin = v2;   vMid = v0;   vMax = v1;   /* y2<=y0<=y1 */
102	 }
103	 else {
104	    vMin = v0;   vMid = v2;   vMax = v1;  bf = -bf; /* y0<=y2<=y1 */
105	 }
106      }
107      else {
108	 if (y0 <= y2) {
109	    vMin = v1;   vMid = v0;   vMax = v2;  bf = -bf; /* y1<=y0<=y2 */
110	 }
111	 else if (y2 <= y1) {
112	    vMin = v2;   vMid = v1;   vMax = v0;  bf = -bf; /* y2<=y1<=y0 */
113	 }
114	 else {
115	    vMin = v1;   vMid = v2;   vMax = v0;   /* y1<=y2<=y0 */
116	 }
117      }
118   }
119
120   majDx = vMax->win[0] - vMin->win[0];
121   majDy = vMax->win[1] - vMin->win[1];
122
123   {
124      const GLfloat botDx = vMid->win[0] - vMin->win[0];
125      const GLfloat botDy = vMid->win[1] - vMin->win[1];
126      const GLfloat area = majDx * botDy - botDx * majDy;
127      ltor = (GLboolean) (area < 0.0F);
128      /* Do backface culling */
129      if (area * bf < 0 || area * area < .0025)
130	 return;
131   }
132
133#ifndef DO_OCCLUSION_TEST
134   ctx->OcclusionResult = GL_TRUE;
135#endif
136
137   /* plane setup */
138#ifdef DO_Z
139   compute_plane(p0, p1, p2, p0[2], p1[2], p2[2], zPlane);
140   compute_plane(p0, p1, p2,
141		 v0->fog,
142		 v1->fog,
143		 v2->fog,
144		 fogPlane);
145#endif
146#ifdef DO_RGBA
147   if (ctx->Light.ShadeModel == GL_SMOOTH) {
148      compute_plane(p0, p1, p2, v0->color[0], v1->color[0], v2->color[0], rPlane);
149      compute_plane(p0, p1, p2, v0->color[1], v1->color[1], v2->color[1], gPlane);
150      compute_plane(p0, p1, p2, v0->color[2], v1->color[2], v2->color[2], bPlane);
151      compute_plane(p0, p1, p2, v0->color[3], v1->color[3], v2->color[3], aPlane);
152   }
153   else {
154      constant_plane(v2->color[RCOMP], rPlane);
155      constant_plane(v2->color[GCOMP], gPlane);
156      constant_plane(v2->color[BCOMP], bPlane);
157      constant_plane(v2->color[ACOMP], aPlane);
158   }
159#endif
160#ifdef DO_INDEX
161   if (ctx->Light.ShadeModel == GL_SMOOTH) {
162      compute_plane(p0, p1, p2, v0->index,
163                    v1->index, v2->index, iPlane);
164   }
165   else {
166      constant_plane(v2->index, iPlane);
167   }
168#endif
169#ifdef DO_SPEC
170   if (ctx->Light.ShadeModel == GL_SMOOTH) {
171      compute_plane(p0, p1, p2, v0->specular[0], v1->specular[0], v2->specular[0],srPlane);
172      compute_plane(p0, p1, p2, v0->specular[1], v1->specular[1], v2->specular[1],sgPlane);
173      compute_plane(p0, p1, p2, v0->specular[2], v1->specular[2], v2->specular[2],sbPlane);
174   }
175   else {
176      /* KW: added this */
177      constant_plane(v2->specular[RCOMP], srPlane);
178      constant_plane(v2->specular[GCOMP], sgPlane);
179      constant_plane(v2->specular[BCOMP], sbPlane);
180   }
181#endif
182#ifdef DO_TEX
183   {
184      const struct gl_texture_object *obj = ctx->Texture.Unit[0]._Current;
185      const struct gl_texture_image *texImage = obj->Image[obj->BaseLevel];
186      const GLfloat invW0 = v0->win[3];
187      const GLfloat invW1 = v1->win[3];
188      const GLfloat invW2 = v2->win[3];
189      const GLfloat s0 = v0->texcoord[0][0] * invW0;
190      const GLfloat s1 = v1->texcoord[0][0] * invW1;
191      const GLfloat s2 = v2->texcoord[0][0] * invW2;
192      const GLfloat t0 = v0->texcoord[0][1] * invW0;
193      const GLfloat t1 = v1->texcoord[0][1] * invW1;
194      const GLfloat t2 = v2->texcoord[0][1] * invW2;
195      const GLfloat r0 = v0->texcoord[0][2] * invW0;
196      const GLfloat r1 = v1->texcoord[0][2] * invW1;
197      const GLfloat r2 = v2->texcoord[0][2] * invW2;
198      const GLfloat q0 = v0->texcoord[0][3] * invW0;
199      const GLfloat q1 = v1->texcoord[0][3] * invW1;
200      const GLfloat q2 = v2->texcoord[0][3] * invW2;
201      compute_plane(p0, p1, p2, s0, s1, s2, sPlane);
202      compute_plane(p0, p1, p2, t0, t1, t2, tPlane);
203      compute_plane(p0, p1, p2, r0, r1, r2, uPlane);
204      compute_plane(p0, p1, p2, q0, q1, q2, vPlane);
205      texWidth = (GLfloat) texImage->Width;
206      texHeight = (GLfloat) texImage->Height;
207   }
208#elif defined(DO_MULTITEX)
209   {
210      GLuint u;
211      for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
212         if (ctx->Texture.Unit[u]._ReallyEnabled) {
213            const struct gl_texture_object *obj = ctx->Texture.Unit[u]._Current;
214            const struct gl_texture_image *texImage = obj->Image[obj->BaseLevel];
215            const GLfloat invW0 = v0->win[3];
216            const GLfloat invW1 = v1->win[3];
217            const GLfloat invW2 = v2->win[3];
218            const GLfloat s0 = v0->texcoord[u][0] * invW0;
219            const GLfloat s1 = v1->texcoord[u][0] * invW1;
220            const GLfloat s2 = v2->texcoord[u][0] * invW2;
221            const GLfloat t0 = v0->texcoord[u][1] * invW0;
222            const GLfloat t1 = v1->texcoord[u][1] * invW1;
223            const GLfloat t2 = v2->texcoord[u][1] * invW2;
224            const GLfloat r0 = v0->texcoord[u][2] * invW0;
225            const GLfloat r1 = v1->texcoord[u][2] * invW1;
226            const GLfloat r2 = v2->texcoord[u][2] * invW2;
227            const GLfloat q0 = v0->texcoord[u][3] * invW0;
228            const GLfloat q1 = v1->texcoord[u][3] * invW1;
229            const GLfloat q2 = v2->texcoord[u][3] * invW2;
230            compute_plane(p0, p1, p2, s0, s1, s2, sPlane[u]);
231            compute_plane(p0, p1, p2, t0, t1, t2, tPlane[u]);
232            compute_plane(p0, p1, p2, r0, r1, r2, uPlane[u]);
233            compute_plane(p0, p1, p2, q0, q1, q2, vPlane[u]);
234            texWidth[u]  = (GLfloat) texImage->Width;
235            texHeight[u] = (GLfloat) texImage->Height;
236         }
237      }
238   }
239#endif
240
241   yMin = vMin->win[1];
242   yMax = vMax->win[1];
243   iyMin = (int) yMin;
244   iyMax = (int) yMax + 1;
245
246   if (ltor) {
247      /* scan left to right */
248      const float *pMin = vMin->win;
249      const float *pMid = vMid->win;
250      const float *pMax = vMax->win;
251      const float dxdy = majDx / majDy;
252      const float xAdj = dxdy < 0.0F ? -dxdy : 0.0F;
253      float x = vMin->win[0] - (yMin - iyMin) * dxdy;
254      int iy;
255      for (iy = iyMin; iy < iyMax; iy++, x += dxdy) {
256         GLint ix, startX = (GLint) (x - xAdj);
257         GLuint count, n;
258         GLfloat coverage = 0.0F;
259         /* skip over fragments with zero coverage */
260         while (startX < MAX_WIDTH) {
261            coverage = compute_coveragef(pMin, pMid, pMax, startX, iy);
262            if (coverage > 0.0F)
263               break;
264            startX++;
265         }
266
267         /* enter interior of triangle */
268         ix = startX;
269         count = 0;
270         while (coverage > 0.0F) {
271#ifdef DO_Z
272            z[count] = (GLdepth) solve_plane(ix, iy, zPlane);
273	    fog[count] = solve_plane(ix, iy, fogPlane);
274#endif
275#ifdef DO_RGBA
276            rgba[count][RCOMP] = solve_plane_chan(ix, iy, rPlane);
277            rgba[count][GCOMP] = solve_plane_chan(ix, iy, gPlane);
278            rgba[count][BCOMP] = solve_plane_chan(ix, iy, bPlane);
279            rgba[count][ACOMP] = (GLchan) (solve_plane_chan(ix, iy, aPlane) * coverage);
280#endif
281#ifdef DO_INDEX
282            {
283               GLint frac = compute_coveragei(pMin, pMid, pMax, ix, iy);
284               GLint indx = (GLint) solve_plane(ix, iy, iPlane);
285               index[count] = (indx & ~0xf) | frac;
286            }
287#endif
288#ifdef DO_SPEC
289            spec[count][RCOMP] = solve_plane_chan(ix, iy, srPlane);
290            spec[count][GCOMP] = solve_plane_chan(ix, iy, sgPlane);
291            spec[count][BCOMP] = solve_plane_chan(ix, iy, sbPlane);
292#endif
293#ifdef DO_TEX
294            {
295               GLfloat invQ = solve_plane_recip(ix, iy, vPlane);
296               s[count] = solve_plane(ix, iy, sPlane) * invQ;
297               t[count] = solve_plane(ix, iy, tPlane) * invQ;
298               u[count] = solve_plane(ix, iy, uPlane) * invQ;
299               lambda[count] = compute_lambda(sPlane, tPlane, invQ,
300                                                 texWidth, texHeight);
301            }
302#elif defined(DO_MULTITEX)
303            {
304               GLuint unit;
305               for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
306                  if (ctx->Texture.Unit[unit]._ReallyEnabled) {
307                     GLfloat invQ = solve_plane_recip(ix, iy, vPlane[unit]);
308                     s[unit][count] = solve_plane(ix, iy, sPlane[unit]) * invQ;
309                     t[unit][count] = solve_plane(ix, iy, tPlane[unit]) * invQ;
310                     u[unit][count] = solve_plane(ix, iy, uPlane[unit]) * invQ;
311                     lambda[unit][count] = compute_lambda(sPlane[unit],
312                          tPlane[unit], invQ, texWidth[unit], texHeight[unit]);
313                  }
314               }
315            }
316#endif
317            ix++;
318            count++;
319            coverage = compute_coveragef(pMin, pMid, pMax, ix, iy);
320         }
321
322         n = (GLuint) ix - (GLuint) startX;
323#ifdef DO_MULTITEX
324#  ifdef DO_SPEC
325         _mesa_write_multitexture_span(ctx, n, startX, iy, z, fog,
326                                    (const GLfloat (*)[MAX_WIDTH]) s,
327                                    (const GLfloat (*)[MAX_WIDTH]) t,
328                                    (const GLfloat (*)[MAX_WIDTH]) u,
329                                    (GLfloat (*)[MAX_WIDTH]) lambda,
330                                    rgba, (const GLchan (*)[4]) spec,
331                                    GL_POLYGON);
332#  else
333         _mesa_write_multitexture_span(ctx, n, startX, iy, z, fog,
334                                    (const GLfloat (*)[MAX_WIDTH]) s,
335                                    (const GLfloat (*)[MAX_WIDTH]) t,
336                                    (const GLfloat (*)[MAX_WIDTH]) u,
337                                    lambda, rgba, NULL, GL_POLYGON);
338#  endif
339#elif defined(DO_TEX)
340#  ifdef DO_SPEC
341         _mesa_write_texture_span(ctx, n, startX, iy, z, fog,
342                               s, t, u, lambda, rgba,
343                               (const GLchan (*)[4]) spec, GL_POLYGON);
344#  else
345         _mesa_write_texture_span(ctx, n, startX, iy, z, fog,
346                               s, t, u, lambda,
347                               rgba, NULL, GL_POLYGON);
348#  endif
349#elif defined(DO_RGBA)
350         _mesa_write_rgba_span(ctx, n, startX, iy, z, fog, rgba, GL_POLYGON);
351#elif defined(DO_INDEX)
352         _mesa_write_index_span(ctx, n, startX, iy, z, fog, index, GL_POLYGON);
353#endif
354      }
355   }
356   else {
357      /* scan right to left */
358      const GLfloat *pMin = vMin->win;
359      const GLfloat *pMid = vMid->win;
360      const GLfloat *pMax = vMax->win;
361      const GLfloat dxdy = majDx / majDy;
362      const GLfloat xAdj = dxdy > 0 ? dxdy : 0.0F;
363      GLfloat x = vMin->win[0] - (yMin - iyMin) * dxdy;
364      GLint iy;
365      for (iy = iyMin; iy < iyMax; iy++, x += dxdy) {
366         GLint ix, left, startX = (GLint) (x + xAdj);
367         GLuint count, n;
368         GLfloat coverage = 0.0F;
369
370         /* make sure we're not past the window edge */
371         if (startX >= ctx->DrawBuffer->_Xmax) {
372            startX = ctx->DrawBuffer->_Xmax - 1;
373         }
374
375         /* skip fragments with zero coverage */
376         while (startX >= 0) {
377            coverage = compute_coveragef(pMin, pMax, pMid, startX, iy);
378            if (coverage > 0.0F)
379               break;
380            startX--;
381         }
382
383         /* enter interior of triangle */
384         ix = startX;
385         count = 0;
386         while (coverage > 0.0F) {
387#ifdef DO_Z
388            z[ix] = (GLdepth) solve_plane(ix, iy, zPlane);
389            fog[ix] = solve_plane(ix, iy, fogPlane);
390#endif
391#ifdef DO_RGBA
392            rgba[ix][RCOMP] = solve_plane_chan(ix, iy, rPlane);
393            rgba[ix][GCOMP] = solve_plane_chan(ix, iy, gPlane);
394            rgba[ix][BCOMP] = solve_plane_chan(ix, iy, bPlane);
395            rgba[ix][ACOMP] = (GLchan) (solve_plane_chan(ix, iy, aPlane) * coverage);
396#endif
397#ifdef DO_INDEX
398            {
399               GLint frac = compute_coveragei(pMin, pMax, pMid, ix, iy);
400               GLint indx = (GLint) solve_plane(ix, iy, iPlane);
401               index[ix] = (indx & ~0xf) | frac;
402            }
403#endif
404#ifdef DO_SPEC
405            spec[ix][RCOMP] = solve_plane_chan(ix, iy, srPlane);
406            spec[ix][GCOMP] = solve_plane_chan(ix, iy, sgPlane);
407            spec[ix][BCOMP] = solve_plane_chan(ix, iy, sbPlane);
408#endif
409#ifdef DO_TEX
410            {
411               GLfloat invQ = solve_plane_recip(ix, iy, vPlane);
412               s[ix] = solve_plane(ix, iy, sPlane) * invQ;
413               t[ix] = solve_plane(ix, iy, tPlane) * invQ;
414               u[ix] = solve_plane(ix, iy, uPlane) * invQ;
415               lambda[ix] = compute_lambda(sPlane, tPlane, invQ,
416                                              texWidth, texHeight);
417            }
418#elif defined(DO_MULTITEX)
419            {
420               GLuint unit;
421               for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
422                  if (ctx->Texture.Unit[unit]._ReallyEnabled) {
423                     GLfloat invQ = solve_plane_recip(ix, iy, vPlane[unit]);
424                     s[unit][ix] = solve_plane(ix, iy, sPlane[unit]) * invQ;
425                     t[unit][ix] = solve_plane(ix, iy, tPlane[unit]) * invQ;
426                     u[unit][ix] = solve_plane(ix, iy, uPlane[unit]) * invQ;
427                     lambda[unit][ix] = compute_lambda(sPlane[unit],
428                         tPlane[unit], invQ, texWidth[unit], texHeight[unit]);
429                  }
430               }
431            }
432#endif
433            ix--;
434            count++;
435            coverage = compute_coveragef(pMin, pMax, pMid, ix, iy);
436         }
437
438         n = (GLuint) startX - (GLuint) ix;
439         left = ix + 1;
440#ifdef DO_MULTITEX
441         {
442            GLuint unit;
443            for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
444               if (ctx->Texture.Unit[unit]._ReallyEnabled) {
445                  GLint j;
446                  for (j = 0; j < (GLint) n; j++) {
447                     s[unit][j] = s[unit][j + left];
448                     t[unit][j] = t[unit][j + left];
449                     u[unit][j] = u[unit][j + left];
450                     lambda[unit][j] = lambda[unit][j + left];
451                  }
452               }
453            }
454         }
455#  ifdef DO_SPEC
456         _mesa_write_multitexture_span(ctx, n, left, iy, z + left, fog + left,
457                                    (const GLfloat (*)[MAX_WIDTH]) s,
458                                    (const GLfloat (*)[MAX_WIDTH]) t,
459                                    (const GLfloat (*)[MAX_WIDTH]) u,
460                                    lambda, rgba + left,
461                                    (const GLchan (*)[4]) (spec + left),
462                                    GL_POLYGON);
463#  else
464         _mesa_write_multitexture_span(ctx, n, left, iy, z + left, fog + left,
465                                    (const GLfloat (*)[MAX_WIDTH]) s,
466                                    (const GLfloat (*)[MAX_WIDTH]) t,
467                                    (const GLfloat (*)[MAX_WIDTH]) u,
468                                    lambda,
469                                    rgba + left, NULL, GL_POLYGON);
470#  endif
471#elif defined(DO_TEX)
472#  ifdef DO_SPEC
473         _mesa_write_texture_span(ctx, n, left, iy, z + left, fog + left,
474                               s + left, t + left, u + left,
475                               lambda + left, rgba + left,
476                               (const GLchan (*)[4]) (spec + left),
477                               GL_POLYGON);
478#  else
479         _mesa_write_texture_span(ctx, n, left, iy, z + left, fog + left,
480                               s + left, t + left,
481                               u + left, lambda + left,
482                               rgba + left, NULL, GL_POLYGON);
483#  endif
484#elif defined(DO_RGBA)
485         _mesa_write_rgba_span(ctx, n, left, iy, z + left, fog + left,
486                            rgba + left, GL_POLYGON);
487#elif defined(DO_INDEX)
488         _mesa_write_index_span(ctx, n, left, iy, z + left, fog + left,
489                             index + left, GL_POLYGON);
490#endif
491      }
492   }
493}
494
495
496#ifdef DO_Z
497#undef DO_Z
498#endif
499
500#ifdef DO_RGBA
501#undef DO_RGBA
502#endif
503
504#ifdef DO_INDEX
505#undef DO_INDEX
506#endif
507
508#ifdef DO_SPEC
509#undef DO_SPEC
510#endif
511
512#ifdef DO_TEX
513#undef DO_TEX
514#endif
515
516#ifdef DO_MULTITEX
517#undef DO_MULTITEX
518#endif
519
520#ifdef DO_OCCLUSION_TEST
521#undef DO_OCCLUSION_TEST
522#endif
523