s_aatritemp.h revision 880411c72aee7c0ec81366bdf6ab8cf25bebb9d5
1/*
2 * Mesa 3-D graphics library
3 * Version:  7.0.3
4 *
5 * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26/*
27 * Antialiased Triangle Rasterizer Template
28 *
29 * This file is #include'd to generate custom AA triangle rasterizers.
30 * NOTE: this code hasn't been optimized yet.  That'll come after it
31 * works correctly.
32 *
33 * The following macros may be defined to indicate what auxillary information
34 * must be copmuted across the triangle:
35 *    DO_Z         - if defined, compute Z values
36 *    DO_RGBA      - if defined, compute RGBA values
37 *    DO_INDEX     - if defined, compute color index values
38 *    DO_ATTRIBS   - if defined, compute texcoords, varying, etc.
39 */
40
41/*void triangle( GLcontext *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv )*/
42{
43   const SWcontext *swrast = SWRAST_CONTEXT(ctx);
44   const GLfloat *p0 = v0->attrib[FRAG_ATTRIB_WPOS];
45   const GLfloat *p1 = v1->attrib[FRAG_ATTRIB_WPOS];
46   const GLfloat *p2 = v2->attrib[FRAG_ATTRIB_WPOS];
47   const SWvertex *vMin, *vMid, *vMax;
48   GLint iyMin, iyMax;
49   GLfloat yMin, yMax;
50   GLboolean ltor;
51   GLfloat majDx, majDy;  /* major (i.e. long) edge dx and dy */
52
53   SWspan span;
54
55#ifdef DO_Z
56   GLfloat zPlane[4];
57#endif
58#ifdef DO_RGBA
59   GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4];
60#endif
61#ifdef DO_INDEX
62   GLfloat iPlane[4];
63#endif
64#if defined(DO_ATTRIBS)
65   GLfloat attrPlane[FRAG_ATTRIB_MAX][4][4];
66   GLfloat wPlane[4];  /* win[3] */
67#endif
68   GLfloat bf = SWRAST_CONTEXT(ctx)->_BackfaceCullSign;
69
70   (void) swrast;
71
72   INIT_SPAN(span, GL_POLYGON);
73   span.arrayMask = SPAN_COVERAGE;
74
75   /* determine bottom to top order of vertices */
76   {
77      GLfloat y0 = v0->attrib[FRAG_ATTRIB_WPOS][1];
78      GLfloat y1 = v1->attrib[FRAG_ATTRIB_WPOS][1];
79      GLfloat y2 = v2->attrib[FRAG_ATTRIB_WPOS][1];
80      if (y0 <= y1) {
81	 if (y1 <= y2) {
82	    vMin = v0;   vMid = v1;   vMax = v2;   /* y0<=y1<=y2 */
83	 }
84	 else if (y2 <= y0) {
85	    vMin = v2;   vMid = v0;   vMax = v1;   /* y2<=y0<=y1 */
86	 }
87	 else {
88	    vMin = v0;   vMid = v2;   vMax = v1;  bf = -bf; /* y0<=y2<=y1 */
89	 }
90      }
91      else {
92	 if (y0 <= y2) {
93	    vMin = v1;   vMid = v0;   vMax = v2;  bf = -bf; /* y1<=y0<=y2 */
94	 }
95	 else if (y2 <= y1) {
96	    vMin = v2;   vMid = v1;   vMax = v0;  bf = -bf; /* y2<=y1<=y0 */
97	 }
98	 else {
99	    vMin = v1;   vMid = v2;   vMax = v0;   /* y1<=y2<=y0 */
100	 }
101      }
102   }
103
104   majDx = vMax->attrib[FRAG_ATTRIB_WPOS][0] - vMin->attrib[FRAG_ATTRIB_WPOS][0];
105   majDy = vMax->attrib[FRAG_ATTRIB_WPOS][1] - vMin->attrib[FRAG_ATTRIB_WPOS][1];
106
107   /* front/back-face determination and cullling */
108   {
109      const GLfloat botDx = vMid->attrib[FRAG_ATTRIB_WPOS][0] - vMin->attrib[FRAG_ATTRIB_WPOS][0];
110      const GLfloat botDy = vMid->attrib[FRAG_ATTRIB_WPOS][1] - vMin->attrib[FRAG_ATTRIB_WPOS][1];
111      const GLfloat area = majDx * botDy - botDx * majDy;
112      /* Do backface culling */
113      if (area * bf < 0 || area == 0 || IS_INF_OR_NAN(area))
114	 return;
115      ltor = (GLboolean) (area < 0.0F);
116
117      span.facing = area * swrast->_BackfaceSign > 0.0F;
118   }
119
120   /* Plane equation setup:
121    * We evaluate plane equations at window (x,y) coordinates in order
122    * to compute color, Z, fog, texcoords, etc.  This isn't terribly
123    * efficient but it's easy and reliable.
124    */
125#ifdef DO_Z
126   compute_plane(p0, p1, p2, p0[2], p1[2], p2[2], zPlane);
127   span.arrayMask |= SPAN_Z;
128#endif
129#ifdef DO_RGBA
130   if (ctx->Light.ShadeModel == GL_SMOOTH) {
131      compute_plane(p0, p1, p2, v0->color[RCOMP], v1->color[RCOMP], v2->color[RCOMP], rPlane);
132      compute_plane(p0, p1, p2, v0->color[GCOMP], v1->color[GCOMP], v2->color[GCOMP], gPlane);
133      compute_plane(p0, p1, p2, v0->color[BCOMP], v1->color[BCOMP], v2->color[BCOMP], bPlane);
134      compute_plane(p0, p1, p2, v0->color[ACOMP], v1->color[ACOMP], v2->color[ACOMP], aPlane);
135   }
136   else {
137      constant_plane(v2->color[RCOMP], rPlane);
138      constant_plane(v2->color[GCOMP], gPlane);
139      constant_plane(v2->color[BCOMP], bPlane);
140      constant_plane(v2->color[ACOMP], aPlane);
141   }
142   span.arrayMask |= SPAN_RGBA;
143#endif
144#ifdef DO_INDEX
145   if (ctx->Light.ShadeModel == GL_SMOOTH) {
146      compute_plane(p0, p1, p2, (GLfloat) v0->attrib[FRAG_ATTRIB_CI][0],
147                    v1->attrib[FRAG_ATTRIB_CI][0], v2->attrib[FRAG_ATTRIB_CI][0], iPlane);
148   }
149   else {
150      constant_plane(v2->attrib[FRAG_ATTRIB_CI][0], iPlane);
151   }
152   span.arrayMask |= SPAN_INDEX;
153#endif
154#if defined(DO_ATTRIBS)
155   {
156      const GLfloat invW0 = v0->attrib[FRAG_ATTRIB_WPOS][3];
157      const GLfloat invW1 = v1->attrib[FRAG_ATTRIB_WPOS][3];
158      const GLfloat invW2 = v2->attrib[FRAG_ATTRIB_WPOS][3];
159      compute_plane(p0, p1, p2, invW0, invW1, invW2, wPlane);
160      span.attrStepX[FRAG_ATTRIB_WPOS][3] = plane_dx(wPlane);
161      span.attrStepY[FRAG_ATTRIB_WPOS][3] = plane_dy(wPlane);
162      ATTRIB_LOOP_BEGIN
163         GLuint c;
164         if (swrast->_InterpMode[attr] == GL_FLAT) {
165            for (c = 0; c < 4; c++) {
166               constant_plane(v2->attrib[attr][c] * invW2, attrPlane[attr][c]);
167            }
168         }
169         else {
170            for (c = 0; c < 4; c++) {
171               const GLfloat a0 = v0->attrib[attr][c] * invW0;
172               const GLfloat a1 = v1->attrib[attr][c] * invW1;
173               const GLfloat a2 = v2->attrib[attr][c] * invW2;
174               compute_plane(p0, p1, p2, a0, a1, a2, attrPlane[attr][c]);
175            }
176         }
177         for (c = 0; c < 4; c++) {
178            span.attrStepX[attr][c] = plane_dx(attrPlane[attr][c]);
179            span.attrStepY[attr][c] = plane_dy(attrPlane[attr][c]);
180         }
181      ATTRIB_LOOP_END
182   }
183#endif
184
185   /* Begin bottom-to-top scan over the triangle.
186    * The long edge will either be on the left or right side of the
187    * triangle.  We always scan from the long edge toward the shorter
188    * edges, stopping when we find that coverage = 0.  If the long edge
189    * is on the left we scan left-to-right.  Else, we scan right-to-left.
190    */
191   yMin = vMin->attrib[FRAG_ATTRIB_WPOS][1];
192   yMax = vMax->attrib[FRAG_ATTRIB_WPOS][1];
193   iyMin = (GLint) yMin;
194   iyMax = (GLint) yMax + 1;
195
196   if (ltor) {
197      /* scan left to right */
198      const GLfloat *pMin = vMin->attrib[FRAG_ATTRIB_WPOS];
199      const GLfloat *pMid = vMid->attrib[FRAG_ATTRIB_WPOS];
200      const GLfloat *pMax = vMax->attrib[FRAG_ATTRIB_WPOS];
201      const GLfloat dxdy = majDx / majDy;
202      const GLfloat xAdj = dxdy < 0.0F ? -dxdy : 0.0F;
203      GLfloat x = pMin[0] - (yMin - iyMin) * dxdy;
204      GLint iy;
205      for (iy = iyMin; iy < iyMax; iy++, x += dxdy) {
206         GLint ix, startX = (GLint) (x - xAdj);
207         GLuint count;
208         GLfloat coverage = 0.0F;
209
210         /* skip over fragments with zero coverage */
211         while (startX < MAX_WIDTH) {
212            coverage = compute_coveragef(pMin, pMid, pMax, startX, iy);
213            if (coverage > 0.0F)
214               break;
215            startX++;
216         }
217
218         /* enter interior of triangle */
219         ix = startX;
220
221#if defined(DO_ATTRIBS)
222         /* compute attributes at left-most fragment */
223         span.attrStart[FRAG_ATTRIB_WPOS][3] = solve_plane(ix + 0.5F, iy + 0.5F, wPlane);
224         ATTRIB_LOOP_BEGIN
225            GLuint c;
226            for (c = 0; c < 4; c++) {
227               span.attrStart[attr][c] = solve_plane(ix + 0.5F, iy + 0.5F, attrPlane[attr][c]);
228            }
229         ATTRIB_LOOP_END
230#endif
231
232         count = 0;
233         while (coverage > 0.0F) {
234            /* (cx,cy) = center of fragment */
235            const GLfloat cx = ix + 0.5F, cy = iy + 0.5F;
236            SWspanarrays *array = span.array;
237#ifdef DO_INDEX
238            array->coverage[count] = (GLfloat) compute_coveragei(pMin, pMid, pMax, ix, iy);
239#else
240            array->coverage[count] = coverage;
241#endif
242#ifdef DO_Z
243            array->z[count] = (GLuint) solve_plane(cx, cy, zPlane);
244#endif
245#ifdef DO_RGBA
246            array->rgba[count][RCOMP] = solve_plane_chan(cx, cy, rPlane);
247            array->rgba[count][GCOMP] = solve_plane_chan(cx, cy, gPlane);
248            array->rgba[count][BCOMP] = solve_plane_chan(cx, cy, bPlane);
249            array->rgba[count][ACOMP] = solve_plane_chan(cx, cy, aPlane);
250#endif
251#ifdef DO_INDEX
252            array->index[count] = (GLint) solve_plane(cx, cy, iPlane);
253#endif
254            ix++;
255            count++;
256            coverage = compute_coveragef(pMin, pMid, pMax, ix, iy);
257         }
258
259         if (ix <= startX)
260            continue;
261
262         span.x = startX;
263         span.y = iy;
264         span.end = (GLuint) ix - (GLuint) startX;
265#if defined(DO_RGBA)
266         _swrast_write_rgba_span(ctx, &span);
267#else
268         _swrast_write_index_span(ctx, &span);
269#endif
270      }
271   }
272   else {
273      /* scan right to left */
274      const GLfloat *pMin = vMin->attrib[FRAG_ATTRIB_WPOS];
275      const GLfloat *pMid = vMid->attrib[FRAG_ATTRIB_WPOS];
276      const GLfloat *pMax = vMax->attrib[FRAG_ATTRIB_WPOS];
277      const GLfloat dxdy = majDx / majDy;
278      const GLfloat xAdj = dxdy > 0 ? dxdy : 0.0F;
279      GLfloat x = pMin[0] - (yMin - iyMin) * dxdy;
280      GLint iy;
281      for (iy = iyMin; iy < iyMax; iy++, x += dxdy) {
282         GLint ix, left, startX = (GLint) (x + xAdj);
283         GLuint count, n;
284         GLfloat coverage = 0.0F;
285
286         /* make sure we're not past the window edge */
287         if (startX >= ctx->DrawBuffer->_Xmax) {
288            startX = ctx->DrawBuffer->_Xmax - 1;
289         }
290
291         /* skip fragments with zero coverage */
292         while (startX > 0) {
293            coverage = compute_coveragef(pMin, pMax, pMid, startX, iy);
294            if (coverage > 0.0F)
295               break;
296            startX--;
297         }
298
299         /* enter interior of triangle */
300         ix = startX;
301         count = 0;
302         while (coverage > 0.0F) {
303            /* (cx,cy) = center of fragment */
304            const GLfloat cx = ix + 0.5F, cy = iy + 0.5F;
305            SWspanarrays *array = span.array;
306            ASSERT(ix >= 0);
307#ifdef DO_INDEX
308            array->coverage[ix] = (GLfloat) compute_coveragei(pMin, pMax, pMid, ix, iy);
309#else
310            array->coverage[ix] = coverage;
311#endif
312#ifdef DO_Z
313            array->z[ix] = (GLuint) solve_plane(cx, cy, zPlane);
314#endif
315#ifdef DO_RGBA
316            array->rgba[ix][RCOMP] = solve_plane_chan(cx, cy, rPlane);
317            array->rgba[ix][GCOMP] = solve_plane_chan(cx, cy, gPlane);
318            array->rgba[ix][BCOMP] = solve_plane_chan(cx, cy, bPlane);
319            array->rgba[ix][ACOMP] = solve_plane_chan(cx, cy, aPlane);
320#endif
321#ifdef DO_INDEX
322            array->index[ix] = (GLint) solve_plane(cx, cy, iPlane);
323#endif
324            ix--;
325            count++;
326            coverage = compute_coveragef(pMin, pMax, pMid, ix, iy);
327         }
328
329#if defined(DO_ATTRIBS)
330         /* compute attributes at left-most fragment */
331         span.attrStart[FRAG_ATTRIB_WPOS][3] = solve_plane(ix + 1.5, iy + 0.5F, wPlane);
332         ATTRIB_LOOP_BEGIN
333            GLuint c;
334            for (c = 0; c < 4; c++) {
335               span.attrStart[attr][c] = solve_plane(ix + 1.5, iy + 0.5F, attrPlane[attr][c]);
336            }
337         ATTRIB_LOOP_END
338#endif
339
340         if (startX <= ix)
341            continue;
342
343         n = (GLuint) startX - (GLuint) ix;
344
345         left = ix + 1;
346
347         /* shift all values to the left */
348         /* XXX this is temporary */
349         {
350            SWspanarrays *array = span.array;
351            GLint j;
352            for (j = 0; j < (GLint) n; j++) {
353               array->coverage[j] = array->coverage[j + left];
354#ifdef DO_RGBA
355               COPY_CHAN4(array->rgba[j], array->rgba[j + left]);
356#endif
357#ifdef DO_INDEX
358               array->index[j] = array->index[j + left];
359#endif
360#ifdef DO_Z
361               array->z[j] = array->z[j + left];
362#endif
363            }
364         }
365
366         span.x = left;
367         span.y = iy;
368         span.end = n;
369#if defined(DO_RGBA)
370         _swrast_write_rgba_span(ctx, &span);
371#else
372         _swrast_write_index_span(ctx, &span);
373#endif
374      }
375   }
376}
377
378
379#undef DO_Z
380#undef DO_RGBA
381#undef DO_INDEX
382#undef DO_ATTRIBS
383#undef DO_OCCLUSION_TEST
384