s_linetemp.h revision 9ab512ad8cf3a12f4f7f8494fa99bc9389f217db
1/*
2 * Mesa 3-D graphics library
3 * Version:  6.5.3
4 *
5 * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26/*
27 * Line Rasterizer Template
28 *
29 * This file is #include'd to generate custom line rasterizers.
30 *
31 * The following macros may be defined to indicate what auxillary information
32 * must be interplated along the line:
33 *    INTERP_Z        - if defined, interpolate Z values
34 *    INTERP_FOG      - if defined, interpolate FOG values
35 *    INTERP_RGBA     - if defined, interpolate RGBA values
36 *    INTERP_SPEC     - if defined, interpolate specular RGB values
37 *    INTERP_INDEX    - if defined, interpolate color index values
38 *    INTERP_TEX      - if defined, interpolate unit 0 texcoords
39 *    INTERP_MULTITEX - if defined, interpolate multi-texcoords
40 *    INTERP_VARYING  - if defined, interpolate GLSL varyings
41 *
42 * When one can directly address pixels in the color buffer the following
43 * macros can be defined and used to directly compute pixel addresses during
44 * rasterization (see pixelPtr):
45 *    PIXEL_TYPE          - the datatype of a pixel (GLubyte, GLushort, GLuint)
46 *    BYTES_PER_ROW       - number of bytes per row in the color buffer
47 *    PIXEL_ADDRESS(X,Y)  - returns the address of pixel at (X,Y) where
48 *                          Y==0 at bottom of screen and increases upward.
49 *
50 * Similarly, for direct depth buffer access, this type is used for depth
51 * buffer addressing:
52 *    DEPTH_TYPE          - either GLushort or GLuint
53 *
54 * Optionally, one may provide one-time setup code
55 *    SETUP_CODE    - code which is to be executed once per line
56 *
57 * To actually "plot" each pixel the PLOT macro must be defined...
58 *    PLOT(X,Y) - code to plot a pixel.  Example:
59 *                if (Z < *zPtr) {
60 *                   *zPtr = Z;
61 *                   color = pack_rgb( FixedToInt(r0), FixedToInt(g0),
62 *                                     FixedToInt(b0) );
63 *                   put_pixel( X, Y, color );
64 *                }
65 *
66 * This code was designed for the origin to be in the lower-left corner.
67 *
68 */
69
70
71static void
72NAME( GLcontext *ctx, const SWvertex *vert0, const SWvertex *vert1 )
73{
74   SWspan span;
75   GLuint interpFlags = 0;
76   GLint x0 = (GLint) vert0->win[0];
77   GLint x1 = (GLint) vert1->win[0];
78   GLint y0 = (GLint) vert0->win[1];
79   GLint y1 = (GLint) vert1->win[1];
80   GLint dx, dy;
81   GLint numPixels;
82   GLint xstep, ystep;
83#if defined(DEPTH_TYPE)
84   const GLint depthBits = ctx->Visual.depthBits;
85   const GLint fixedToDepthShift = depthBits <= 16 ? FIXED_SHIFT : 0;
86   struct gl_renderbuffer *zrb = ctx->DrawBuffer->Attachment[BUFFER_DEPTH].Renderbuffer;
87#define FixedToDepth(F)  ((F) >> fixedToDepthShift)
88   GLint zPtrXstep, zPtrYstep;
89   DEPTH_TYPE *zPtr;
90#elif defined(INTERP_Z)
91   const GLint depthBits = ctx->Visual.depthBits;
92#endif
93#ifdef PIXEL_ADDRESS
94   PIXEL_TYPE *pixelPtr;
95   GLint pixelXstep, pixelYstep;
96#endif
97
98#ifdef SETUP_CODE
99   SETUP_CODE
100#endif
101
102   /* Cull primitives with malformed coordinates.
103    */
104   {
105      GLfloat tmp = vert0->win[0] + vert0->win[1]
106                  + vert1->win[0] + vert1->win[1];
107      if (IS_INF_OR_NAN(tmp))
108	 return;
109   }
110
111   /*
112   printf("%s():\n", __FUNCTION__);
113   printf(" (%f, %f, %f) -> (%f, %f, %f)\n",
114          vert0->win[0], vert0->win[1], vert0->win[2],
115          vert1->win[0], vert1->win[1], vert1->win[2]);
116   printf(" (%d, %d, %d) -> (%d, %d, %d)\n",
117          vert0->color[0], vert0->color[1], vert0->color[2],
118          vert1->color[0], vert1->color[1], vert1->color[2]);
119   printf(" (%d, %d, %d) -> (%d, %d, %d)\n",
120          vert0->specular[0], vert0->specular[1], vert0->specular[2],
121          vert1->specular[0], vert1->specular[1], vert1->specular[2]);
122   */
123
124/*
125 * Despite being clipped to the view volume, the line's window coordinates
126 * may just lie outside the window bounds.  That is, if the legal window
127 * coordinates are [0,W-1][0,H-1], it's possible for x==W and/or y==H.
128 * This quick and dirty code nudges the endpoints inside the window if
129 * necessary.
130 */
131#ifdef CLIP_HACK
132   {
133      GLint w = ctx->DrawBuffer->Width;
134      GLint h = ctx->DrawBuffer->Height;
135      if ((x0==w) | (x1==w)) {
136         if ((x0==w) & (x1==w))
137           return;
138         x0 -= x0==w;
139         x1 -= x1==w;
140      }
141      if ((y0==h) | (y1==h)) {
142         if ((y0==h) & (y1==h))
143           return;
144         y0 -= y0==h;
145         y1 -= y1==h;
146      }
147   }
148#endif
149
150   dx = x1 - x0;
151   dy = y1 - y0;
152   if (dx == 0 && dy == 0)
153      return;
154
155#ifdef DEPTH_TYPE
156   zPtr = (DEPTH_TYPE *) zrb->GetPointer(ctx, zrb, x0, y0);
157#endif
158#ifdef PIXEL_ADDRESS
159   pixelPtr = (PIXEL_TYPE *) PIXEL_ADDRESS(x0,y0);
160#endif
161
162   if (dx<0) {
163      dx = -dx;   /* make positive */
164      xstep = -1;
165#ifdef DEPTH_TYPE
166      zPtrXstep = -((GLint)sizeof(DEPTH_TYPE));
167#endif
168#ifdef PIXEL_ADDRESS
169      pixelXstep = -((GLint)sizeof(PIXEL_TYPE));
170#endif
171   }
172   else {
173      xstep = 1;
174#ifdef DEPTH_TYPE
175      zPtrXstep = ((GLint)sizeof(DEPTH_TYPE));
176#endif
177#ifdef PIXEL_ADDRESS
178      pixelXstep = ((GLint)sizeof(PIXEL_TYPE));
179#endif
180   }
181
182   if (dy<0) {
183      dy = -dy;   /* make positive */
184      ystep = -1;
185#ifdef DEPTH_TYPE
186      zPtrYstep = -((GLint) (ctx->DrawBuffer->Width * sizeof(DEPTH_TYPE)));
187#endif
188#ifdef PIXEL_ADDRESS
189      pixelYstep = BYTES_PER_ROW;
190#endif
191   }
192   else {
193      ystep = 1;
194#ifdef DEPTH_TYPE
195      zPtrYstep = (GLint) (ctx->DrawBuffer->Width * sizeof(DEPTH_TYPE));
196#endif
197#ifdef PIXEL_ADDRESS
198      pixelYstep = -(BYTES_PER_ROW);
199#endif
200   }
201
202   ASSERT(dx >= 0);
203   ASSERT(dy >= 0);
204
205   numPixels = MAX2(dx, dy);
206
207   /*
208    * Span setup: compute start and step values for all interpolated values.
209    */
210#ifdef INTERP_RGBA
211   interpFlags |= SPAN_RGBA;
212   if (ctx->Light.ShadeModel == GL_SMOOTH) {
213      span.red   = ChanToFixed(vert0->color[0]);
214      span.green = ChanToFixed(vert0->color[1]);
215      span.blue  = ChanToFixed(vert0->color[2]);
216      span.alpha = ChanToFixed(vert0->color[3]);
217      span.redStep   = (ChanToFixed(vert1->color[0]) - span.red  ) / numPixels;
218      span.greenStep = (ChanToFixed(vert1->color[1]) - span.green) / numPixels;
219      span.blueStep  = (ChanToFixed(vert1->color[2]) - span.blue ) / numPixels;
220      span.alphaStep = (ChanToFixed(vert1->color[3]) - span.alpha) / numPixels;
221   }
222   else {
223      span.red   = ChanToFixed(vert1->color[0]);
224      span.green = ChanToFixed(vert1->color[1]);
225      span.blue  = ChanToFixed(vert1->color[2]);
226      span.alpha = ChanToFixed(vert1->color[3]);
227      span.redStep   = 0;
228      span.greenStep = 0;
229      span.blueStep  = 0;
230      span.alphaStep = 0;
231   }
232#endif
233#ifdef INTERP_SPEC
234   interpFlags |= SPAN_SPEC;
235   if (ctx->Light.ShadeModel == GL_SMOOTH) {
236      span.specRed       = ChanToFixed(vert0->specular[0]);
237      span.specGreen     = ChanToFixed(vert0->specular[1]);
238      span.specBlue      = ChanToFixed(vert0->specular[2]);
239      span.specRedStep   = (ChanToFixed(vert1->specular[0]) - span.specRed) / numPixels;
240      span.specGreenStep = (ChanToFixed(vert1->specular[1]) - span.specBlue) / numPixels;
241      span.specBlueStep  = (ChanToFixed(vert1->specular[2]) - span.specGreen) / numPixels;
242   }
243   else {
244      span.specRed       = ChanToFixed(vert1->specular[0]);
245      span.specGreen     = ChanToFixed(vert1->specular[1]);
246      span.specBlue      = ChanToFixed(vert1->specular[2]);
247      span.specRedStep   = 0;
248      span.specGreenStep = 0;
249      span.specBlueStep  = 0;
250   }
251#endif
252#ifdef INTERP_INDEX
253   interpFlags |= SPAN_INDEX;
254   if (ctx->Light.ShadeModel == GL_SMOOTH) {
255      span.index = FloatToFixed(vert0->index);
256      span.indexStep = FloatToFixed(vert1->index - vert0->index) / numPixels;
257   }
258   else {
259      span.index = FloatToFixed(vert1->index);
260      span.indexStep = 0;
261   }
262#endif
263#if defined(INTERP_Z) || defined(DEPTH_TYPE)
264   interpFlags |= SPAN_Z;
265   {
266      if (depthBits <= 16) {
267         span.z = FloatToFixed(vert0->win[2]) + FIXED_HALF;
268         span.zStep = FloatToFixed(vert1->win[2] - vert0->win[2]) / numPixels;
269      }
270      else {
271         /* don't use fixed point */
272         span.z = (GLint) vert0->win[2];
273         span.zStep = (GLint) ((vert1->win[2] - vert0->win[2]) / numPixels);
274      }
275   }
276#endif
277#ifdef INTERP_FOG
278   interpFlags |= SPAN_FOG;
279   span.attrStart[FRAG_ATTRIB_FOGC][0] = vert0->fog;
280   span.attrStepX[FRAG_ATTRIB_FOGC][0] = (vert1->fog - vert0->fog) / numPixels;
281#endif
282#ifdef INTERP_TEX
283   interpFlags |= SPAN_TEXTURE;
284   {
285      const GLfloat invw0 = vert0->win[3];
286      const GLfloat invw1 = vert1->win[3];
287      const GLfloat invLen = 1.0F / numPixels;
288      GLfloat ds, dt, dr, dq;
289      span.attrStart[FRAG_ATTRIB_TEX0][0] = invw0 * vert0->texcoord[0][0];
290      span.attrStart[FRAG_ATTRIB_TEX0][1] = invw0 * vert0->texcoord[0][1];
291      span.attrStart[FRAG_ATTRIB_TEX0][2] = invw0 * vert0->texcoord[0][2];
292      span.attrStart[FRAG_ATTRIB_TEX0][3] = invw0 * vert0->texcoord[0][3];
293      ds = (invw1 * vert1->texcoord[0][0]) - span.attrStart[FRAG_ATTRIB_TEX0][0];
294      dt = (invw1 * vert1->texcoord[0][1]) - span.attrStart[FRAG_ATTRIB_TEX0][1];
295      dr = (invw1 * vert1->texcoord[0][2]) - span.attrStart[FRAG_ATTRIB_TEX0][2];
296      dq = (invw1 * vert1->texcoord[0][3]) - span.attrStart[FRAG_ATTRIB_TEX0][3];
297      span.attrStepX[FRAG_ATTRIB_TEX0][0] = ds * invLen;
298      span.attrStepX[FRAG_ATTRIB_TEX0][1] = dt * invLen;
299      span.attrStepX[FRAG_ATTRIB_TEX0][2] = dr * invLen;
300      span.attrStepX[FRAG_ATTRIB_TEX0][3] = dq * invLen;
301      span.attrStepY[FRAG_ATTRIB_TEX0][0] = 0.0F;
302      span.attrStepY[FRAG_ATTRIB_TEX0][1] = 0.0F;
303      span.attrStepY[FRAG_ATTRIB_TEX0][2] = 0.0F;
304      span.attrStepY[FRAG_ATTRIB_TEX0][3] = 0.0F;
305   }
306#endif
307#ifdef INTERP_MULTITEX
308   interpFlags |= SPAN_TEXTURE;
309   {
310      const GLfloat invLen = 1.0F / numPixels;
311      GLuint u;
312      for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
313         if (ctx->Texture.Unit[u]._ReallyEnabled) {
314            const GLuint attr = FRAG_ATTRIB_TEX0 + u;
315            const GLfloat invw0 = vert0->win[3];
316            const GLfloat invw1 = vert1->win[3];
317            GLfloat ds, dt, dr, dq;
318            span.attrStart[attr][0] = invw0 * vert0->texcoord[u][0];
319            span.attrStart[attr][1] = invw0 * vert0->texcoord[u][1];
320            span.attrStart[attr][2] = invw0 * vert0->texcoord[u][2];
321            span.attrStart[attr][3] = invw0 * vert0->texcoord[u][3];
322            ds = (invw1 * vert1->texcoord[u][0]) - span.attrStart[attr][0];
323            dt = (invw1 * vert1->texcoord[u][1]) - span.attrStart[attr][1];
324            dr = (invw1 * vert1->texcoord[u][2]) - span.attrStart[attr][2];
325            dq = (invw1 * vert1->texcoord[u][3]) - span.attrStart[attr][3];
326            span.attrStepX[attr][0] = ds * invLen;
327            span.attrStepX[attr][1] = dt * invLen;
328            span.attrStepX[attr][2] = dr * invLen;
329            span.attrStepX[attr][3] = dq * invLen;
330            span.attrStepY[attr][0] = 0.0F;
331            span.attrStepY[attr][1] = 0.0F;
332            span.attrStepY[attr][2] = 0.0F;
333            span.attrStepY[attr][3] = 0.0F;
334	 }
335      }
336   }
337#endif
338#ifdef INTERP_VARYING
339   interpFlags |= SPAN_VARYING;
340   {
341      const GLfloat invLen = 1.0F / numPixels;
342      const GLbitfield inputsUsed = ctx->FragmentProgram._Current ?
343         ctx->FragmentProgram._Current->Base.InputsRead : 0x0;
344      const GLfloat invw0 = vert0->win[3];
345      const GLfloat invw1 = vert1->win[3];
346      GLuint v;
347      for (v = 0; v < MAX_VARYING; v++) {
348         if (inputsUsed & FRAG_BIT_VAR(v)) {
349            GLuint attr = FRAG_ATTRIB_VAR0 + v;
350            GLfloat ds, dt, dr, dq;
351            span.attrStart[attr][0] = invw0 * vert0->varying[v][0];
352            span.attrStart[attr][1] = invw0 * vert0->varying[v][1];
353            span.attrStart[attr][2] = invw0 * vert0->varying[v][2];
354            span.attrStart[attr][3] = invw0 * vert0->varying[v][3];
355            ds = (invw1 * vert1->varying[v][0]) - span.attrStart[attr][0];
356            dt = (invw1 * vert1->varying[v][1]) - span.attrStart[attr][1];
357            dr = (invw1 * vert1->varying[v][2]) - span.attrStart[attr][2];
358            dq = (invw1 * vert1->varying[v][3]) - span.attrStart[attr][3];
359            span.attrStepX[attr][0] = ds * invLen;
360            span.attrStepX[attr][1] = dt * invLen;
361            span.attrStepX[attr][2] = dr * invLen;
362            span.attrStepX[attr][3] = dq * invLen;
363            span.attrStepY[attr][0] = 0.0F;
364            span.attrStepY[attr][1] = 0.0F;
365            span.attrStepY[attr][2] = 0.0F;
366            span.attrStepY[attr][3] = 0.0F;
367         }
368      }
369   }
370#endif
371
372   INIT_SPAN(span, GL_LINE, numPixels, interpFlags, SPAN_XY);
373
374   /* Need these for fragment prog texcoord interpolation */
375   span.attrStart[FRAG_ATTRIB_WPOS][3] = 1.0F;
376   span.attrStepX[FRAG_ATTRIB_WPOS][3] = 0.0F;
377   span.attrStepY[FRAG_ATTRIB_WPOS][3] = 0.0F;
378
379   /*
380    * Draw
381    */
382
383   if (dx > dy) {
384      /*** X-major line ***/
385      GLint i;
386      GLint errorInc = dy+dy;
387      GLint error = errorInc-dx;
388      GLint errorDec = error-dx;
389
390      for (i = 0; i < dx; i++) {
391#ifdef DEPTH_TYPE
392         GLuint Z = FixedToDepth(span.z);
393#endif
394#ifdef PLOT
395         PLOT( x0, y0 );
396#else
397         span.array->x[i] = x0;
398         span.array->y[i] = y0;
399#endif
400         x0 += xstep;
401#ifdef DEPTH_TYPE
402         zPtr = (DEPTH_TYPE *) ((GLubyte*) zPtr + zPtrXstep);
403         span.z += span.zStep;
404#endif
405#ifdef PIXEL_ADDRESS
406         pixelPtr = (PIXEL_TYPE*) ((GLubyte*) pixelPtr + pixelXstep);
407#endif
408         if (error<0) {
409            error += errorInc;
410         }
411         else {
412            error += errorDec;
413            y0 += ystep;
414#ifdef DEPTH_TYPE
415            zPtr = (DEPTH_TYPE *) ((GLubyte*) zPtr + zPtrYstep);
416#endif
417#ifdef PIXEL_ADDRESS
418            pixelPtr = (PIXEL_TYPE*) ((GLubyte*) pixelPtr + pixelYstep);
419#endif
420         }
421      }
422   }
423   else {
424      /*** Y-major line ***/
425      GLint i;
426      GLint errorInc = dx+dx;
427      GLint error = errorInc-dy;
428      GLint errorDec = error-dy;
429
430      for (i=0;i<dy;i++) {
431#ifdef DEPTH_TYPE
432         GLuint Z = FixedToDepth(span.z);
433#endif
434#ifdef PLOT
435         PLOT( x0, y0 );
436#else
437         span.array->x[i] = x0;
438         span.array->y[i] = y0;
439#endif
440         y0 += ystep;
441#ifdef DEPTH_TYPE
442         zPtr = (DEPTH_TYPE *) ((GLubyte*) zPtr + zPtrYstep);
443         span.z += span.zStep;
444#endif
445#ifdef PIXEL_ADDRESS
446         pixelPtr = (PIXEL_TYPE*) ((GLubyte*) pixelPtr + pixelYstep);
447#endif
448         if (error<0) {
449            error += errorInc;
450         }
451         else {
452            error += errorDec;
453            x0 += xstep;
454#ifdef DEPTH_TYPE
455            zPtr = (DEPTH_TYPE *) ((GLubyte*) zPtr + zPtrXstep);
456#endif
457#ifdef PIXEL_ADDRESS
458            pixelPtr = (PIXEL_TYPE*) ((GLubyte*) pixelPtr + pixelXstep);
459#endif
460         }
461      }
462   }
463
464#ifdef RENDER_SPAN
465   RENDER_SPAN( span );
466#endif
467
468   (void)span;
469
470}
471
472
473#undef NAME
474#undef INTERP_Z
475#undef INTERP_FOG
476#undef INTERP_RGBA
477#undef INTERP_SPEC
478#undef INTERP_TEX
479#undef INTERP_MULTITEX
480#undef INTERP_INDEX
481#undef PIXEL_ADDRESS
482#undef PIXEL_TYPE
483#undef DEPTH_TYPE
484#undef BYTES_PER_ROW
485#undef SETUP_CODE
486#undef PLOT
487#undef CLIP_HACK
488#undef FixedToDepth
489#undef RENDER_SPAN
490