s_linetemp.h revision afc132e7a9c2b2c870b61ef10311272b36ea9bf2
1/*
2 * Mesa 3-D graphics library
3 * Version:  6.5.3
4 *
5 * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26/*
27 * Line Rasterizer Template
28 *
29 * This file is #include'd to generate custom line rasterizers.
30 *
31 * The following macros may be defined to indicate what auxillary information
32 * must be interplated along the line:
33 *    INTERP_Z        - if defined, interpolate Z values
34 *    INTERP_FOG      - if defined, interpolate FOG values
35 *    INTERP_RGBA     - if defined, interpolate RGBA values
36 *    INTERP_SPEC     - if defined, interpolate specular RGB values
37 *    INTERP_INDEX    - if defined, interpolate color index values
38 *    INTERP_TEX      - if defined, interpolate unit 0 texcoords
39 *    INTERP_MULTITEX - if defined, interpolate multi-texcoords
40 *    INTERP_VARYING  - if defined, interpolate GLSL varyings
41 *
42 * When one can directly address pixels in the color buffer the following
43 * macros can be defined and used to directly compute pixel addresses during
44 * rasterization (see pixelPtr):
45 *    PIXEL_TYPE          - the datatype of a pixel (GLubyte, GLushort, GLuint)
46 *    BYTES_PER_ROW       - number of bytes per row in the color buffer
47 *    PIXEL_ADDRESS(X,Y)  - returns the address of pixel at (X,Y) where
48 *                          Y==0 at bottom of screen and increases upward.
49 *
50 * Similarly, for direct depth buffer access, this type is used for depth
51 * buffer addressing:
52 *    DEPTH_TYPE          - either GLushort or GLuint
53 *
54 * Optionally, one may provide one-time setup code
55 *    SETUP_CODE    - code which is to be executed once per line
56 *
57 * To actually "plot" each pixel the PLOT macro must be defined...
58 *    PLOT(X,Y) - code to plot a pixel.  Example:
59 *                if (Z < *zPtr) {
60 *                   *zPtr = Z;
61 *                   color = pack_rgb( FixedToInt(r0), FixedToInt(g0),
62 *                                     FixedToInt(b0) );
63 *                   put_pixel( X, Y, color );
64 *                }
65 *
66 * This code was designed for the origin to be in the lower-left corner.
67 *
68 */
69
70
71static void
72NAME( GLcontext *ctx, const SWvertex *vert0, const SWvertex *vert1 )
73{
74   const SWcontext *swrast = SWRAST_CONTEXT(ctx);
75   SWspan span;
76   GLuint interpFlags = 0;
77   GLint x0 = (GLint) vert0->win[0];
78   GLint x1 = (GLint) vert1->win[0];
79   GLint y0 = (GLint) vert0->win[1];
80   GLint y1 = (GLint) vert1->win[1];
81   GLint dx, dy;
82   GLint numPixels;
83   GLint xstep, ystep;
84#if defined(DEPTH_TYPE)
85   const GLint depthBits = ctx->DrawBuffer->Visual.depthBits;
86   const GLint fixedToDepthShift = depthBits <= 16 ? FIXED_SHIFT : 0;
87   struct gl_renderbuffer *zrb = ctx->DrawBuffer->Attachment[BUFFER_DEPTH].Renderbuffer;
88#define FixedToDepth(F)  ((F) >> fixedToDepthShift)
89   GLint zPtrXstep, zPtrYstep;
90   DEPTH_TYPE *zPtr;
91#elif defined(INTERP_Z)
92   const GLint depthBits = ctx->DrawBuffer->Visual.depthBits;
93/*ctx->Visual.depthBits;*/
94#endif
95#ifdef PIXEL_ADDRESS
96   PIXEL_TYPE *pixelPtr;
97   GLint pixelXstep, pixelYstep;
98#endif
99
100#ifdef SETUP_CODE
101   SETUP_CODE
102#endif
103
104   (void) swrast;
105
106   /* Cull primitives with malformed coordinates.
107    */
108   {
109      GLfloat tmp = vert0->win[0] + vert0->win[1]
110                  + vert1->win[0] + vert1->win[1];
111      if (IS_INF_OR_NAN(tmp))
112	 return;
113   }
114
115   /*
116   printf("%s():\n", __FUNCTION__);
117   printf(" (%f, %f, %f) -> (%f, %f, %f)\n",
118          vert0->win[0], vert0->win[1], vert0->win[2],
119          vert1->win[0], vert1->win[1], vert1->win[2]);
120   printf(" (%d, %d, %d) -> (%d, %d, %d)\n",
121          vert0->color[0], vert0->color[1], vert0->color[2],
122          vert1->color[0], vert1->color[1], vert1->color[2]);
123   printf(" (%d, %d, %d) -> (%d, %d, %d)\n",
124          vert0->specular[0], vert0->specular[1], vert0->specular[2],
125          vert1->specular[0], vert1->specular[1], vert1->specular[2]);
126   */
127
128/*
129 * Despite being clipped to the view volume, the line's window coordinates
130 * may just lie outside the window bounds.  That is, if the legal window
131 * coordinates are [0,W-1][0,H-1], it's possible for x==W and/or y==H.
132 * This quick and dirty code nudges the endpoints inside the window if
133 * necessary.
134 */
135#ifdef CLIP_HACK
136   {
137      GLint w = ctx->DrawBuffer->Width;
138      GLint h = ctx->DrawBuffer->Height;
139      if ((x0==w) | (x1==w)) {
140         if ((x0==w) & (x1==w))
141           return;
142         x0 -= x0==w;
143         x1 -= x1==w;
144      }
145      if ((y0==h) | (y1==h)) {
146         if ((y0==h) & (y1==h))
147           return;
148         y0 -= y0==h;
149         y1 -= y1==h;
150      }
151   }
152#endif
153
154   dx = x1 - x0;
155   dy = y1 - y0;
156   if (dx == 0 && dy == 0)
157      return;
158
159#ifdef DEPTH_TYPE
160   zPtr = (DEPTH_TYPE *) zrb->GetPointer(ctx, zrb, x0, y0);
161#endif
162#ifdef PIXEL_ADDRESS
163   pixelPtr = (PIXEL_TYPE *) PIXEL_ADDRESS(x0,y0);
164#endif
165
166   if (dx<0) {
167      dx = -dx;   /* make positive */
168      xstep = -1;
169#ifdef DEPTH_TYPE
170      zPtrXstep = -((GLint)sizeof(DEPTH_TYPE));
171#endif
172#ifdef PIXEL_ADDRESS
173      pixelXstep = -((GLint)sizeof(PIXEL_TYPE));
174#endif
175   }
176   else {
177      xstep = 1;
178#ifdef DEPTH_TYPE
179      zPtrXstep = ((GLint)sizeof(DEPTH_TYPE));
180#endif
181#ifdef PIXEL_ADDRESS
182      pixelXstep = ((GLint)sizeof(PIXEL_TYPE));
183#endif
184   }
185
186   if (dy<0) {
187      dy = -dy;   /* make positive */
188      ystep = -1;
189#ifdef DEPTH_TYPE
190      zPtrYstep = -((GLint) (ctx->DrawBuffer->Width * sizeof(DEPTH_TYPE)));
191#endif
192#ifdef PIXEL_ADDRESS
193      pixelYstep = BYTES_PER_ROW;
194#endif
195   }
196   else {
197      ystep = 1;
198#ifdef DEPTH_TYPE
199      zPtrYstep = (GLint) (ctx->DrawBuffer->Width * sizeof(DEPTH_TYPE));
200#endif
201#ifdef PIXEL_ADDRESS
202      pixelYstep = -(BYTES_PER_ROW);
203#endif
204   }
205
206   ASSERT(dx >= 0);
207   ASSERT(dy >= 0);
208
209   numPixels = MAX2(dx, dy);
210
211   /*
212    * Span setup: compute start and step values for all interpolated values.
213    */
214#ifdef INTERP_RGBA
215   interpFlags |= SPAN_RGBA;
216   if (ctx->Light.ShadeModel == GL_SMOOTH) {
217      span.red   = ChanToFixed(vert0->color[0]);
218      span.green = ChanToFixed(vert0->color[1]);
219      span.blue  = ChanToFixed(vert0->color[2]);
220      span.alpha = ChanToFixed(vert0->color[3]);
221      span.redStep   = (ChanToFixed(vert1->color[0]) - span.red  ) / numPixels;
222      span.greenStep = (ChanToFixed(vert1->color[1]) - span.green) / numPixels;
223      span.blueStep  = (ChanToFixed(vert1->color[2]) - span.blue ) / numPixels;
224      span.alphaStep = (ChanToFixed(vert1->color[3]) - span.alpha) / numPixels;
225   }
226   else {
227      span.red   = ChanToFixed(vert1->color[0]);
228      span.green = ChanToFixed(vert1->color[1]);
229      span.blue  = ChanToFixed(vert1->color[2]);
230      span.alpha = ChanToFixed(vert1->color[3]);
231      span.redStep   = 0;
232      span.greenStep = 0;
233      span.blueStep  = 0;
234      span.alphaStep = 0;
235   }
236#endif
237#ifdef INTERP_SPEC
238   interpFlags |= SPAN_SPEC;
239   if (ctx->Light.ShadeModel == GL_SMOOTH) {
240      span.specRed       = ChanToFixed(vert0->specular[0]);
241      span.specGreen     = ChanToFixed(vert0->specular[1]);
242      span.specBlue      = ChanToFixed(vert0->specular[2]);
243      span.specRedStep   = (ChanToFixed(vert1->specular[0]) - span.specRed) / numPixels;
244      span.specGreenStep = (ChanToFixed(vert1->specular[1]) - span.specBlue) / numPixels;
245      span.specBlueStep  = (ChanToFixed(vert1->specular[2]) - span.specGreen) / numPixels;
246   }
247   else {
248      span.specRed       = ChanToFixed(vert1->specular[0]);
249      span.specGreen     = ChanToFixed(vert1->specular[1]);
250      span.specBlue      = ChanToFixed(vert1->specular[2]);
251      span.specRedStep   = 0;
252      span.specGreenStep = 0;
253      span.specBlueStep  = 0;
254   }
255#endif
256#ifdef INTERP_INDEX
257   interpFlags |= SPAN_INDEX;
258   if (ctx->Light.ShadeModel == GL_SMOOTH) {
259      span.index = FloatToFixed(vert0->index);
260      span.indexStep = FloatToFixed(vert1->index - vert0->index) / numPixels;
261   }
262   else {
263      span.index = FloatToFixed(vert1->index);
264      span.indexStep = 0;
265   }
266#endif
267#if defined(INTERP_Z) || defined(DEPTH_TYPE)
268   interpFlags |= SPAN_Z;
269   {
270      if (depthBits <= 16) {
271         span.z = FloatToFixed(vert0->win[2]) + FIXED_HALF;
272         span.zStep = FloatToFixed(vert1->win[2] - vert0->win[2]) / numPixels;
273      }
274      else {
275         /* don't use fixed point */
276         span.z = (GLuint) vert0->win[2];
277         span.zStep = (GLint) ((vert1->win[2] - vert0->win[2]) / numPixels);
278      }
279   }
280#endif
281#ifdef INTERP_FOG
282   interpFlags |= SPAN_FOG;
283   span.attrStart[FRAG_ATTRIB_FOGC][0] = vert0->attrib[FRAG_ATTRIB_FOGC][0];
284   span.attrStepX[FRAG_ATTRIB_FOGC][0] = (vert1->attrib[FRAG_ATTRIB_FOGC][0]
285                                          - vert0->attrib[FRAG_ATTRIB_FOGC][0]) / numPixels;
286#endif
287#ifdef INTERP_TEX
288   interpFlags |= SPAN_TEXTURE;
289   {
290      const GLfloat invw0 = vert0->win[3];
291      const GLfloat invw1 = vert1->win[3];
292      const GLfloat invLen = 1.0F / numPixels;
293      GLfloat ds, dt, dr, dq;
294      span.attrStart[FRAG_ATTRIB_TEX0][0] = invw0 * vert0->attrib[FRAG_ATTRIB_TEX0][0];
295      span.attrStart[FRAG_ATTRIB_TEX0][1] = invw0 * vert0->attrib[FRAG_ATTRIB_TEX0][1];
296      span.attrStart[FRAG_ATTRIB_TEX0][2] = invw0 * vert0->attrib[FRAG_ATTRIB_TEX0][2];
297      span.attrStart[FRAG_ATTRIB_TEX0][3] = invw0 * vert0->attrib[FRAG_ATTRIB_TEX0][3];
298      ds = (invw1 * vert1->attrib[FRAG_ATTRIB_TEX0][0]) - span.attrStart[FRAG_ATTRIB_TEX0][0];
299      dt = (invw1 * vert1->attrib[FRAG_ATTRIB_TEX0][1]) - span.attrStart[FRAG_ATTRIB_TEX0][1];
300      dr = (invw1 * vert1->attrib[FRAG_ATTRIB_TEX0][2]) - span.attrStart[FRAG_ATTRIB_TEX0][2];
301      dq = (invw1 * vert1->attrib[FRAG_ATTRIB_TEX0][3]) - span.attrStart[FRAG_ATTRIB_TEX0][3];
302      span.attrStepX[FRAG_ATTRIB_TEX0][0] = ds * invLen;
303      span.attrStepX[FRAG_ATTRIB_TEX0][1] = dt * invLen;
304      span.attrStepX[FRAG_ATTRIB_TEX0][2] = dr * invLen;
305      span.attrStepX[FRAG_ATTRIB_TEX0][3] = dq * invLen;
306      span.attrStepY[FRAG_ATTRIB_TEX0][0] = 0.0F;
307      span.attrStepY[FRAG_ATTRIB_TEX0][1] = 0.0F;
308      span.attrStepY[FRAG_ATTRIB_TEX0][2] = 0.0F;
309      span.attrStepY[FRAG_ATTRIB_TEX0][3] = 0.0F;
310   }
311#endif
312#if defined(INTERP_MULTITEX) || defined(INTERP_VARYING)
313   interpFlags |= (SPAN_TEXTURE | SPAN_VARYING);
314   {
315      const GLfloat invLen = 1.0F / numPixels;
316      const GLfloat invw0 = vert0->win[3];
317      const GLfloat invw1 = vert1->win[3];
318      ATTRIB_LOOP_BEGIN
319         GLfloat ds, dt, dr, dq;
320         span.attrStart[attr][0] = invw0 * vert0->attrib[attr][0];
321         span.attrStart[attr][1] = invw0 * vert0->attrib[attr][1];
322         span.attrStart[attr][2] = invw0 * vert0->attrib[attr][2];
323         span.attrStart[attr][3] = invw0 * vert0->attrib[attr][3];
324         ds = (invw1 * vert1->attrib[attr][0]) - span.attrStart[attr][0];
325         dt = (invw1 * vert1->attrib[attr][1]) - span.attrStart[attr][1];
326         dr = (invw1 * vert1->attrib[attr][2]) - span.attrStart[attr][2];
327         dq = (invw1 * vert1->attrib[attr][3]) - span.attrStart[attr][3];
328         span.attrStepX[attr][0] = ds * invLen;
329         span.attrStepX[attr][1] = dt * invLen;
330         span.attrStepX[attr][2] = dr * invLen;
331         span.attrStepX[attr][3] = dq * invLen;
332         span.attrStepY[attr][0] = 0.0F;
333         span.attrStepY[attr][1] = 0.0F;
334         span.attrStepY[attr][2] = 0.0F;
335         span.attrStepY[attr][3] = 0.0F;
336      ATTRIB_LOOP_END
337   }
338#endif
339
340   INIT_SPAN(span, GL_LINE, numPixels, interpFlags, SPAN_XY);
341
342   /* Need these for fragment prog texcoord interpolation */
343   span.attrStart[FRAG_ATTRIB_WPOS][3] = 1.0F;
344   span.attrStepX[FRAG_ATTRIB_WPOS][3] = 0.0F;
345   span.attrStepY[FRAG_ATTRIB_WPOS][3] = 0.0F;
346
347   /*
348    * Draw
349    */
350
351   if (dx > dy) {
352      /*** X-major line ***/
353      GLint i;
354      GLint errorInc = dy+dy;
355      GLint error = errorInc-dx;
356      GLint errorDec = error-dx;
357
358      for (i = 0; i < dx; i++) {
359#ifdef DEPTH_TYPE
360         GLuint Z = FixedToDepth(span.z);
361#endif
362#ifdef PLOT
363         PLOT( x0, y0 );
364#else
365         span.array->x[i] = x0;
366         span.array->y[i] = y0;
367#endif
368         x0 += xstep;
369#ifdef DEPTH_TYPE
370         zPtr = (DEPTH_TYPE *) ((GLubyte*) zPtr + zPtrXstep);
371         span.z += span.zStep;
372#endif
373#ifdef PIXEL_ADDRESS
374         pixelPtr = (PIXEL_TYPE*) ((GLubyte*) pixelPtr + pixelXstep);
375#endif
376         if (error<0) {
377            error += errorInc;
378         }
379         else {
380            error += errorDec;
381            y0 += ystep;
382#ifdef DEPTH_TYPE
383            zPtr = (DEPTH_TYPE *) ((GLubyte*) zPtr + zPtrYstep);
384#endif
385#ifdef PIXEL_ADDRESS
386            pixelPtr = (PIXEL_TYPE*) ((GLubyte*) pixelPtr + pixelYstep);
387#endif
388         }
389      }
390   }
391   else {
392      /*** Y-major line ***/
393      GLint i;
394      GLint errorInc = dx+dx;
395      GLint error = errorInc-dy;
396      GLint errorDec = error-dy;
397
398      for (i=0;i<dy;i++) {
399#ifdef DEPTH_TYPE
400         GLuint Z = FixedToDepth(span.z);
401#endif
402#ifdef PLOT
403         PLOT( x0, y0 );
404#else
405         span.array->x[i] = x0;
406         span.array->y[i] = y0;
407#endif
408         y0 += ystep;
409#ifdef DEPTH_TYPE
410         zPtr = (DEPTH_TYPE *) ((GLubyte*) zPtr + zPtrYstep);
411         span.z += span.zStep;
412#endif
413#ifdef PIXEL_ADDRESS
414         pixelPtr = (PIXEL_TYPE*) ((GLubyte*) pixelPtr + pixelYstep);
415#endif
416         if (error<0) {
417            error += errorInc;
418         }
419         else {
420            error += errorDec;
421            x0 += xstep;
422#ifdef DEPTH_TYPE
423            zPtr = (DEPTH_TYPE *) ((GLubyte*) zPtr + zPtrXstep);
424#endif
425#ifdef PIXEL_ADDRESS
426            pixelPtr = (PIXEL_TYPE*) ((GLubyte*) pixelPtr + pixelXstep);
427#endif
428         }
429      }
430   }
431
432#ifdef RENDER_SPAN
433   RENDER_SPAN( span );
434#endif
435
436   (void)span;
437
438}
439
440
441#undef NAME
442#undef INTERP_Z
443#undef INTERP_FOG
444#undef INTERP_RGBA
445#undef INTERP_SPEC
446#undef INTERP_TEX
447#undef INTERP_MULTITEX
448#undef INTERP_INDEX
449#undef PIXEL_ADDRESS
450#undef PIXEL_TYPE
451#undef DEPTH_TYPE
452#undef BYTES_PER_ROW
453#undef SETUP_CODE
454#undef PLOT
455#undef CLIP_HACK
456#undef FixedToDepth
457#undef RENDER_SPAN
458