s_triangle.c revision 77df88727cb0a423dd5cb41498c2302d9df4fce7
1/* $Id: s_triangle.c,v 1.61 2002/08/07 00:45:07 brianp Exp $ */
2
3/*
4 * Mesa 3-D graphics library
5 * Version:  4.1
6 *
7 * Copyright (C) 1999-2002  Brian Paul   All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27
28/*
29 * When the device driver doesn't implement triangle rasterization it
30 * can hook in _swrast_Triangle, which eventually calls one of these
31 * functions to draw triangles.
32 */
33
34#include "glheader.h"
35#include "context.h"
36#include "colormac.h"
37#include "macros.h"
38#include "mem.h"
39#include "mmath.h"
40#include "texformat.h"
41#include "teximage.h"
42#include "texstate.h"
43
44#include "s_aatriangle.h"
45#include "s_context.h"
46#include "s_depth.h"
47#include "s_feedback.h"
48#include "s_span.h"
49#include "s_triangle.h"
50
51
52/*
53 * Just used for feedback mode.
54 */
55GLboolean _mesa_cull_triangle( GLcontext *ctx,
56			    const SWvertex *v0,
57			    const SWvertex *v1,
58			    const SWvertex *v2 )
59{
60   GLfloat ex = v1->win[0] - v0->win[0];
61   GLfloat ey = v1->win[1] - v0->win[1];
62   GLfloat fx = v2->win[0] - v0->win[0];
63   GLfloat fy = v2->win[1] - v0->win[1];
64   GLfloat c = ex*fy-ey*fx;
65
66   if (c * SWRAST_CONTEXT(ctx)->_backface_sign > 0)
67      return 0;
68
69   return 1;
70}
71
72
73
74/*
75 * Render a flat-shaded color index triangle.
76 */
77static void flat_ci_triangle( GLcontext *ctx,
78			      const SWvertex *v0,
79			      const SWvertex *v1,
80			      const SWvertex *v2 )
81{
82#define INTERP_Z 1
83#define INTERP_FOG 1
84
85#define SETUP_CODE					\
86   span.interpMask |= SPAN_INDEX;			\
87   span.index = IntToFixed(v2->index);			\
88   span.indexStep = 0;
89
90#define RENDER_SPAN( span )  _mesa_write_index_span(ctx, &span);
91
92#include "s_tritemp.h"
93}
94
95
96
97/*
98 * Render a smooth-shaded color index triangle.
99 */
100static void smooth_ci_triangle( GLcontext *ctx,
101				const SWvertex *v0,
102				const SWvertex *v1,
103				const SWvertex *v2 )
104{
105#define INTERP_Z 1
106#define INTERP_FOG 1
107#define INTERP_INDEX 1
108
109#define RENDER_SPAN( span )  _mesa_write_index_span(ctx, &span);
110
111#include "s_tritemp.h"
112}
113
114
115
116/*
117 * Render a flat-shaded RGBA triangle.
118 */
119static void flat_rgba_triangle( GLcontext *ctx,
120				const SWvertex *v0,
121				const SWvertex *v1,
122				const SWvertex *v2 )
123{
124#define INTERP_Z 1
125#define INTERP_FOG 1
126#define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE
127
128#define SETUP_CODE				\
129   ASSERT(ctx->Texture._EnabledUnits == 0);	\
130   ASSERT(ctx->Light.ShadeModel==GL_FLAT);	\
131   span.interpMask |= SPAN_RGBA;		\
132   span.red = ChanToFixed(v2->color[0]);	\
133   span.green = ChanToFixed(v2->color[1]);	\
134   span.blue = ChanToFixed(v2->color[2]);	\
135   span.alpha = ChanToFixed(v2->color[3]);	\
136   span.redStep = 0;				\
137   span.greenStep = 0;				\
138   span.blueStep = 0;				\
139   span.alphaStep = 0;
140
141#define RENDER_SPAN( span )  _mesa_write_rgba_span(ctx, &span);
142
143#include "s_tritemp.h"
144}
145
146
147
148/*
149 * Render a smooth-shaded RGBA triangle.
150 */
151static void smooth_rgba_triangle( GLcontext *ctx,
152				  const SWvertex *v0,
153				  const SWvertex *v1,
154				  const SWvertex *v2 )
155{
156
157#define INTERP_Z 1
158#define INTERP_FOG 1
159#define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE
160#define INTERP_RGB 1
161#define INTERP_ALPHA 1
162
163#define SETUP_CODE				\
164   {						\
165      /* texturing must be off */		\
166      ASSERT(ctx->Texture._EnabledUnits == 0);	\
167      ASSERT(ctx->Light.ShadeModel==GL_SMOOTH);	\
168   }
169
170#define RENDER_SPAN( span )  _mesa_write_rgba_span(ctx, &span);
171
172#include "s_tritemp.h"
173
174}
175
176
177/*
178 * Render an RGB, GL_DECAL, textured triangle.
179 * Interpolate S,T only w/out mipmapping or perspective correction.
180 *
181 * No fog.
182 */
183static void simple_textured_triangle( GLcontext *ctx,
184				      const SWvertex *v0,
185				      const SWvertex *v1,
186				      const SWvertex *v2 )
187{
188#define INTERP_INT_TEX 1
189#define S_SCALE twidth
190#define T_SCALE theight
191
192#define SETUP_CODE							\
193   SWcontext *swrast = SWRAST_CONTEXT(ctx);                             \
194   struct gl_texture_object *obj = ctx->Texture.Unit[0].Current2D;	\
195   const GLint b = obj->BaseLevel;					\
196   const GLfloat twidth = (GLfloat) obj->Image[b]->Width;		\
197   const GLfloat theight = (GLfloat) obj->Image[b]->Height;		\
198   const GLint twidth_log2 = obj->Image[b]->WidthLog2;			\
199   const GLchan *texture = (const GLchan *) obj->Image[b]->Data;	\
200   const GLint smask = obj->Image[b]->Width - 1;			\
201   const GLint tmask = obj->Image[b]->Height - 1;			\
202   if (!texture) {							\
203      /* this shouldn't happen */					\
204      return;								\
205   }
206
207#define RENDER_SPAN( span  )						\
208   GLuint i;								\
209   span.intTex[0] -= FIXED_HALF; /* off-by-one error? */		\
210   span.intTex[1] -= FIXED_HALF;					\
211   for (i = 0; i < span.end; i++) {					\
212      GLint s = FixedToInt(span.intTex[0]) & smask;			\
213      GLint t = FixedToInt(span.intTex[1]) & tmask;			\
214      GLint pos = (t << twidth_log2) + s;				\
215      pos = pos + pos + pos;  /* multiply by 3 */			\
216      span.array->rgb[i][RCOMP] = texture[pos];				\
217      span.array->rgb[i][GCOMP] = texture[pos+1];			\
218      span.array->rgb[i][BCOMP] = texture[pos+2];			\
219      span.intTex[0] += span.intTexStep[0];				\
220      span.intTex[1] += span.intTexStep[1];				\
221   }									\
222   (*swrast->Driver.WriteRGBSpan)(ctx, span.end, span.x, span.y,	\
223                                  (CONST GLchan (*)[3]) span.array->rgb,\
224                                  NULL );
225
226#include "s_tritemp.h"
227}
228
229
230/*
231 * Render an RGB, GL_DECAL, textured triangle.
232 * Interpolate S,T, GL_LESS depth test, w/out mipmapping or
233 * perspective correction.
234 *
235 * No fog.
236 */
237static void simple_z_textured_triangle( GLcontext *ctx,
238					const SWvertex *v0,
239					const SWvertex *v1,
240					const SWvertex *v2 )
241{
242#define INTERP_Z 1
243#define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE
244#define INTERP_INT_TEX 1
245#define S_SCALE twidth
246#define T_SCALE theight
247
248#define SETUP_CODE							\
249   SWcontext *swrast = SWRAST_CONTEXT(ctx);                             \
250   struct gl_texture_object *obj = ctx->Texture.Unit[0].Current2D;	\
251   const GLint b = obj->BaseLevel;					\
252   const GLfloat twidth = (GLfloat) obj->Image[b]->Width;		\
253   const GLfloat theight = (GLfloat) obj->Image[b]->Height;		\
254   const GLint twidth_log2 = obj->Image[b]->WidthLog2;			\
255   const GLchan *texture = (const GLchan *) obj->Image[b]->Data;	\
256   const GLint smask = obj->Image[b]->Width - 1;			\
257   const GLint tmask = obj->Image[b]->Height - 1;			\
258   if (!texture) {							\
259      /* this shouldn't happen */					\
260      return;								\
261   }
262
263#define RENDER_SPAN( span )						\
264   GLuint i;				    				\
265   span.intTex[0] -= FIXED_HALF; /* off-by-one error? */		\
266   span.intTex[1] -= FIXED_HALF;					\
267   for (i = 0; i < span.end; i++) {					\
268      const GLdepth z = FixedToDepth(span.z);				\
269      if (z < zRow[i]) {						\
270         GLint s = FixedToInt(span.intTex[0]) & smask;			\
271         GLint t = FixedToInt(span.intTex[1]) & tmask;			\
272         GLint pos = (t << twidth_log2) + s;				\
273         pos = pos + pos + pos;  /* multiply by 3 */			\
274         span.array->rgb[i][RCOMP] = texture[pos];			\
275         span.array->rgb[i][GCOMP] = texture[pos+1];			\
276         span.array->rgb[i][BCOMP] = texture[pos+2];			\
277         zRow[i] = z;							\
278         span.array->mask[i] = 1;					\
279      }									\
280      else {								\
281         span.array->mask[i] = 0;					\
282      }									\
283      span.intTex[0] += span.intTexStep[0];				\
284      span.intTex[1] += span.intTexStep[1];				\
285      span.z += span.zStep;						\
286   }									\
287   (*swrast->Driver.WriteRGBSpan)(ctx, span.end, span.x, span.y,	\
288                                  (CONST GLchan (*)[3]) span.array->rgb,\
289                                  span.array->mask );
290
291#include "s_tritemp.h"
292}
293
294
295#if CHAN_TYPE != GL_FLOAT
296
297struct affine_info
298{
299   GLenum filter;
300   GLenum format;
301   GLenum envmode;
302   GLint smask, tmask;
303   GLint twidth_log2;
304   const GLchan *texture;
305   GLfixed er, eg, eb, ea;
306   GLint tbytesline, tsize;
307};
308
309
310/* This function can handle GL_NEAREST or GL_LINEAR sampling of 2D RGB or RGBA
311 * textures with GL_REPLACE, GL_MODULATE, GL_BLEND, GL_DECAL or GL_ADD
312 * texture env modes.
313 */
314static INLINE void
315affine_span(GLcontext *ctx, struct sw_span *span,
316            struct affine_info *info)
317{
318   GLchan sample[4];  /* the filtered texture sample */
319
320   /* Instead of defining a function for each mode, a test is done
321    * between the outer and inner loops. This is to reduce code size
322    * and complexity. Observe that an optimizing compiler kills
323    * unused variables (for instance tf,sf,ti,si in case of GL_NEAREST).
324    */
325
326#define NEAREST_RGB			\
327   sample[RCOMP] = tex00[RCOMP];	\
328   sample[GCOMP] = tex00[GCOMP];	\
329   sample[BCOMP] = tex00[BCOMP];	\
330   sample[ACOMP] = CHAN_MAX
331
332#define LINEAR_RGB							\
333   sample[RCOMP] = (ti * (si * tex00[0] + sf * tex01[0]) +		\
334             tf * (si * tex10[0] + sf * tex11[0])) >> 2 * FIXED_SHIFT;	\
335   sample[GCOMP] = (ti * (si * tex00[1] + sf * tex01[1]) +		\
336             tf * (si * tex10[1] + sf * tex11[1])) >> 2 * FIXED_SHIFT;	\
337   sample[BCOMP] = (ti * (si * tex00[2] + sf * tex01[2]) +		\
338             tf * (si * tex10[2] + sf * tex11[2])) >> 2 * FIXED_SHIFT;	\
339   sample[ACOMP] = CHAN_MAX
340
341#define NEAREST_RGBA  COPY_CHAN4(sample, tex00)
342
343#define LINEAR_RGBA							\
344   sample[RCOMP] = (ti * (si * tex00[0] + sf * tex01[0]) +		\
345               tf * (si * tex10[0] + sf * tex11[0])) >> 2 * FIXED_SHIFT;\
346   sample[GCOMP] = (ti * (si * tex00[1] + sf * tex01[1]) +		\
347               tf * (si * tex10[1] + sf * tex11[1])) >> 2 * FIXED_SHIFT;\
348   sample[BCOMP] = (ti * (si * tex00[2] + sf * tex01[2]) +		\
349               tf * (si * tex10[2] + sf * tex11[2])) >> 2 * FIXED_SHIFT;\
350   sample[ACOMP] = (ti * (si * tex00[3] + sf * tex01[3]) +		\
351               tf * (si * tex10[3] + sf * tex11[3])) >> 2 * FIXED_SHIFT
352
353#define MODULATE							  \
354   dest[RCOMP] = span->red   * (sample[RCOMP] + 1u) >> (FIXED_SHIFT + 8); \
355   dest[GCOMP] = span->green * (sample[GCOMP] + 1u) >> (FIXED_SHIFT + 8); \
356   dest[BCOMP] = span->blue  * (sample[BCOMP] + 1u) >> (FIXED_SHIFT + 8); \
357   dest[ACOMP] = span->alpha * (sample[ACOMP] + 1u) >> (FIXED_SHIFT + 8)
358
359#define DECAL								\
360   dest[RCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->red +		\
361               ((sample[ACOMP] + 1) * sample[RCOMP] << FIXED_SHIFT))	\
362               >> (FIXED_SHIFT + 8);					\
363   dest[GCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->green +		\
364               ((sample[ACOMP] + 1) * sample[GCOMP] << FIXED_SHIFT))	\
365               >> (FIXED_SHIFT + 8);					\
366   dest[BCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->blue +		\
367               ((sample[ACOMP] + 1) * sample[BCOMP] << FIXED_SHIFT))	\
368               >> (FIXED_SHIFT + 8);					\
369   dest[ACOMP] = FixedToInt(span->alpha)
370
371#define BLEND								\
372   dest[RCOMP] = ((CHAN_MAX - sample[RCOMP]) * span->red		\
373               + (sample[RCOMP] + 1) * info->er) >> (FIXED_SHIFT + 8);	\
374   dest[GCOMP] = ((CHAN_MAX - sample[GCOMP]) * span->green		\
375               + (sample[GCOMP] + 1) * info->eg) >> (FIXED_SHIFT + 8);	\
376   dest[BCOMP] = ((CHAN_MAX - sample[BCOMP]) * span->blue		\
377               + (sample[BCOMP] + 1) * info->eb) >> (FIXED_SHIFT + 8);	\
378   dest[ACOMP] = span->alpha * (sample[ACOMP] + 1) >> (FIXED_SHIFT + 8)
379
380#define REPLACE  COPY_CHAN4(dest, sample)
381
382#define ADD								\
383   {									\
384      GLint rSum = FixedToInt(span->red)   + (GLint) sample[RCOMP];	\
385      GLint gSum = FixedToInt(span->green) + (GLint) sample[GCOMP];	\
386      GLint bSum = FixedToInt(span->blue)  + (GLint) sample[BCOMP];	\
387      dest[RCOMP] = MIN2(rSum, CHAN_MAX);				\
388      dest[GCOMP] = MIN2(gSum, CHAN_MAX);				\
389      dest[BCOMP] = MIN2(bSum, CHAN_MAX);				\
390      dest[ACOMP] = span->alpha * (sample[ACOMP] + 1) >> (FIXED_SHIFT + 8); \
391  }
392
393/* shortcuts */
394
395#define NEAREST_RGB_REPLACE		\
396   NEAREST_RGB;				\
397   dest[0] = sample[0];			\
398   dest[1] = sample[1];			\
399   dest[2] = sample[2];			\
400   dest[3] = FixedToInt(span->alpha);
401
402#define NEAREST_RGBA_REPLACE  COPY_CHAN4(dest, tex00)
403
404#define SPAN_NEAREST(DO_TEX,COMP)					\
405	for (i = 0; i < span->end; i++) {				\
406           /* Isn't it necessary to use FixedFloor below?? */		\
407           GLint s = FixedToInt(span->intTex[0]) & info->smask;		\
408           GLint t = FixedToInt(span->intTex[1]) & info->tmask;		\
409           GLint pos = (t << info->twidth_log2) + s;			\
410           const GLchan *tex00 = info->texture + COMP * pos;		\
411           DO_TEX;							\
412           span->red += span->redStep;					\
413	   span->green += span->greenStep;				\
414           span->blue += span->blueStep;				\
415	   span->alpha += span->alphaStep;				\
416	   span->intTex[0] += span->intTexStep[0];			\
417	   span->intTex[1] += span->intTexStep[1];			\
418           dest += 4;							\
419	}
420
421#define SPAN_LINEAR(DO_TEX,COMP)					\
422	for (i = 0; i < span->end; i++) {				\
423           /* Isn't it necessary to use FixedFloor below?? */		\
424           GLint s = FixedToInt(span->intTex[0]) & info->smask;		\
425           GLint t = FixedToInt(span->intTex[1]) & info->tmask;		\
426           GLfixed sf = span->intTex[0] & FIXED_FRAC_MASK;		\
427           GLfixed tf = span->intTex[1] & FIXED_FRAC_MASK;		\
428           GLfixed si = FIXED_FRAC_MASK - sf;				\
429           GLfixed ti = FIXED_FRAC_MASK - tf;				\
430           GLint pos = (t << info->twidth_log2) + s;			\
431           const GLchan *tex00 = info->texture + COMP * pos;		\
432           const GLchan *tex10 = tex00 + info->tbytesline;		\
433           const GLchan *tex01 = tex00 + COMP;				\
434           const GLchan *tex11 = tex10 + COMP;				\
435           (void) ti;							\
436           (void) si;							\
437           if (t == info->tmask) {					\
438              tex10 -= info->tsize;					\
439              tex11 -= info->tsize;					\
440           }								\
441           if (s == info->smask) {					\
442              tex01 -= info->tbytesline;				\
443              tex11 -= info->tbytesline;				\
444           }								\
445           DO_TEX;							\
446           span->red += span->redStep;					\
447	   span->green += span->greenStep;				\
448           span->blue += span->blueStep;				\
449	   span->alpha += span->alphaStep;				\
450	   span->intTex[0] += span->intTexStep[0];			\
451	   span->intTex[1] += span->intTexStep[1];			\
452           dest += 4;							\
453	}
454
455
456   GLuint i;
457   GLchan *dest = span->array->rgba[0];
458
459   span->intTex[0] -= FIXED_HALF;
460   span->intTex[1] -= FIXED_HALF;
461   switch (info->filter) {
462   case GL_NEAREST:
463      switch (info->format) {
464      case GL_RGB:
465         switch (info->envmode) {
466         case GL_MODULATE:
467            SPAN_NEAREST(NEAREST_RGB;MODULATE,3);
468            break;
469         case GL_DECAL:
470         case GL_REPLACE:
471            SPAN_NEAREST(NEAREST_RGB_REPLACE,3);
472            break;
473         case GL_BLEND:
474            SPAN_NEAREST(NEAREST_RGB;BLEND,3);
475            break;
476         case GL_ADD:
477            SPAN_NEAREST(NEAREST_RGB;ADD,3);
478            break;
479         default:
480            abort();
481         }
482         break;
483      case GL_RGBA:
484         switch(info->envmode) {
485         case GL_MODULATE:
486            SPAN_NEAREST(NEAREST_RGBA;MODULATE,4);
487            break;
488         case GL_DECAL:
489            SPAN_NEAREST(NEAREST_RGBA;DECAL,4);
490            break;
491         case GL_BLEND:
492            SPAN_NEAREST(NEAREST_RGBA;BLEND,4);
493            break;
494         case GL_ADD:
495            SPAN_NEAREST(NEAREST_RGBA;ADD,4);
496            break;
497         case GL_REPLACE:
498            SPAN_NEAREST(NEAREST_RGBA_REPLACE,4);
499            break;
500         default:
501            abort();
502         }
503         break;
504      }
505      break;
506
507   case GL_LINEAR:
508      span->intTex[0] -= FIXED_HALF;
509      span->intTex[1] -= FIXED_HALF;
510      switch (info->format) {
511      case GL_RGB:
512         switch (info->envmode) {
513         case GL_MODULATE:
514            SPAN_LINEAR(LINEAR_RGB;MODULATE,3);
515            break;
516         case GL_DECAL:
517         case GL_REPLACE:
518            SPAN_LINEAR(LINEAR_RGB;REPLACE,3);
519            break;
520         case GL_BLEND:
521            SPAN_LINEAR(LINEAR_RGB;BLEND,3);
522            break;
523         case GL_ADD:
524            SPAN_LINEAR(LINEAR_RGB;ADD,3);
525            break;
526         default:
527            abort();
528         }
529         break;
530      case GL_RGBA:
531         switch (info->envmode) {
532         case GL_MODULATE:
533            SPAN_LINEAR(LINEAR_RGBA;MODULATE,4);
534            break;
535         case GL_DECAL:
536            SPAN_LINEAR(LINEAR_RGBA;DECAL,4);
537            break;
538         case GL_BLEND:
539            SPAN_LINEAR(LINEAR_RGBA;BLEND,4);
540            break;
541         case GL_ADD:
542            SPAN_LINEAR(LINEAR_RGBA;ADD,4);
543            break;
544         case GL_REPLACE:
545            SPAN_LINEAR(LINEAR_RGBA;REPLACE,4);
546            break;
547         default:
548            abort();
549         }		    break;
550      }
551      break;
552   }
553   span->interpMask &= ~SPAN_RGBA;
554   ASSERT(span->arrayMask & SPAN_RGBA);
555   _mesa_write_rgba_span(ctx, span);
556
557#undef SPAN_NEAREST
558#undef SPAN_LINEAR
559}
560
561
562
563/*
564 * Render an RGB/RGBA textured triangle without perspective correction.
565 */
566static void affine_textured_triangle( GLcontext *ctx,
567				      const SWvertex *v0,
568				      const SWvertex *v1,
569				      const SWvertex *v2 )
570{
571#define INTERP_Z 1
572#define INTERP_FOG 1
573#define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE
574#define INTERP_RGB 1
575#define INTERP_ALPHA 1
576#define INTERP_INT_TEX 1
577#define S_SCALE twidth
578#define T_SCALE theight
579
580#define SETUP_CODE							\
581   struct affine_info info;						\
582   struct gl_texture_unit *unit = ctx->Texture.Unit+0;			\
583   struct gl_texture_object *obj = unit->Current2D;			\
584   const GLint b = obj->BaseLevel;					\
585   const GLfloat twidth = (GLfloat) obj->Image[b]->Width;		\
586   const GLfloat theight = (GLfloat) obj->Image[b]->Height;		\
587   info.texture = (const GLchan *) obj->Image[b]->Data;			\
588   info.twidth_log2 = obj->Image[b]->WidthLog2;				\
589   info.smask = obj->Image[b]->Width - 1;				\
590   info.tmask = obj->Image[b]->Height - 1;				\
591   info.format = obj->Image[b]->Format;					\
592   info.filter = obj->MinFilter;					\
593   info.envmode = unit->EnvMode;					\
594   span.arrayMask |= SPAN_RGBA;						\
595									\
596   if (info.envmode == GL_BLEND) {					\
597      /* potential off-by-one error here? (1.0f -> 2048 -> 0) */	\
598      info.er = FloatToFixed(unit->EnvColor[RCOMP] * CHAN_MAXF);	\
599      info.eg = FloatToFixed(unit->EnvColor[GCOMP] * CHAN_MAXF);	\
600      info.eb = FloatToFixed(unit->EnvColor[BCOMP] * CHAN_MAXF);	\
601      info.ea = FloatToFixed(unit->EnvColor[ACOMP] * CHAN_MAXF);	\
602   }									\
603   if (!info.texture) {							\
604      /* this shouldn't happen */					\
605      return;								\
606   }									\
607									\
608   switch (info.format) {						\
609   case GL_ALPHA:							\
610   case GL_LUMINANCE:							\
611   case GL_INTENSITY:							\
612      info.tbytesline = obj->Image[b]->Width;				\
613      break;								\
614   case GL_LUMINANCE_ALPHA:						\
615      info.tbytesline = obj->Image[b]->Width * 2;			\
616      break;								\
617   case GL_RGB:								\
618      info.tbytesline = obj->Image[b]->Width * 3;			\
619      break;								\
620   case GL_RGBA:							\
621      info.tbytesline = obj->Image[b]->Width * 4;			\
622      break;								\
623   default:								\
624      _mesa_problem(NULL, "Bad texture format in affine_texture_triangle");\
625      return;								\
626   }									\
627   info.tsize = obj->Image[b]->Height * info.tbytesline;
628
629#define RENDER_SPAN( span )   affine_span(ctx, &span, &info);
630
631#include "s_tritemp.h"
632
633}
634
635
636
637struct persp_info
638{
639   GLenum filter;
640   GLenum format;
641   GLenum envmode;
642   GLint smask, tmask;
643   GLint twidth_log2;
644   const GLchan *texture;
645   GLfixed er, eg, eb, ea;   /* texture env color */
646   GLint tbytesline, tsize;
647};
648
649
650static INLINE void
651fast_persp_span(GLcontext *ctx, struct sw_span *span,
652		struct persp_info *info)
653{
654   GLchan sample[4];  /* the filtered texture sample */
655
656  /* Instead of defining a function for each mode, a test is done
657   * between the outer and inner loops. This is to reduce code size
658   * and complexity. Observe that an optimizing compiler kills
659   * unused variables (for instance tf,sf,ti,si in case of GL_NEAREST).
660   */
661#define SPAN_NEAREST(DO_TEX,COMP)					\
662	for (i = 0; i < span->end; i++) {				\
663           GLdouble invQ = tex_coord[2] ?				\
664                                 (1.0 / tex_coord[2]) : 1.0;            \
665           GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ);		\
666           GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ);		\
667           GLint s = IFLOOR(s_tmp) & info->smask;	        	\
668           GLint t = IFLOOR(t_tmp) & info->tmask;	        	\
669           GLint pos = (t << info->twidth_log2) + s;			\
670           const GLchan *tex00 = info->texture + COMP * pos;		\
671           DO_TEX;							\
672           span->red += span->redStep;					\
673	   span->green += span->greenStep;				\
674           span->blue += span->blueStep;				\
675	   span->alpha += span->alphaStep;				\
676	   tex_coord[0] += tex_step[0];					\
677	   tex_coord[1] += tex_step[1];					\
678	   tex_coord[2] += tex_step[2];					\
679           dest += 4;							\
680	}
681
682#define SPAN_LINEAR(DO_TEX,COMP)					\
683	for (i = 0; i < span->end; i++) {				\
684           GLdouble invQ = tex_coord[2] ?				\
685                                 (1.0 / tex_coord[2]) : 1.0;            \
686           GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ);		\
687           GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ);		\
688           GLfixed s_fix = FloatToFixed(s_tmp) - FIXED_HALF;		\
689           GLfixed t_fix = FloatToFixed(t_tmp) - FIXED_HALF;        	\
690           GLint s = FixedToInt(FixedFloor(s_fix)) & info->smask;	\
691           GLint t = FixedToInt(FixedFloor(t_fix)) & info->tmask;	\
692           GLfixed sf = s_fix & FIXED_FRAC_MASK;			\
693           GLfixed tf = t_fix & FIXED_FRAC_MASK;			\
694           GLfixed si = FIXED_FRAC_MASK - sf;				\
695           GLfixed ti = FIXED_FRAC_MASK - tf;				\
696           GLint pos = (t << info->twidth_log2) + s;			\
697           const GLchan *tex00 = info->texture + COMP * pos;		\
698           const GLchan *tex10 = tex00 + info->tbytesline;		\
699           const GLchan *tex01 = tex00 + COMP;				\
700           const GLchan *tex11 = tex10 + COMP;				\
701           (void) ti;							\
702           (void) si;							\
703           if (t == info->tmask) {					\
704              tex10 -= info->tsize;					\
705              tex11 -= info->tsize;					\
706           }								\
707           if (s == info->smask) {					\
708              tex01 -= info->tbytesline;				\
709              tex11 -= info->tbytesline;				\
710           }								\
711           DO_TEX;							\
712           span->red   += span->redStep;				\
713	   span->green += span->greenStep;				\
714           span->blue  += span->blueStep;				\
715	   span->alpha += span->alphaStep;				\
716	   tex_coord[0] += tex_step[0];					\
717	   tex_coord[1] += tex_step[1];					\
718	   tex_coord[2] += tex_step[2];					\
719           dest += 4;							\
720	}
721
722   GLuint i;
723   GLfloat tex_coord[3], tex_step[3];
724   GLchan *dest = span->array->rgba[0];
725
726   tex_coord[0] = span->tex[0][0]  * (info->smask + 1);
727   tex_step[0] = span->texStepX[0][0] * (info->smask + 1);
728   tex_coord[1] = span->tex[0][1] * (info->tmask + 1);
729   tex_step[1] = span->texStepX[0][1] * (info->tmask + 1);
730   /* span->tex[0][2] only if 3D-texturing, here only 2D */
731   tex_coord[2] = span->tex[0][3];
732   tex_step[2] = span->texStepX[0][3];
733
734   switch (info->filter) {
735   case GL_NEAREST:
736      switch (info->format) {
737      case GL_RGB:
738         switch (info->envmode) {
739         case GL_MODULATE:
740            SPAN_NEAREST(NEAREST_RGB;MODULATE,3);
741            break;
742         case GL_DECAL:
743         case GL_REPLACE:
744            SPAN_NEAREST(NEAREST_RGB_REPLACE,3);
745            break;
746         case GL_BLEND:
747            SPAN_NEAREST(NEAREST_RGB;BLEND,3);
748            break;
749         case GL_ADD:
750            SPAN_NEAREST(NEAREST_RGB;ADD,3);
751            break;
752         default:
753            abort();
754         }
755         break;
756      case GL_RGBA:
757         switch(info->envmode) {
758         case GL_MODULATE:
759            SPAN_NEAREST(NEAREST_RGBA;MODULATE,4);
760            break;
761         case GL_DECAL:
762            SPAN_NEAREST(NEAREST_RGBA;DECAL,4);
763            break;
764         case GL_BLEND:
765            SPAN_NEAREST(NEAREST_RGBA;BLEND,4);
766            break;
767         case GL_ADD:
768            SPAN_NEAREST(NEAREST_RGBA;ADD,4);
769            break;
770         case GL_REPLACE:
771            SPAN_NEAREST(NEAREST_RGBA_REPLACE,4);
772            break;
773         default:
774            abort();
775         }
776         break;
777      }
778      break;
779
780   case GL_LINEAR:
781      switch (info->format) {
782      case GL_RGB:
783         switch (info->envmode) {
784         case GL_MODULATE:
785            SPAN_LINEAR(LINEAR_RGB;MODULATE,3);
786            break;
787         case GL_DECAL:
788         case GL_REPLACE:
789            SPAN_LINEAR(LINEAR_RGB;REPLACE,3);
790            break;
791         case GL_BLEND:
792            SPAN_LINEAR(LINEAR_RGB;BLEND,3);
793            break;
794         case GL_ADD:
795            SPAN_LINEAR(LINEAR_RGB;ADD,3);
796            break;
797         default:
798            abort();
799         }
800         break;
801      case GL_RGBA:
802         switch (info->envmode) {
803         case GL_MODULATE:
804            SPAN_LINEAR(LINEAR_RGBA;MODULATE,4);
805            break;
806         case GL_DECAL:
807            SPAN_LINEAR(LINEAR_RGBA;DECAL,4);
808            break;
809         case GL_BLEND:
810            SPAN_LINEAR(LINEAR_RGBA;BLEND,4);
811            break;
812         case GL_ADD:
813            SPAN_LINEAR(LINEAR_RGBA;ADD,4);
814            break;
815         case GL_REPLACE:
816            SPAN_LINEAR(LINEAR_RGBA;REPLACE,4);
817            break;
818         default:
819            abort();
820         }
821         break;
822      }
823      break;
824   }
825
826   ASSERT(span->arrayMask & SPAN_RGBA);
827   _mesa_write_rgba_span(ctx, span);
828
829#undef SPAN_NEAREST
830#undef SPAN_LINEAR
831}
832
833
834/*
835 * Render an perspective corrected RGB/RGBA textured triangle.
836 * The Q (aka V in Mesa) coordinate must be zero such that the divide
837 * by interpolated Q/W comes out right.
838 *
839 */
840static void persp_textured_triangle( GLcontext *ctx,
841				     const SWvertex *v0,
842				     const SWvertex *v1,
843				     const SWvertex *v2 )
844{
845#define INTERP_Z 1
846#define INTERP_FOG 1
847#define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE
848#define INTERP_RGB 1
849#define INTERP_ALPHA 1
850#define INTERP_TEX 1
851
852#define SETUP_CODE							\
853   struct persp_info info;						\
854   const struct gl_texture_unit *unit = ctx->Texture.Unit+0;		\
855   const struct gl_texture_object *obj = unit->Current2D;		\
856   const GLint b = obj->BaseLevel;					\
857   info.texture = (const GLchan *) obj->Image[b]->Data;			\
858   info.twidth_log2 = obj->Image[b]->WidthLog2;				\
859   info.smask = obj->Image[b]->Width - 1;				\
860   info.tmask = obj->Image[b]->Height - 1;				\
861   info.format = obj->Image[b]->Format;					\
862   info.filter = obj->MinFilter;					\
863   info.envmode = unit->EnvMode;					\
864									\
865   if (info.envmode == GL_BLEND) {					\
866      /* potential off-by-one error here? (1.0f -> 2048 -> 0) */	\
867      info.er = FloatToFixed(unit->EnvColor[RCOMP] * CHAN_MAXF);	\
868      info.eg = FloatToFixed(unit->EnvColor[GCOMP] * CHAN_MAXF);	\
869      info.eb = FloatToFixed(unit->EnvColor[BCOMP] * CHAN_MAXF);	\
870      info.ea = FloatToFixed(unit->EnvColor[ACOMP] * CHAN_MAXF);	\
871   }									\
872   if (!info.texture) {							\
873      /* this shouldn't happen */					\
874      return;								\
875   }									\
876									\
877   switch (info.format) {						\
878   case GL_ALPHA:							\
879   case GL_LUMINANCE:							\
880   case GL_INTENSITY:							\
881      info.tbytesline = obj->Image[b]->Width;				\
882      break;								\
883   case GL_LUMINANCE_ALPHA:						\
884      info.tbytesline = obj->Image[b]->Width * 2;			\
885      break;								\
886   case GL_RGB:								\
887      info.tbytesline = obj->Image[b]->Width * 3;			\
888      break;								\
889   case GL_RGBA:							\
890      info.tbytesline = obj->Image[b]->Width * 4;			\
891      break;								\
892   default:								\
893      _mesa_problem(NULL, "Bad texture format in persp_textured_triangle");\
894      return;								\
895   }									\
896   info.tsize = obj->Image[b]->Height * info.tbytesline;
897
898#define RENDER_SPAN( span )			\
899   span.interpMask &= ~SPAN_RGBA;		\
900   span.arrayMask |= SPAN_RGBA;			\
901   fast_persp_span(ctx, &span, &info);
902
903#include "s_tritemp.h"
904
905}
906
907
908#endif /* CHAN_BITS != GL_FLOAT */
909
910
911
912
913/*
914 * Render a smooth-shaded, textured, RGBA triangle.
915 * Interpolate S,T,R with perspective correction, w/out mipmapping.
916 */
917static void general_textured_triangle( GLcontext *ctx,
918				       const SWvertex *v0,
919				       const SWvertex *v1,
920				       const SWvertex *v2 )
921{
922#define INTERP_Z 1
923#define INTERP_FOG 1
924#define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE
925#define INTERP_RGB 1
926#define INTERP_SPEC 1
927#define INTERP_ALPHA 1
928#define INTERP_TEX 1
929
930#define RENDER_SPAN( span )   _mesa_write_texture_span(ctx, &span);
931
932#include "s_tritemp.h"
933}
934
935
936
937/*
938 * This is the big one!
939 * Interpolate Z, RGB, Alpha, specular, fog, and N sets of texture coordinates.
940 * Yup, it's slow.
941 */
942static void
943multitextured_triangle( GLcontext *ctx,
944                        const SWvertex *v0,
945                        const SWvertex *v1,
946                        const SWvertex *v2 )
947{
948
949#define INTERP_Z 1
950#define INTERP_FOG 1
951#define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE
952#define INTERP_RGB 1
953#define INTERP_ALPHA 1
954#define INTERP_SPEC 1
955#define INTERP_MULTITEX 1
956
957#define RENDER_SPAN( span )   _mesa_write_texture_span(ctx, &span);
958
959#include "s_tritemp.h"
960
961}
962
963
964static void occlusion_zless_triangle( GLcontext *ctx,
965				      const SWvertex *v0,
966				      const SWvertex *v1,
967				      const SWvertex *v2 )
968{
969   if (ctx->OcclusionResult) {
970      return;
971   }
972
973#define DO_OCCLUSION_TEST
974#define INTERP_Z 1
975#define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE
976
977#define RENDER_SPAN( span )				\
978   GLuint i;						\
979   for (i = 0; i < span.end; i++) {			\
980      GLdepth z = FixedToDepth(span.z);			\
981      if (z < zRow[i]) {				\
982         ctx->OcclusionResult = GL_TRUE;		\
983         return;					\
984      }							\
985      span.z += span.zStep;				\
986   }
987
988#include "s_tritemp.h"
989}
990
991static void nodraw_triangle( GLcontext *ctx,
992			     const SWvertex *v0,
993			     const SWvertex *v1,
994			     const SWvertex *v2 )
995{
996   (void) (ctx && v0 && v1 && v2);
997}
998
999
1000/*
1001 * This is used when separate specular color is enabled, but not
1002 * texturing.  We add the specular color to the primary color,
1003 * draw the triangle, then restore the original primary color.
1004 * Inefficient, but seldom needed.
1005 */
1006void _swrast_add_spec_terms_triangle( GLcontext *ctx,
1007				      const SWvertex *v0,
1008				      const SWvertex *v1,
1009				      const SWvertex *v2 )
1010{
1011   SWvertex *ncv0 = (SWvertex *)v0; /* drop const qualifier */
1012   SWvertex *ncv1 = (SWvertex *)v1;
1013   SWvertex *ncv2 = (SWvertex *)v2;
1014#if CHAN_TYPE == GL_FLOAT
1015   GLfloat rSum, gSum, bSum;
1016#else
1017   GLint rSum, gSum, bSum;
1018#endif
1019   GLchan c[3][4];
1020   /* save original colors */
1021   COPY_CHAN4( c[0], ncv0->color );
1022   COPY_CHAN4( c[1], ncv1->color );
1023   COPY_CHAN4( c[2], ncv2->color );
1024   /* sum v0 */
1025   rSum = ncv0->color[0] + ncv0->specular[0];
1026   gSum = ncv0->color[1] + ncv0->specular[1];
1027   bSum = ncv0->color[2] + ncv0->specular[2];
1028   ncv0->color[0] = MIN2(rSum, CHAN_MAX);
1029   ncv0->color[1] = MIN2(gSum, CHAN_MAX);
1030   ncv0->color[2] = MIN2(bSum, CHAN_MAX);
1031   /* sum v1 */
1032   rSum = ncv1->color[0] + ncv1->specular[0];
1033   gSum = ncv1->color[1] + ncv1->specular[1];
1034   bSum = ncv1->color[2] + ncv1->specular[2];
1035   ncv1->color[0] = MIN2(rSum, CHAN_MAX);
1036   ncv1->color[1] = MIN2(gSum, CHAN_MAX);
1037   ncv1->color[2] = MIN2(bSum, CHAN_MAX);
1038   /* sum v2 */
1039   rSum = ncv2->color[0] + ncv2->specular[0];
1040   gSum = ncv2->color[1] + ncv2->specular[1];
1041   bSum = ncv2->color[2] + ncv2->specular[2];
1042   ncv2->color[0] = MIN2(rSum, CHAN_MAX);
1043   ncv2->color[1] = MIN2(gSum, CHAN_MAX);
1044   ncv2->color[2] = MIN2(bSum, CHAN_MAX);
1045   /* draw */
1046   SWRAST_CONTEXT(ctx)->SpecTriangle( ctx, ncv0, ncv1, ncv2 );
1047   /* restore original colors */
1048   COPY_CHAN4( ncv0->color, c[0] );
1049   COPY_CHAN4( ncv1->color, c[1] );
1050   COPY_CHAN4( ncv2->color, c[2] );
1051}
1052
1053
1054
1055#ifdef DEBUG
1056
1057/* record the current triangle function name */
1058const char *_mesa_triFuncName = NULL;
1059
1060#define USE(triFunc)				\
1061do {						\
1062    _mesa_triFuncName = #triFunc;		\
1063    /*printf("%s\n", _mesa_triFuncName);*/	\
1064    swrast->Triangle = triFunc;			\
1065} while (0)
1066
1067#else
1068
1069#define USE(triFunc)  swrast->Triangle = triFunc;
1070
1071#endif
1072
1073
1074
1075
1076/*
1077 * Determine which triangle rendering function to use given the current
1078 * rendering context.
1079 *
1080 * Please update the summary flag _SWRAST_NEW_TRIANGLE if you add or
1081 * remove tests to this code.
1082 */
1083void
1084_swrast_choose_triangle( GLcontext *ctx )
1085{
1086   SWcontext *swrast = SWRAST_CONTEXT(ctx);
1087   const GLboolean rgbmode = ctx->Visual.rgbMode;
1088
1089   if (ctx->Polygon.CullFlag &&
1090       ctx->Polygon.CullFaceMode == GL_FRONT_AND_BACK) {
1091      USE(nodraw_triangle);
1092      return;
1093   }
1094
1095   if (ctx->RenderMode==GL_RENDER) {
1096
1097      if (ctx->Polygon.SmoothFlag) {
1098         _mesa_set_aa_triangle_function(ctx);
1099         ASSERT(swrast->Triangle);
1100         return;
1101      }
1102
1103      if (ctx->Depth.OcclusionTest &&
1104          ctx->Depth.Test &&
1105          ctx->Depth.Mask == GL_FALSE &&
1106          ctx->Depth.Func == GL_LESS &&
1107          !ctx->Stencil.Enabled) {
1108         if ((rgbmode &&
1109              ctx->Color.ColorMask[0] == 0 &&
1110              ctx->Color.ColorMask[1] == 0 &&
1111              ctx->Color.ColorMask[2] == 0 &&
1112              ctx->Color.ColorMask[3] == 0)
1113             ||
1114             (!rgbmode && ctx->Color.IndexMask == 0)) {
1115            USE(occlusion_zless_triangle);
1116            return;
1117         }
1118      }
1119
1120      if (ctx->Texture._EnabledUnits) {
1121         /* Ugh, we do a _lot_ of tests to pick the best textured tri func */
1122	 const struct gl_texture_object *texObj2D;
1123         const struct gl_texture_image *texImg;
1124         GLenum minFilter, magFilter, envMode;
1125         GLint format;
1126         texObj2D = ctx->Texture.Unit[0].Current2D;
1127         texImg = texObj2D ? texObj2D->Image[texObj2D->BaseLevel] : NULL;
1128         format = texImg ? texImg->TexFormat->MesaFormat : -1;
1129         minFilter = texObj2D ? texObj2D->MinFilter : (GLenum) 0;
1130         magFilter = texObj2D ? texObj2D->MagFilter : (GLenum) 0;
1131         envMode = ctx->Texture.Unit[0].EnvMode;
1132
1133         /* First see if we can used an optimized 2-D texture function */
1134         if (ctx->Texture._EnabledUnits == 1
1135             && ctx->Texture.Unit[0]._ReallyEnabled == TEXTURE_2D_BIT
1136             && texObj2D->WrapS==GL_REPEAT
1137	     && texObj2D->WrapT==GL_REPEAT
1138             && texImg->Border==0
1139             && (format == MESA_FORMAT_RGB || format == MESA_FORMAT_RGBA)
1140	     && minFilter == magFilter
1141	     && ctx->Light.Model.ColorControl == GL_SINGLE_COLOR
1142	     && ctx->Texture.Unit[0].EnvMode != GL_COMBINE_EXT) {
1143	    if (ctx->Hint.PerspectiveCorrection==GL_FASTEST) {
1144	       if (minFilter == GL_NEAREST
1145		   && format == MESA_FORMAT_RGB
1146		   && (envMode == GL_REPLACE || envMode == GL_DECAL)
1147		   && ((swrast->_RasterMask == (DEPTH_BIT | TEXTURE_BIT)
1148			&& ctx->Depth.Func == GL_LESS
1149			&& ctx->Depth.Mask == GL_TRUE)
1150		       || swrast->_RasterMask == TEXTURE_BIT)
1151		   && ctx->Polygon.StippleFlag == GL_FALSE) {
1152		  if (swrast->_RasterMask == (DEPTH_BIT | TEXTURE_BIT)) {
1153		     USE(simple_z_textured_triangle);
1154		  }
1155		  else {
1156		     USE(simple_textured_triangle);
1157		  }
1158	       }
1159	       else {
1160#if (CHAN_BITS == 16 || CHAN_BITS == 32)
1161                  USE(general_textured_triangle);
1162#else
1163                  USE(affine_textured_triangle);
1164#endif
1165	       }
1166	    }
1167	    else {
1168#if (CHAN_BITS == 16 || CHAN_BITS == 32)
1169               USE(general_textured_triangle);
1170#else
1171               USE(persp_textured_triangle);
1172#endif
1173	    }
1174	 }
1175         else {
1176            /* general case textured triangles */
1177            if (ctx->Texture._EnabledUnits > 1) {
1178               USE(multitextured_triangle);
1179            }
1180            else {
1181               USE(general_textured_triangle);
1182            }
1183         }
1184      }
1185      else {
1186         ASSERT(!ctx->Texture._EnabledUnits);
1187	 if (ctx->Light.ShadeModel==GL_SMOOTH) {
1188	    /* smooth shaded, no texturing, stippled or some raster ops */
1189            if (rgbmode) {
1190	       USE(smooth_rgba_triangle);
1191            }
1192            else {
1193               USE(smooth_ci_triangle);
1194            }
1195	 }
1196	 else {
1197	    /* flat shaded, no texturing, stippled or some raster ops */
1198            if (rgbmode) {
1199	       USE(flat_rgba_triangle);
1200            }
1201            else {
1202               USE(flat_ci_triangle);
1203            }
1204	 }
1205      }
1206   }
1207   else if (ctx->RenderMode==GL_FEEDBACK) {
1208      USE(_mesa_feedback_triangle);
1209   }
1210   else {
1211      /* GL_SELECT mode */
1212      USE(_mesa_select_triangle);
1213   }
1214}
1215