s_triangle.c revision fd5511d27fc44096117c47ab503fb5b47f993061
1/* 2 * Mesa 3-D graphics library 3 * Version: 7.3 4 * 5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the "Software"), 9 * to deal in the Software without restriction, including without limitation 10 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 11 * and/or sell copies of the Software, and to permit persons to whom the 12 * Software is furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included 15 * in all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN 21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 23 */ 24 25 26/* 27 * When the device driver doesn't implement triangle rasterization it 28 * can hook in _swrast_Triangle, which eventually calls one of these 29 * functions to draw triangles. 30 */ 31 32#include "main/glheader.h" 33#include "main/context.h" 34#include "main/colormac.h" 35#include "main/imports.h" 36#include "main/macros.h" 37#include "main/texformat.h" 38#include "shader/prog_instruction.h" 39 40#include "s_aatriangle.h" 41#include "s_context.h" 42#include "s_feedback.h" 43#include "s_span.h" 44#include "s_triangle.h" 45 46 47/** 48 * Test if a triangle should be culled. Used for feedback and selection mode. 49 * \return GL_TRUE if the triangle is to be culled, GL_FALSE otherwise. 50 */ 51GLboolean 52_swrast_culltriangle( GLcontext *ctx, 53 const SWvertex *v0, 54 const SWvertex *v1, 55 const SWvertex *v2 ) 56{ 57 SWcontext *swrast = SWRAST_CONTEXT(ctx); 58 GLfloat ex = v1->attrib[FRAG_ATTRIB_WPOS][0] - v0->attrib[FRAG_ATTRIB_WPOS][0]; 59 GLfloat ey = v1->attrib[FRAG_ATTRIB_WPOS][1] - v0->attrib[FRAG_ATTRIB_WPOS][1]; 60 GLfloat fx = v2->attrib[FRAG_ATTRIB_WPOS][0] - v0->attrib[FRAG_ATTRIB_WPOS][0]; 61 GLfloat fy = v2->attrib[FRAG_ATTRIB_WPOS][1] - v0->attrib[FRAG_ATTRIB_WPOS][1]; 62 GLfloat c = ex*fy-ey*fx; 63 64 if (c * swrast->_BackfaceSign * swrast->_BackfaceCullSign <= 0.0F) 65 return GL_FALSE; 66 67 return GL_TRUE; 68} 69 70 71 72/* 73 * Render a smooth or flat-shaded color index triangle. 74 */ 75#define NAME ci_triangle 76#define INTERP_Z 1 77#define INTERP_ATTRIBS 1 /* just for fog */ 78#define INTERP_INDEX 1 79#define RENDER_SPAN( span ) _swrast_write_index_span(ctx, &span); 80#include "s_tritemp.h" 81 82 83 84/* 85 * Render a flat-shaded RGBA triangle. 86 */ 87#define NAME flat_rgba_triangle 88#define INTERP_Z 1 89#define SETUP_CODE \ 90 ASSERT(ctx->Texture._EnabledCoordUnits == 0);\ 91 ASSERT(ctx->Light.ShadeModel==GL_FLAT); \ 92 span.interpMask |= SPAN_RGBA; \ 93 span.red = ChanToFixed(v2->color[0]); \ 94 span.green = ChanToFixed(v2->color[1]); \ 95 span.blue = ChanToFixed(v2->color[2]); \ 96 span.alpha = ChanToFixed(v2->color[3]); \ 97 span.redStep = 0; \ 98 span.greenStep = 0; \ 99 span.blueStep = 0; \ 100 span.alphaStep = 0; 101#define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span); 102#include "s_tritemp.h" 103 104 105 106/* 107 * Render a smooth-shaded RGBA triangle. 108 */ 109#define NAME smooth_rgba_triangle 110#define INTERP_Z 1 111#define INTERP_RGB 1 112#define INTERP_ALPHA 1 113#define SETUP_CODE \ 114 { \ 115 /* texturing must be off */ \ 116 ASSERT(ctx->Texture._EnabledCoordUnits == 0); \ 117 ASSERT(ctx->Light.ShadeModel==GL_SMOOTH); \ 118 } 119#define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span); 120#include "s_tritemp.h" 121 122 123 124/* 125 * Render an RGB, GL_DECAL, textured triangle. 126 * Interpolate S,T only w/out mipmapping or perspective correction. 127 * 128 * No fog. No depth testing. 129 */ 130#define NAME simple_textured_triangle 131#define INTERP_INT_TEX 1 132#define S_SCALE twidth 133#define T_SCALE theight 134 135#define SETUP_CODE \ 136 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0]; \ 137 const struct gl_texture_object *obj = \ 138 ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \ 139 const struct gl_texture_image *texImg = \ 140 obj->Image[0][obj->BaseLevel]; \ 141 const GLfloat twidth = (GLfloat) texImg->Width; \ 142 const GLfloat theight = (GLfloat) texImg->Height; \ 143 const GLint twidth_log2 = texImg->WidthLog2; \ 144 const GLubyte *texture = (const GLubyte *) texImg->Data; \ 145 const GLint smask = texImg->Width - 1; \ 146 const GLint tmask = texImg->Height - 1; \ 147 ASSERT(texImg->TexFormat == MESA_FORMAT_RGB888); \ 148 if (!rb || !texture) { \ 149 return; \ 150 } 151 152#define RENDER_SPAN( span ) \ 153 GLuint i; \ 154 GLubyte rgb[MAX_WIDTH][3]; \ 155 span.intTex[0] -= FIXED_HALF; /* off-by-one error? */ \ 156 span.intTex[1] -= FIXED_HALF; \ 157 for (i = 0; i < span.end; i++) { \ 158 GLint s = FixedToInt(span.intTex[0]) & smask; \ 159 GLint t = FixedToInt(span.intTex[1]) & tmask; \ 160 GLint pos = (t << twidth_log2) + s; \ 161 pos = pos + pos + pos; /* multiply by 3 */ \ 162 rgb[i][RCOMP] = texture[pos+2]; \ 163 rgb[i][GCOMP] = texture[pos+1]; \ 164 rgb[i][BCOMP] = texture[pos+0]; \ 165 span.intTex[0] += span.intTexStep[0]; \ 166 span.intTex[1] += span.intTexStep[1]; \ 167 } \ 168 rb->PutRowRGB(ctx, rb, span.end, span.x, span.y, rgb, NULL); 169 170#include "s_tritemp.h" 171 172 173 174/* 175 * Render an RGB, GL_DECAL, textured triangle. 176 * Interpolate S,T, GL_LESS depth test, w/out mipmapping or 177 * perspective correction. 178 * Depth buffer bits must be <= sizeof(DEFAULT_SOFTWARE_DEPTH_TYPE) 179 * 180 * No fog. 181 */ 182#define NAME simple_z_textured_triangle 183#define INTERP_Z 1 184#define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE 185#define INTERP_INT_TEX 1 186#define S_SCALE twidth 187#define T_SCALE theight 188 189#define SETUP_CODE \ 190 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0]; \ 191 const struct gl_texture_object *obj = \ 192 ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \ 193 const struct gl_texture_image *texImg = \ 194 obj->Image[0][obj->BaseLevel]; \ 195 const GLfloat twidth = (GLfloat) texImg->Width; \ 196 const GLfloat theight = (GLfloat) texImg->Height; \ 197 const GLint twidth_log2 = texImg->WidthLog2; \ 198 const GLubyte *texture = (const GLubyte *) texImg->Data; \ 199 const GLint smask = texImg->Width - 1; \ 200 const GLint tmask = texImg->Height - 1; \ 201 ASSERT(texImg->TexFormat == MESA_FORMAT_RGB888); \ 202 if (!rb || !texture) { \ 203 return; \ 204 } 205 206#define RENDER_SPAN( span ) \ 207 GLuint i; \ 208 GLubyte rgb[MAX_WIDTH][3]; \ 209 span.intTex[0] -= FIXED_HALF; /* off-by-one error? */ \ 210 span.intTex[1] -= FIXED_HALF; \ 211 for (i = 0; i < span.end; i++) { \ 212 const GLuint z = FixedToDepth(span.z); \ 213 if (z < zRow[i]) { \ 214 GLint s = FixedToInt(span.intTex[0]) & smask; \ 215 GLint t = FixedToInt(span.intTex[1]) & tmask; \ 216 GLint pos = (t << twidth_log2) + s; \ 217 pos = pos + pos + pos; /* multiply by 3 */ \ 218 rgb[i][RCOMP] = texture[pos+2]; \ 219 rgb[i][GCOMP] = texture[pos+1]; \ 220 rgb[i][BCOMP] = texture[pos+0]; \ 221 zRow[i] = z; \ 222 span.array->mask[i] = 1; \ 223 } \ 224 else { \ 225 span.array->mask[i] = 0; \ 226 } \ 227 span.intTex[0] += span.intTexStep[0]; \ 228 span.intTex[1] += span.intTexStep[1]; \ 229 span.z += span.zStep; \ 230 } \ 231 rb->PutRowRGB(ctx, rb, span.end, span.x, span.y, rgb, span.array->mask); 232 233#include "s_tritemp.h" 234 235 236#if CHAN_TYPE != GL_FLOAT 237 238struct affine_info 239{ 240 GLenum filter; 241 GLenum format; 242 GLenum envmode; 243 GLint smask, tmask; 244 GLint twidth_log2; 245 const GLchan *texture; 246 GLfixed er, eg, eb, ea; 247 GLint tbytesline, tsize; 248}; 249 250 251static INLINE GLint 252ilerp(GLint t, GLint a, GLint b) 253{ 254 return a + ((t * (b - a)) >> FIXED_SHIFT); 255} 256 257static INLINE GLint 258ilerp_2d(GLint ia, GLint ib, GLint v00, GLint v10, GLint v01, GLint v11) 259{ 260 const GLint temp0 = ilerp(ia, v00, v10); 261 const GLint temp1 = ilerp(ia, v01, v11); 262 return ilerp(ib, temp0, temp1); 263} 264 265 266/* This function can handle GL_NEAREST or GL_LINEAR sampling of 2D RGB or RGBA 267 * textures with GL_REPLACE, GL_MODULATE, GL_BLEND, GL_DECAL or GL_ADD 268 * texture env modes. 269 */ 270static INLINE void 271affine_span(GLcontext *ctx, SWspan *span, 272 struct affine_info *info) 273{ 274 GLchan sample[4]; /* the filtered texture sample */ 275 const GLuint texEnableSave = ctx->Texture._EnabledCoordUnits; 276 277 /* Instead of defining a function for each mode, a test is done 278 * between the outer and inner loops. This is to reduce code size 279 * and complexity. Observe that an optimizing compiler kills 280 * unused variables (for instance tf,sf,ti,si in case of GL_NEAREST). 281 */ 282 283#define NEAREST_RGB \ 284 sample[RCOMP] = tex00[2]; \ 285 sample[GCOMP] = tex00[1]; \ 286 sample[BCOMP] = tex00[0]; \ 287 sample[ACOMP] = CHAN_MAX; 288 289#define LINEAR_RGB \ 290 sample[RCOMP] = ilerp_2d(sf, tf, tex00[2], tex01[2], tex10[2], tex11[2]);\ 291 sample[GCOMP] = ilerp_2d(sf, tf, tex00[1], tex01[1], tex10[1], tex11[1]);\ 292 sample[BCOMP] = ilerp_2d(sf, tf, tex00[0], tex01[0], tex10[0], tex11[0]);\ 293 sample[ACOMP] = CHAN_MAX; 294 295#define NEAREST_RGBA \ 296 sample[RCOMP] = tex00[3]; \ 297 sample[GCOMP] = tex00[2]; \ 298 sample[BCOMP] = tex00[1]; \ 299 sample[ACOMP] = tex00[0]; 300 301#define LINEAR_RGBA \ 302 sample[RCOMP] = ilerp_2d(sf, tf, tex00[3], tex01[3], tex10[3], tex11[3]);\ 303 sample[GCOMP] = ilerp_2d(sf, tf, tex00[2], tex01[2], tex10[2], tex11[2]);\ 304 sample[BCOMP] = ilerp_2d(sf, tf, tex00[1], tex01[1], tex10[1], tex11[1]);\ 305 sample[ACOMP] = ilerp_2d(sf, tf, tex00[0], tex01[0], tex10[0], tex11[0]) 306 307#define MODULATE \ 308 dest[RCOMP] = span->red * (sample[RCOMP] + 1u) >> (FIXED_SHIFT + 8); \ 309 dest[GCOMP] = span->green * (sample[GCOMP] + 1u) >> (FIXED_SHIFT + 8); \ 310 dest[BCOMP] = span->blue * (sample[BCOMP] + 1u) >> (FIXED_SHIFT + 8); \ 311 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1u) >> (FIXED_SHIFT + 8) 312 313#define DECAL \ 314 dest[RCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->red + \ 315 ((sample[ACOMP] + 1) * sample[RCOMP] << FIXED_SHIFT)) \ 316 >> (FIXED_SHIFT + 8); \ 317 dest[GCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->green + \ 318 ((sample[ACOMP] + 1) * sample[GCOMP] << FIXED_SHIFT)) \ 319 >> (FIXED_SHIFT + 8); \ 320 dest[BCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->blue + \ 321 ((sample[ACOMP] + 1) * sample[BCOMP] << FIXED_SHIFT)) \ 322 >> (FIXED_SHIFT + 8); \ 323 dest[ACOMP] = FixedToInt(span->alpha) 324 325#define BLEND \ 326 dest[RCOMP] = ((CHAN_MAX - sample[RCOMP]) * span->red \ 327 + (sample[RCOMP] + 1) * info->er) >> (FIXED_SHIFT + 8); \ 328 dest[GCOMP] = ((CHAN_MAX - sample[GCOMP]) * span->green \ 329 + (sample[GCOMP] + 1) * info->eg) >> (FIXED_SHIFT + 8); \ 330 dest[BCOMP] = ((CHAN_MAX - sample[BCOMP]) * span->blue \ 331 + (sample[BCOMP] + 1) * info->eb) >> (FIXED_SHIFT + 8); \ 332 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1) >> (FIXED_SHIFT + 8) 333 334#define REPLACE COPY_CHAN4(dest, sample) 335 336#define ADD \ 337 { \ 338 GLint rSum = FixedToInt(span->red) + (GLint) sample[RCOMP]; \ 339 GLint gSum = FixedToInt(span->green) + (GLint) sample[GCOMP]; \ 340 GLint bSum = FixedToInt(span->blue) + (GLint) sample[BCOMP]; \ 341 dest[RCOMP] = MIN2(rSum, CHAN_MAX); \ 342 dest[GCOMP] = MIN2(gSum, CHAN_MAX); \ 343 dest[BCOMP] = MIN2(bSum, CHAN_MAX); \ 344 dest[ACOMP] = span->alpha * (sample[ACOMP] + 1) >> (FIXED_SHIFT + 8); \ 345 } 346 347/* shortcuts */ 348 349#define NEAREST_RGB_REPLACE \ 350 NEAREST_RGB; \ 351 dest[0] = sample[0]; \ 352 dest[1] = sample[1]; \ 353 dest[2] = sample[2]; \ 354 dest[3] = FixedToInt(span->alpha); 355 356#define NEAREST_RGBA_REPLACE \ 357 dest[RCOMP] = tex00[3]; \ 358 dest[GCOMP] = tex00[2]; \ 359 dest[BCOMP] = tex00[1]; \ 360 dest[ACOMP] = tex00[0] 361 362#define SPAN_NEAREST(DO_TEX, COMPS) \ 363 for (i = 0; i < span->end; i++) { \ 364 /* Isn't it necessary to use FixedFloor below?? */ \ 365 GLint s = FixedToInt(span->intTex[0]) & info->smask; \ 366 GLint t = FixedToInt(span->intTex[1]) & info->tmask; \ 367 GLint pos = (t << info->twidth_log2) + s; \ 368 const GLchan *tex00 = info->texture + COMPS * pos; \ 369 DO_TEX; \ 370 span->red += span->redStep; \ 371 span->green += span->greenStep; \ 372 span->blue += span->blueStep; \ 373 span->alpha += span->alphaStep; \ 374 span->intTex[0] += span->intTexStep[0]; \ 375 span->intTex[1] += span->intTexStep[1]; \ 376 dest += 4; \ 377 } 378 379#define SPAN_LINEAR(DO_TEX, COMPS) \ 380 for (i = 0; i < span->end; i++) { \ 381 /* Isn't it necessary to use FixedFloor below?? */ \ 382 const GLint s = FixedToInt(span->intTex[0]) & info->smask; \ 383 const GLint t = FixedToInt(span->intTex[1]) & info->tmask; \ 384 const GLfixed sf = span->intTex[0] & FIXED_FRAC_MASK; \ 385 const GLfixed tf = span->intTex[1] & FIXED_FRAC_MASK; \ 386 const GLint pos = (t << info->twidth_log2) + s; \ 387 const GLchan *tex00 = info->texture + COMPS * pos; \ 388 const GLchan *tex10 = tex00 + info->tbytesline; \ 389 const GLchan *tex01 = tex00 + COMPS; \ 390 const GLchan *tex11 = tex10 + COMPS; \ 391 if (t == info->tmask) { \ 392 tex10 -= info->tsize; \ 393 tex11 -= info->tsize; \ 394 } \ 395 if (s == info->smask) { \ 396 tex01 -= info->tbytesline; \ 397 tex11 -= info->tbytesline; \ 398 } \ 399 DO_TEX; \ 400 span->red += span->redStep; \ 401 span->green += span->greenStep; \ 402 span->blue += span->blueStep; \ 403 span->alpha += span->alphaStep; \ 404 span->intTex[0] += span->intTexStep[0]; \ 405 span->intTex[1] += span->intTexStep[1]; \ 406 dest += 4; \ 407 } 408 409 410 GLuint i; 411 GLchan *dest = span->array->rgba[0]; 412 413 /* Disable tex units so they're not re-applied in swrast_write_rgba_span */ 414 ctx->Texture._EnabledCoordUnits = 0x0; 415 416 span->intTex[0] -= FIXED_HALF; 417 span->intTex[1] -= FIXED_HALF; 418 switch (info->filter) { 419 case GL_NEAREST: 420 switch (info->format) { 421 case MESA_FORMAT_RGB888: 422 switch (info->envmode) { 423 case GL_MODULATE: 424 SPAN_NEAREST(NEAREST_RGB;MODULATE,3); 425 break; 426 case GL_DECAL: 427 case GL_REPLACE: 428 SPAN_NEAREST(NEAREST_RGB_REPLACE,3); 429 break; 430 case GL_BLEND: 431 SPAN_NEAREST(NEAREST_RGB;BLEND,3); 432 break; 433 case GL_ADD: 434 SPAN_NEAREST(NEAREST_RGB;ADD,3); 435 break; 436 default: 437 _mesa_problem(ctx, "bad tex env mode in SPAN_LINEAR"); 438 return; 439 } 440 break; 441 case MESA_FORMAT_RGBA8888: 442 switch(info->envmode) { 443 case GL_MODULATE: 444 SPAN_NEAREST(NEAREST_RGBA;MODULATE,4); 445 break; 446 case GL_DECAL: 447 SPAN_NEAREST(NEAREST_RGBA;DECAL,4); 448 break; 449 case GL_BLEND: 450 SPAN_NEAREST(NEAREST_RGBA;BLEND,4); 451 break; 452 case GL_ADD: 453 SPAN_NEAREST(NEAREST_RGBA;ADD,4); 454 break; 455 case GL_REPLACE: 456 SPAN_NEAREST(NEAREST_RGBA_REPLACE,4); 457 break; 458 default: 459 _mesa_problem(ctx, "bad tex env mode (2) in SPAN_LINEAR"); 460 return; 461 } 462 break; 463 } 464 break; 465 466 case GL_LINEAR: 467 span->intTex[0] -= FIXED_HALF; 468 span->intTex[1] -= FIXED_HALF; 469 switch (info->format) { 470 case MESA_FORMAT_RGB888: 471 switch (info->envmode) { 472 case GL_MODULATE: 473 SPAN_LINEAR(LINEAR_RGB;MODULATE,3); 474 break; 475 case GL_DECAL: 476 case GL_REPLACE: 477 SPAN_LINEAR(LINEAR_RGB;REPLACE,3); 478 break; 479 case GL_BLEND: 480 SPAN_LINEAR(LINEAR_RGB;BLEND,3); 481 break; 482 case GL_ADD: 483 SPAN_LINEAR(LINEAR_RGB;ADD,3); 484 break; 485 default: 486 _mesa_problem(ctx, "bad tex env mode (3) in SPAN_LINEAR"); 487 return; 488 } 489 break; 490 case MESA_FORMAT_RGBA8888: 491 switch (info->envmode) { 492 case GL_MODULATE: 493 SPAN_LINEAR(LINEAR_RGBA;MODULATE,4); 494 break; 495 case GL_DECAL: 496 SPAN_LINEAR(LINEAR_RGBA;DECAL,4); 497 break; 498 case GL_BLEND: 499 SPAN_LINEAR(LINEAR_RGBA;BLEND,4); 500 break; 501 case GL_ADD: 502 SPAN_LINEAR(LINEAR_RGBA;ADD,4); 503 break; 504 case GL_REPLACE: 505 SPAN_LINEAR(LINEAR_RGBA;REPLACE,4); 506 break; 507 default: 508 _mesa_problem(ctx, "bad tex env mode (4) in SPAN_LINEAR"); 509 return; 510 } 511 break; 512 } 513 break; 514 } 515 span->interpMask &= ~SPAN_RGBA; 516 ASSERT(span->arrayMask & SPAN_RGBA); 517 518 _swrast_write_rgba_span(ctx, span); 519 520 /* re-enable texture units */ 521 ctx->Texture._EnabledCoordUnits = texEnableSave; 522 523#undef SPAN_NEAREST 524#undef SPAN_LINEAR 525} 526 527 528 529/* 530 * Render an RGB/RGBA textured triangle without perspective correction. 531 */ 532#define NAME affine_textured_triangle 533#define INTERP_Z 1 534#define INTERP_RGB 1 535#define INTERP_ALPHA 1 536#define INTERP_INT_TEX 1 537#define S_SCALE twidth 538#define T_SCALE theight 539 540#define SETUP_CODE \ 541 struct affine_info info; \ 542 struct gl_texture_unit *unit = ctx->Texture.Unit+0; \ 543 const struct gl_texture_object *obj = \ 544 ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \ 545 const struct gl_texture_image *texImg = \ 546 obj->Image[0][obj->BaseLevel]; \ 547 const GLfloat twidth = (GLfloat) texImg->Width; \ 548 const GLfloat theight = (GLfloat) texImg->Height; \ 549 info.texture = (const GLchan *) texImg->Data; \ 550 info.twidth_log2 = texImg->WidthLog2; \ 551 info.smask = texImg->Width - 1; \ 552 info.tmask = texImg->Height - 1; \ 553 info.format = texImg->TexFormat; \ 554 info.filter = obj->MinFilter; \ 555 info.envmode = unit->EnvMode; \ 556 info.er = 0; \ 557 info.eg = 0; \ 558 info.eb = 0; \ 559 span.arrayMask |= SPAN_RGBA; \ 560 \ 561 if (info.envmode == GL_BLEND) { \ 562 /* potential off-by-one error here? (1.0f -> 2048 -> 0) */ \ 563 info.er = FloatToFixed(unit->EnvColor[RCOMP] * CHAN_MAXF); \ 564 info.eg = FloatToFixed(unit->EnvColor[GCOMP] * CHAN_MAXF); \ 565 info.eb = FloatToFixed(unit->EnvColor[BCOMP] * CHAN_MAXF); \ 566 info.ea = FloatToFixed(unit->EnvColor[ACOMP] * CHAN_MAXF); \ 567 } \ 568 if (!info.texture) { \ 569 /* this shouldn't happen */ \ 570 return; \ 571 } \ 572 \ 573 switch (info.format) { \ 574 case MESA_FORMAT_RGB888: \ 575 info.tbytesline = texImg->Width * 3; \ 576 break; \ 577 case MESA_FORMAT_RGBA8888: \ 578 info.tbytesline = texImg->Width * 4; \ 579 break; \ 580 default: \ 581 _mesa_problem(NULL, "Bad texture format in affine_texture_triangle");\ 582 return; \ 583 } \ 584 info.tsize = texImg->Height * info.tbytesline; 585 586#define RENDER_SPAN( span ) affine_span(ctx, &span, &info); 587 588#include "s_tritemp.h" 589 590 591 592struct persp_info 593{ 594 GLenum filter; 595 GLenum format; 596 GLenum envmode; 597 GLint smask, tmask; 598 GLint twidth_log2; 599 const GLchan *texture; 600 GLfixed er, eg, eb, ea; /* texture env color */ 601 GLint tbytesline, tsize; 602}; 603 604 605static INLINE void 606fast_persp_span(GLcontext *ctx, SWspan *span, 607 struct persp_info *info) 608{ 609 GLchan sample[4]; /* the filtered texture sample */ 610 611 /* Instead of defining a function for each mode, a test is done 612 * between the outer and inner loops. This is to reduce code size 613 * and complexity. Observe that an optimizing compiler kills 614 * unused variables (for instance tf,sf,ti,si in case of GL_NEAREST). 615 */ 616#define SPAN_NEAREST(DO_TEX,COMP) \ 617 for (i = 0; i < span->end; i++) { \ 618 GLdouble invQ = tex_coord[2] ? \ 619 (1.0 / tex_coord[2]) : 1.0; \ 620 GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ); \ 621 GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ); \ 622 GLint s = IFLOOR(s_tmp) & info->smask; \ 623 GLint t = IFLOOR(t_tmp) & info->tmask; \ 624 GLint pos = (t << info->twidth_log2) + s; \ 625 const GLchan *tex00 = info->texture + COMP * pos; \ 626 DO_TEX; \ 627 span->red += span->redStep; \ 628 span->green += span->greenStep; \ 629 span->blue += span->blueStep; \ 630 span->alpha += span->alphaStep; \ 631 tex_coord[0] += tex_step[0]; \ 632 tex_coord[1] += tex_step[1]; \ 633 tex_coord[2] += tex_step[2]; \ 634 dest += 4; \ 635 } 636 637#define SPAN_LINEAR(DO_TEX,COMP) \ 638 for (i = 0; i < span->end; i++) { \ 639 GLdouble invQ = tex_coord[2] ? \ 640 (1.0 / tex_coord[2]) : 1.0; \ 641 const GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ); \ 642 const GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ); \ 643 const GLfixed s_fix = FloatToFixed(s_tmp) - FIXED_HALF; \ 644 const GLfixed t_fix = FloatToFixed(t_tmp) - FIXED_HALF; \ 645 const GLint s = FixedToInt(FixedFloor(s_fix)) & info->smask; \ 646 const GLint t = FixedToInt(FixedFloor(t_fix)) & info->tmask; \ 647 const GLfixed sf = s_fix & FIXED_FRAC_MASK; \ 648 const GLfixed tf = t_fix & FIXED_FRAC_MASK; \ 649 const GLint pos = (t << info->twidth_log2) + s; \ 650 const GLchan *tex00 = info->texture + COMP * pos; \ 651 const GLchan *tex10 = tex00 + info->tbytesline; \ 652 const GLchan *tex01 = tex00 + COMP; \ 653 const GLchan *tex11 = tex10 + COMP; \ 654 if (t == info->tmask) { \ 655 tex10 -= info->tsize; \ 656 tex11 -= info->tsize; \ 657 } \ 658 if (s == info->smask) { \ 659 tex01 -= info->tbytesline; \ 660 tex11 -= info->tbytesline; \ 661 } \ 662 DO_TEX; \ 663 span->red += span->redStep; \ 664 span->green += span->greenStep; \ 665 span->blue += span->blueStep; \ 666 span->alpha += span->alphaStep; \ 667 tex_coord[0] += tex_step[0]; \ 668 tex_coord[1] += tex_step[1]; \ 669 tex_coord[2] += tex_step[2]; \ 670 dest += 4; \ 671 } 672 673 GLuint i; 674 GLfloat tex_coord[3], tex_step[3]; 675 GLchan *dest = span->array->rgba[0]; 676 677 const GLuint texEnableSave = ctx->Texture._EnabledCoordUnits; 678 ctx->Texture._EnabledCoordUnits = 0; 679 680 tex_coord[0] = span->attrStart[FRAG_ATTRIB_TEX0][0] * (info->smask + 1); 681 tex_step[0] = span->attrStepX[FRAG_ATTRIB_TEX0][0] * (info->smask + 1); 682 tex_coord[1] = span->attrStart[FRAG_ATTRIB_TEX0][1] * (info->tmask + 1); 683 tex_step[1] = span->attrStepX[FRAG_ATTRIB_TEX0][1] * (info->tmask + 1); 684 /* span->attrStart[FRAG_ATTRIB_TEX0][2] only if 3D-texturing, here only 2D */ 685 tex_coord[2] = span->attrStart[FRAG_ATTRIB_TEX0][3]; 686 tex_step[2] = span->attrStepX[FRAG_ATTRIB_TEX0][3]; 687 688 switch (info->filter) { 689 case GL_NEAREST: 690 switch (info->format) { 691 case MESA_FORMAT_RGB888: 692 switch (info->envmode) { 693 case GL_MODULATE: 694 SPAN_NEAREST(NEAREST_RGB;MODULATE,3); 695 break; 696 case GL_DECAL: 697 case GL_REPLACE: 698 SPAN_NEAREST(NEAREST_RGB_REPLACE,3); 699 break; 700 case GL_BLEND: 701 SPAN_NEAREST(NEAREST_RGB;BLEND,3); 702 break; 703 case GL_ADD: 704 SPAN_NEAREST(NEAREST_RGB;ADD,3); 705 break; 706 default: 707 _mesa_problem(ctx, "bad tex env mode (5) in SPAN_LINEAR"); 708 return; 709 } 710 break; 711 case MESA_FORMAT_RGBA8888: 712 switch(info->envmode) { 713 case GL_MODULATE: 714 SPAN_NEAREST(NEAREST_RGBA;MODULATE,4); 715 break; 716 case GL_DECAL: 717 SPAN_NEAREST(NEAREST_RGBA;DECAL,4); 718 break; 719 case GL_BLEND: 720 SPAN_NEAREST(NEAREST_RGBA;BLEND,4); 721 break; 722 case GL_ADD: 723 SPAN_NEAREST(NEAREST_RGBA;ADD,4); 724 break; 725 case GL_REPLACE: 726 SPAN_NEAREST(NEAREST_RGBA_REPLACE,4); 727 break; 728 default: 729 _mesa_problem(ctx, "bad tex env mode (6) in SPAN_LINEAR"); 730 return; 731 } 732 break; 733 } 734 break; 735 736 case GL_LINEAR: 737 switch (info->format) { 738 case MESA_FORMAT_RGB888: 739 switch (info->envmode) { 740 case GL_MODULATE: 741 SPAN_LINEAR(LINEAR_RGB;MODULATE,3); 742 break; 743 case GL_DECAL: 744 case GL_REPLACE: 745 SPAN_LINEAR(LINEAR_RGB;REPLACE,3); 746 break; 747 case GL_BLEND: 748 SPAN_LINEAR(LINEAR_RGB;BLEND,3); 749 break; 750 case GL_ADD: 751 SPAN_LINEAR(LINEAR_RGB;ADD,3); 752 break; 753 default: 754 _mesa_problem(ctx, "bad tex env mode (7) in SPAN_LINEAR"); 755 return; 756 } 757 break; 758 case MESA_FORMAT_RGBA8888: 759 switch (info->envmode) { 760 case GL_MODULATE: 761 SPAN_LINEAR(LINEAR_RGBA;MODULATE,4); 762 break; 763 case GL_DECAL: 764 SPAN_LINEAR(LINEAR_RGBA;DECAL,4); 765 break; 766 case GL_BLEND: 767 SPAN_LINEAR(LINEAR_RGBA;BLEND,4); 768 break; 769 case GL_ADD: 770 SPAN_LINEAR(LINEAR_RGBA;ADD,4); 771 break; 772 case GL_REPLACE: 773 SPAN_LINEAR(LINEAR_RGBA;REPLACE,4); 774 break; 775 default: 776 _mesa_problem(ctx, "bad tex env mode (8) in SPAN_LINEAR"); 777 return; 778 } 779 break; 780 } 781 break; 782 } 783 784 ASSERT(span->arrayMask & SPAN_RGBA); 785 _swrast_write_rgba_span(ctx, span); 786 787#undef SPAN_NEAREST 788#undef SPAN_LINEAR 789 790 /* restore state */ 791 ctx->Texture._EnabledCoordUnits = texEnableSave; 792} 793 794 795/* 796 * Render an perspective corrected RGB/RGBA textured triangle. 797 * The Q (aka V in Mesa) coordinate must be zero such that the divide 798 * by interpolated Q/W comes out right. 799 * 800 */ 801#define NAME persp_textured_triangle 802#define INTERP_Z 1 803#define INTERP_RGB 1 804#define INTERP_ALPHA 1 805#define INTERP_ATTRIBS 1 806 807#define SETUP_CODE \ 808 struct persp_info info; \ 809 const struct gl_texture_unit *unit = ctx->Texture.Unit+0; \ 810 const struct gl_texture_object *obj = \ 811 ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \ 812 const struct gl_texture_image *texImg = \ 813 obj->Image[0][obj->BaseLevel]; \ 814 info.texture = (const GLchan *) texImg->Data; \ 815 info.twidth_log2 = texImg->WidthLog2; \ 816 info.smask = texImg->Width - 1; \ 817 info.tmask = texImg->Height - 1; \ 818 info.format = texImg->TexFormat; \ 819 info.filter = obj->MinFilter; \ 820 info.envmode = unit->EnvMode; \ 821 info.er = 0; \ 822 info.eg = 0; \ 823 info.eb = 0; \ 824 \ 825 if (info.envmode == GL_BLEND) { \ 826 /* potential off-by-one error here? (1.0f -> 2048 -> 0) */ \ 827 info.er = FloatToFixed(unit->EnvColor[RCOMP] * CHAN_MAXF); \ 828 info.eg = FloatToFixed(unit->EnvColor[GCOMP] * CHAN_MAXF); \ 829 info.eb = FloatToFixed(unit->EnvColor[BCOMP] * CHAN_MAXF); \ 830 info.ea = FloatToFixed(unit->EnvColor[ACOMP] * CHAN_MAXF); \ 831 } \ 832 if (!info.texture) { \ 833 /* this shouldn't happen */ \ 834 return; \ 835 } \ 836 \ 837 switch (info.format) { \ 838 case MESA_FORMAT_RGB888: \ 839 info.tbytesline = texImg->Width * 3; \ 840 break; \ 841 case MESA_FORMAT_RGBA8888: \ 842 info.tbytesline = texImg->Width * 4; \ 843 break; \ 844 default: \ 845 _mesa_problem(NULL, "Bad texture format in persp_textured_triangle");\ 846 return; \ 847 } \ 848 info.tsize = texImg->Height * info.tbytesline; 849 850#define RENDER_SPAN( span ) \ 851 span.interpMask &= ~SPAN_RGBA; \ 852 span.arrayMask |= SPAN_RGBA; \ 853 fast_persp_span(ctx, &span, &info); 854 855#include "s_tritemp.h" 856 857#endif /*CHAN_TYPE != GL_FLOAT*/ 858 859 860 861/* 862 * Render an RGBA triangle with arbitrary attributes. 863 */ 864#define NAME general_triangle 865#define INTERP_Z 1 866#define INTERP_RGB 1 867#define INTERP_ALPHA 1 868#define INTERP_ATTRIBS 1 869#define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span); 870#include "s_tritemp.h" 871 872 873 874 875/* 876 * Special tri function for occlusion testing 877 */ 878#define NAME occlusion_zless_triangle 879#define INTERP_Z 1 880#define SETUP_CODE \ 881 struct gl_renderbuffer *rb = ctx->DrawBuffer->_DepthBuffer; \ 882 struct gl_query_object *q = ctx->Query.CurrentOcclusionObject; \ 883 ASSERT(ctx->Depth.Test); \ 884 ASSERT(!ctx->Depth.Mask); \ 885 ASSERT(ctx->Depth.Func == GL_LESS); \ 886 if (!q) { \ 887 return; \ 888 } 889#define RENDER_SPAN( span ) \ 890 if (rb->Format == MESA_FORMAT_Z16) { \ 891 GLuint i; \ 892 const GLushort *zRow = (const GLushort *) \ 893 rb->GetPointer(ctx, rb, span.x, span.y); \ 894 for (i = 0; i < span.end; i++) { \ 895 GLuint z = FixedToDepth(span.z); \ 896 if (z < zRow[i]) { \ 897 q->Result++; \ 898 } \ 899 span.z += span.zStep; \ 900 } \ 901 } \ 902 else { \ 903 GLuint i; \ 904 const GLuint *zRow = (const GLuint *) \ 905 rb->GetPointer(ctx, rb, span.x, span.y); \ 906 for (i = 0; i < span.end; i++) { \ 907 if ((GLuint)span.z < zRow[i]) { \ 908 q->Result++; \ 909 } \ 910 span.z += span.zStep; \ 911 } \ 912 } 913#include "s_tritemp.h" 914 915 916 917static void 918nodraw_triangle( GLcontext *ctx, 919 const SWvertex *v0, 920 const SWvertex *v1, 921 const SWvertex *v2 ) 922{ 923 (void) (ctx && v0 && v1 && v2); 924} 925 926 927/* 928 * This is used when separate specular color is enabled, but not 929 * texturing. We add the specular color to the primary color, 930 * draw the triangle, then restore the original primary color. 931 * Inefficient, but seldom needed. 932 */ 933void 934_swrast_add_spec_terms_triangle(GLcontext *ctx, const SWvertex *v0, 935 const SWvertex *v1, const SWvertex *v2) 936{ 937 SWvertex *ncv0 = (SWvertex *)v0; /* drop const qualifier */ 938 SWvertex *ncv1 = (SWvertex *)v1; 939 SWvertex *ncv2 = (SWvertex *)v2; 940 GLfloat rSum, gSum, bSum; 941 GLchan cSave[3][4]; 942 943 /* save original colors */ 944 COPY_CHAN4( cSave[0], ncv0->color ); 945 COPY_CHAN4( cSave[1], ncv1->color ); 946 COPY_CHAN4( cSave[2], ncv2->color ); 947 /* sum v0 */ 948 rSum = CHAN_TO_FLOAT(ncv0->color[0]) + ncv0->attrib[FRAG_ATTRIB_COL1][0]; 949 gSum = CHAN_TO_FLOAT(ncv0->color[1]) + ncv0->attrib[FRAG_ATTRIB_COL1][1]; 950 bSum = CHAN_TO_FLOAT(ncv0->color[2]) + ncv0->attrib[FRAG_ATTRIB_COL1][2]; 951 UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[0], rSum); 952 UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[1], gSum); 953 UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[2], bSum); 954 /* sum v1 */ 955 rSum = CHAN_TO_FLOAT(ncv1->color[0]) + ncv1->attrib[FRAG_ATTRIB_COL1][0]; 956 gSum = CHAN_TO_FLOAT(ncv1->color[1]) + ncv1->attrib[FRAG_ATTRIB_COL1][1]; 957 bSum = CHAN_TO_FLOAT(ncv1->color[2]) + ncv1->attrib[FRAG_ATTRIB_COL1][2]; 958 UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[0], rSum); 959 UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[1], gSum); 960 UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[2], bSum); 961 /* sum v2 */ 962 rSum = CHAN_TO_FLOAT(ncv2->color[0]) + ncv2->attrib[FRAG_ATTRIB_COL1][0]; 963 gSum = CHAN_TO_FLOAT(ncv2->color[1]) + ncv2->attrib[FRAG_ATTRIB_COL1][1]; 964 bSum = CHAN_TO_FLOAT(ncv2->color[2]) + ncv2->attrib[FRAG_ATTRIB_COL1][2]; 965 UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[0], rSum); 966 UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[1], gSum); 967 UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[2], bSum); 968 /* draw */ 969 SWRAST_CONTEXT(ctx)->SpecTriangle( ctx, ncv0, ncv1, ncv2 ); 970 /* restore original colors */ 971 COPY_CHAN4( ncv0->color, cSave[0] ); 972 COPY_CHAN4( ncv1->color, cSave[1] ); 973 COPY_CHAN4( ncv2->color, cSave[2] ); 974} 975 976 977 978#ifdef DEBUG 979 980/* record the current triangle function name */ 981const char *_mesa_triFuncName = NULL; 982 983#define USE(triFunc) \ 984do { \ 985 _mesa_triFuncName = #triFunc; \ 986 /*printf("%s\n", _mesa_triFuncName);*/ \ 987 swrast->Triangle = triFunc; \ 988} while (0) 989 990#else 991 992#define USE(triFunc) swrast->Triangle = triFunc; 993 994#endif 995 996 997 998 999/* 1000 * Determine which triangle rendering function to use given the current 1001 * rendering context. 1002 * 1003 * Please update the summary flag _SWRAST_NEW_TRIANGLE if you add or 1004 * remove tests to this code. 1005 */ 1006void 1007_swrast_choose_triangle( GLcontext *ctx ) 1008{ 1009 SWcontext *swrast = SWRAST_CONTEXT(ctx); 1010 const GLboolean rgbmode = ctx->Visual.rgbMode; 1011 1012 if (ctx->Polygon.CullFlag && 1013 ctx->Polygon.CullFaceMode == GL_FRONT_AND_BACK) { 1014 USE(nodraw_triangle); 1015 return; 1016 } 1017 1018 if (ctx->RenderMode==GL_RENDER) { 1019 1020 if (ctx->Polygon.SmoothFlag) { 1021 _swrast_set_aa_triangle_function(ctx); 1022 ASSERT(swrast->Triangle); 1023 return; 1024 } 1025 1026 /* special case for occlusion testing */ 1027 if (ctx->Query.CurrentOcclusionObject && 1028 ctx->Depth.Test && 1029 ctx->Depth.Mask == GL_FALSE && 1030 ctx->Depth.Func == GL_LESS && 1031 !ctx->Stencil._Enabled) { 1032 if ((rgbmode && 1033 ctx->Color.ColorMask[0][0] == 0 && 1034 ctx->Color.ColorMask[0][1] == 0 && 1035 ctx->Color.ColorMask[0][2] == 0 && 1036 ctx->Color.ColorMask[0][3] == 0) 1037 || 1038 (!rgbmode && ctx->Color.IndexMask == 0)) { 1039 USE(occlusion_zless_triangle); 1040 return; 1041 } 1042 } 1043 1044 if (!rgbmode) { 1045 USE(ci_triangle); 1046 return; 1047 } 1048 1049 /* 1050 * XXX should examine swrast->_ActiveAttribMask to determine what 1051 * needs to be interpolated. 1052 */ 1053 if (ctx->Texture._EnabledCoordUnits || 1054 ctx->FragmentProgram._Current || 1055 ctx->ATIFragmentShader._Enabled || 1056 NEED_SECONDARY_COLOR(ctx) || 1057 swrast->_FogEnabled) { 1058 /* Ugh, we do a _lot_ of tests to pick the best textured tri func */ 1059 const struct gl_texture_object *texObj2D; 1060 const struct gl_texture_image *texImg; 1061 GLenum minFilter, magFilter, envMode; 1062 gl_format format; 1063 texObj2D = ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; 1064 1065 texImg = texObj2D ? texObj2D->Image[0][texObj2D->BaseLevel] : NULL; 1066 format = texImg ? texImg->TexFormat : MESA_FORMAT_NONE; 1067 minFilter = texObj2D ? texObj2D->MinFilter : GL_NONE; 1068 magFilter = texObj2D ? texObj2D->MagFilter : GL_NONE; 1069 envMode = ctx->Texture.Unit[0].EnvMode; 1070 1071 /* First see if we can use an optimized 2-D texture function */ 1072 if (ctx->Texture._EnabledCoordUnits == 0x1 1073 && !ctx->FragmentProgram._Current 1074 && !ctx->ATIFragmentShader._Enabled 1075 && ctx->Texture._EnabledUnits == 0x1 1076 && ctx->Texture.Unit[0]._ReallyEnabled == TEXTURE_2D_BIT 1077 && texObj2D->WrapS == GL_REPEAT 1078 && texObj2D->WrapT == GL_REPEAT 1079 && texObj2D->_Swizzle == SWIZZLE_NOOP 1080 && texImg->_IsPowerOfTwo 1081 && texImg->Border == 0 1082 && texImg->Width == texImg->RowStride 1083 && (format == MESA_FORMAT_RGB888 || format == MESA_FORMAT_RGBA8888) 1084 && minFilter == magFilter 1085 && ctx->Light.Model.ColorControl == GL_SINGLE_COLOR 1086 && !swrast->_FogEnabled 1087 && ctx->Texture.Unit[0].EnvMode != GL_COMBINE_EXT 1088 && ctx->Texture.Unit[0].EnvMode != GL_COMBINE4_NV) { 1089 if (ctx->Hint.PerspectiveCorrection==GL_FASTEST) { 1090 if (minFilter == GL_NEAREST 1091 && format == MESA_FORMAT_RGB888 1092 && (envMode == GL_REPLACE || envMode == GL_DECAL) 1093 && ((swrast->_RasterMask == (DEPTH_BIT | TEXTURE_BIT) 1094 && ctx->Depth.Func == GL_LESS 1095 && ctx->Depth.Mask == GL_TRUE) 1096 || swrast->_RasterMask == TEXTURE_BIT) 1097 && ctx->Polygon.StippleFlag == GL_FALSE 1098 && ctx->DrawBuffer->Visual.depthBits <= 16) { 1099 if (swrast->_RasterMask == (DEPTH_BIT | TEXTURE_BIT)) { 1100 USE(simple_z_textured_triangle); 1101 } 1102 else { 1103 USE(simple_textured_triangle); 1104 } 1105 } 1106 else { 1107#if CHAN_BITS != 8 1108 USE(general_triangle); 1109#else 1110 if (format == MESA_FORMAT_RGBA8888 && !_mesa_little_endian()) { 1111 /* We only handle RGBA8888 correctly on little endian 1112 * in the optimized code above. 1113 */ 1114 USE(general_triangle); 1115 } 1116 else { 1117 USE(affine_textured_triangle); 1118 } 1119#endif 1120 } 1121 } 1122 else { 1123#if CHAN_BITS != 8 1124 USE(general_triangle); 1125#else 1126 USE(persp_textured_triangle); 1127#endif 1128 } 1129 } 1130 else { 1131 /* general case textured triangles */ 1132 USE(general_triangle); 1133 } 1134 } 1135 else { 1136 ASSERT(!swrast->_FogEnabled); 1137 ASSERT(!NEED_SECONDARY_COLOR(ctx)); 1138 if (ctx->Light.ShadeModel==GL_SMOOTH) { 1139 /* smooth shaded, no texturing, stippled or some raster ops */ 1140#if CHAN_BITS != 8 1141 USE(general_triangle); 1142#else 1143 USE(smooth_rgba_triangle); 1144#endif 1145 } 1146 else { 1147 /* flat shaded, no texturing, stippled or some raster ops */ 1148#if CHAN_BITS != 8 1149 USE(general_triangle); 1150#else 1151 USE(flat_rgba_triangle); 1152#endif 1153 } 1154 } 1155 } 1156 else if (ctx->RenderMode==GL_FEEDBACK) { 1157 USE(_swrast_feedback_triangle); 1158 } 1159 else { 1160 /* GL_SELECT mode */ 1161 USE(_swrast_select_triangle); 1162 } 1163} 1164