1
2/*
3 * Copyright 2012 Google Inc.
4 *
5 * Use of this source code is governed by a BSD-style license that can be
6 * found in the LICENSE file.
7 */
8
9#ifndef SkPathRef_DEFINED
10#define SkPathRef_DEFINED
11
12#include "SkMatrix.h"
13#include "SkPoint.h"
14#include "SkRect.h"
15#include "SkRefCnt.h"
16#include "SkTDArray.h"
17#include <stddef.h> // ptrdiff_t
18
19class SkRBuffer;
20class SkWBuffer;
21
22/**
23 * Holds the path verbs and points. It is versioned by a generation ID. None of its public methods
24 * modify the contents. To modify or append to the verbs/points wrap the SkPathRef in an
25 * SkPathRef::Editor object. Installing the editor resets the generation ID. It also performs
26 * copy-on-write if the SkPathRef is shared by multiple SkPaths. The caller passes the Editor's
27 * constructor a SkAutoTUnref, which may be updated to point to a new SkPathRef after the editor's
28 * constructor returns.
29 *
30 * The points and verbs are stored in a single allocation. The points are at the begining of the
31 * allocation while the verbs are stored at end of the allocation, in reverse order. Thus the points
32 * and verbs both grow into the middle of the allocation until the meet. To access verb i in the
33 * verb array use ref.verbs()[~i] (because verbs() returns a pointer just beyond the first
34 * logical verb or the last verb in memory).
35 */
36
37class SK_API SkPathRef : public ::SkRefCnt {
38public:
39    SK_DECLARE_INST_COUNT(SkPathRef);
40
41    class Editor {
42    public:
43        Editor(SkAutoTUnref<SkPathRef>* pathRef,
44               int incReserveVerbs = 0,
45               int incReservePoints = 0);
46
47        ~Editor() { SkDEBUGCODE(sk_atomic_dec(&fPathRef->fEditorsAttached);) }
48
49        /**
50         * Returns the array of points.
51         */
52        SkPoint* points() { return fPathRef->getPoints(); }
53        const SkPoint* points() const { return fPathRef->points(); }
54
55        /**
56         * Gets the ith point. Shortcut for this->points() + i
57         */
58        SkPoint* atPoint(int i) {
59            SkASSERT((unsigned) i < (unsigned) fPathRef->fPointCnt);
60            return this->points() + i;
61        };
62        const SkPoint* atPoint(int i) const {
63            SkASSERT((unsigned) i < (unsigned) fPathRef->fPointCnt);
64            return this->points() + i;
65        };
66
67        /**
68         * Adds the verb and allocates space for the number of points indicated by the verb. The
69         * return value is a pointer to where the points for the verb should be written.
70         * 'weight' is only used if 'verb' is kConic_Verb
71         */
72        SkPoint* growForVerb(int /*SkPath::Verb*/ verb, SkScalar weight = 0) {
73            SkDEBUGCODE(fPathRef->validate();)
74            return fPathRef->growForVerb(verb, weight);
75        }
76
77        /**
78         * Allocates space for multiple instances of a particular verb and the
79         * requisite points & weights.
80         * The return pointer points at the first new point (indexed normally [<i>]).
81         * If 'verb' is kConic_Verb, 'weights' will return a pointer to the
82         * space for the conic weights (indexed normally).
83         */
84        SkPoint* growForRepeatedVerb(int /*SkPath::Verb*/ verb,
85                                     int numVbs,
86                                     SkScalar** weights = NULL) {
87            return fPathRef->growForRepeatedVerb(verb, numVbs, weights);
88        }
89
90        /**
91         * Resets the path ref to a new verb and point count. The new verbs and points are
92         * uninitialized.
93         */
94        void resetToSize(int newVerbCnt, int newPointCnt, int newConicCount) {
95            fPathRef->resetToSize(newVerbCnt, newPointCnt, newConicCount);
96        }
97
98        /**
99         * Gets the path ref that is wrapped in the Editor.
100         */
101        SkPathRef* pathRef() { return fPathRef; }
102
103        void setIsOval(bool isOval) { fPathRef->setIsOval(isOval); }
104
105        void setBounds(const SkRect& rect) { fPathRef->setBounds(rect); }
106
107    private:
108        SkPathRef* fPathRef;
109    };
110
111public:
112    /**
113     * Gets a path ref with no verbs or points.
114     */
115    static SkPathRef* CreateEmpty();
116
117    /**
118     *  Returns true if all of the points in this path are finite, meaning there
119     *  are no infinities and no NaNs.
120     */
121    bool isFinite() const {
122        if (fBoundsIsDirty) {
123            this->computeBounds();
124        }
125        return SkToBool(fIsFinite);
126    }
127
128    /**
129     *  Returns a mask, where each bit corresponding to a SegmentMask is
130     *  set if the path contains 1 or more segments of that type.
131     *  Returns 0 for an empty path (no segments).
132     */
133    uint32_t getSegmentMasks() const { return fSegmentMask; }
134
135    /** Returns true if the path is an oval.
136     *
137     * @param rect      returns the bounding rect of this oval. It's a circle
138     *                  if the height and width are the same.
139     *
140     * @return true if this path is an oval.
141     *              Tracking whether a path is an oval is considered an
142     *              optimization for performance and so some paths that are in
143     *              fact ovals can report false.
144     */
145    bool isOval(SkRect* rect) const {
146        if (fIsOval && rect) {
147            *rect = getBounds();
148        }
149
150        return SkToBool(fIsOval);
151    }
152
153    bool hasComputedBounds() const {
154        return !fBoundsIsDirty;
155    }
156
157    /** Returns the bounds of the path's points. If the path contains 0 or 1
158        points, the bounds is set to (0,0,0,0), and isEmpty() will return true.
159        Note: this bounds may be larger than the actual shape, since curves
160        do not extend as far as their control points.
161    */
162    const SkRect& getBounds() const {
163        if (fBoundsIsDirty) {
164            this->computeBounds();
165        }
166        return fBounds;
167    }
168
169    /**
170     * Transforms a path ref by a matrix, allocating a new one only if necessary.
171     */
172    static void CreateTransformedCopy(SkAutoTUnref<SkPathRef>* dst,
173                                      const SkPathRef& src,
174                                      const SkMatrix& matrix);
175
176    static SkPathRef* CreateFromBuffer(SkRBuffer* buffer);
177
178    /**
179     * Rollsback a path ref to zero verbs and points with the assumption that the path ref will be
180     * repopulated with approximately the same number of verbs and points. A new path ref is created
181     * only if necessary.
182     */
183    static void Rewind(SkAutoTUnref<SkPathRef>* pathRef);
184
185    virtual ~SkPathRef() {
186        SkDEBUGCODE(this->validate();)
187        sk_free(fPoints);
188
189        SkDEBUGCODE(fPoints = NULL;)
190        SkDEBUGCODE(fVerbs = NULL;)
191        SkDEBUGCODE(fVerbCnt = 0x9999999;)
192        SkDEBUGCODE(fPointCnt = 0xAAAAAAA;)
193        SkDEBUGCODE(fPointCnt = 0xBBBBBBB;)
194        SkDEBUGCODE(fGenerationID = 0xEEEEEEEE;)
195        SkDEBUGCODE(fEditorsAttached = 0x7777777;)
196    }
197
198    int countPoints() const { SkDEBUGCODE(this->validate();) return fPointCnt; }
199    int countVerbs() const { SkDEBUGCODE(this->validate();) return fVerbCnt; }
200    int countWeights() const { SkDEBUGCODE(this->validate();) return fConicWeights.count(); }
201
202    /**
203     * Returns a pointer one beyond the first logical verb (last verb in memory order).
204     */
205    const uint8_t* verbs() const { SkDEBUGCODE(this->validate();) return fVerbs; }
206
207    /**
208     * Returns a const pointer to the first verb in memory (which is the last logical verb).
209     */
210    const uint8_t* verbsMemBegin() const { return this->verbs() - fVerbCnt; }
211
212    /**
213     * Returns a const pointer to the first point.
214     */
215    const SkPoint* points() const { SkDEBUGCODE(this->validate();) return fPoints; }
216
217    /**
218     * Shortcut for this->points() + this->countPoints()
219     */
220    const SkPoint* pointsEnd() const { return this->points() + this->countPoints(); }
221
222    const SkScalar* conicWeights() const { SkDEBUGCODE(this->validate();) return fConicWeights.begin(); }
223    const SkScalar* conicWeightsEnd() const { SkDEBUGCODE(this->validate();) return fConicWeights.end(); }
224
225    /**
226     * Convenience methods for getting to a verb or point by index.
227     */
228    uint8_t atVerb(int index) const {
229        SkASSERT((unsigned) index < (unsigned) fVerbCnt);
230        return this->verbs()[~index];
231    }
232    const SkPoint& atPoint(int index) const {
233        SkASSERT((unsigned) index < (unsigned) fPointCnt);
234        return this->points()[index];
235    }
236
237    bool operator== (const SkPathRef& ref) const;
238
239    /**
240     * Writes the path points and verbs to a buffer.
241     */
242    void writeToBuffer(SkWBuffer* buffer) const;
243
244    /**
245     * Gets the number of bytes that would be written in writeBuffer()
246     */
247    uint32_t writeSize() const;
248
249    /**
250     * Gets an ID that uniquely identifies the contents of the path ref. If two path refs have the
251     * same ID then they have the same verbs and points. However, two path refs may have the same
252     * contents but different genIDs.
253     */
254    uint32_t genID() const;
255
256    SkDEBUGCODE(void validate() const;)
257
258private:
259    enum SerializationOffsets {
260        kIsFinite_SerializationShift = 25,  // requires 1 bit
261        kIsOval_SerializationShift = 24,    // requires 1 bit
262        kSegmentMask_SerializationShift = 0 // requires 4 bits
263    };
264
265    SkPathRef() {
266        fBoundsIsDirty = true;    // this also invalidates fIsFinite
267        fPointCnt = 0;
268        fVerbCnt = 0;
269        fVerbs = NULL;
270        fPoints = NULL;
271        fFreeSpace = 0;
272        fGenerationID = kEmptyGenID;
273        fSegmentMask = 0;
274        fIsOval = false;
275        SkDEBUGCODE(fEditorsAttached = 0;)
276        SkDEBUGCODE(this->validate();)
277    }
278
279    void copy(const SkPathRef& ref, int additionalReserveVerbs, int additionalReservePoints);
280
281    // Return true if the computed bounds are finite.
282    static bool ComputePtBounds(SkRect* bounds, const SkPathRef& ref) {
283        int count = ref.countPoints();
284        if (count <= 1) {  // we ignore just 1 point (moveto)
285            bounds->setEmpty();
286            return count ? ref.points()->isFinite() : true;
287        } else {
288            return bounds->setBoundsCheck(ref.points(), count);
289        }
290    }
291
292    // called, if dirty, by getBounds()
293    void computeBounds() const {
294        SkDEBUGCODE(this->validate();)
295        // TODO(mtklein): remove fBoundsIsDirty and fIsFinite,
296        // using an inverted rect instead of fBoundsIsDirty and always recalculating fIsFinite.
297        SkASSERT(fBoundsIsDirty);
298
299        fIsFinite = ComputePtBounds(&fBounds, *this);
300        fBoundsIsDirty = false;
301    }
302
303    void setBounds(const SkRect& rect) {
304        SkASSERT(rect.fLeft <= rect.fRight && rect.fTop <= rect.fBottom);
305        fBounds = rect;
306        fBoundsIsDirty = false;
307        fIsFinite = fBounds.isFinite();
308    }
309
310    /** Makes additional room but does not change the counts or change the genID */
311    void incReserve(int additionalVerbs, int additionalPoints) {
312        SkDEBUGCODE(this->validate();)
313        size_t space = additionalVerbs * sizeof(uint8_t) + additionalPoints * sizeof (SkPoint);
314        this->makeSpace(space);
315        SkDEBUGCODE(this->validate();)
316    }
317
318    /** Resets the path ref with verbCount verbs and pointCount points, all uninitialized. Also
319     *  allocates space for reserveVerb additional verbs and reservePoints additional points.*/
320    void resetToSize(int verbCount, int pointCount, int conicCount,
321                     int reserveVerbs = 0, int reservePoints = 0) {
322        SkDEBUGCODE(this->validate();)
323        fBoundsIsDirty = true;      // this also invalidates fIsFinite
324        fGenerationID = 0;
325
326        fSegmentMask = 0;
327        fIsOval = false;
328
329        size_t newSize = sizeof(uint8_t) * verbCount + sizeof(SkPoint) * pointCount;
330        size_t newReserve = sizeof(uint8_t) * reserveVerbs + sizeof(SkPoint) * reservePoints;
331        size_t minSize = newSize + newReserve;
332
333        ptrdiff_t sizeDelta = this->currSize() - minSize;
334
335        if (sizeDelta < 0 || static_cast<size_t>(sizeDelta) >= 3 * minSize) {
336            sk_free(fPoints);
337            fPoints = NULL;
338            fVerbs = NULL;
339            fFreeSpace = 0;
340            fVerbCnt = 0;
341            fPointCnt = 0;
342            this->makeSpace(minSize);
343            fVerbCnt = verbCount;
344            fPointCnt = pointCount;
345            fFreeSpace -= newSize;
346        } else {
347            fPointCnt = pointCount;
348            fVerbCnt = verbCount;
349            fFreeSpace = this->currSize() - minSize;
350        }
351        fConicWeights.setCount(conicCount);
352        SkDEBUGCODE(this->validate();)
353    }
354
355    /**
356     * Increases the verb count by numVbs and point count by the required amount.
357     * The new points are uninitialized. All the new verbs are set to the specified
358     * verb. If 'verb' is kConic_Verb, 'weights' will return a pointer to the
359     * uninitialized conic weights.
360     */
361    SkPoint* growForRepeatedVerb(int /*SkPath::Verb*/ verb, int numVbs, SkScalar** weights);
362
363    /**
364     * Increases the verb count 1, records the new verb, and creates room for the requisite number
365     * of additional points. A pointer to the first point is returned. Any new points are
366     * uninitialized.
367     */
368    SkPoint* growForVerb(int /*SkPath::Verb*/ verb, SkScalar weight);
369
370    /**
371     * Ensures that the free space available in the path ref is >= size. The verb and point counts
372     * are not changed.
373     */
374    void makeSpace(size_t size) {
375        SkDEBUGCODE(this->validate();)
376        ptrdiff_t growSize = size - fFreeSpace;
377        if (growSize <= 0) {
378            return;
379        }
380        size_t oldSize = this->currSize();
381        // round to next multiple of 8 bytes
382        growSize = (growSize + 7) & ~static_cast<size_t>(7);
383        // we always at least double the allocation
384        if (static_cast<size_t>(growSize) < oldSize) {
385            growSize = oldSize;
386        }
387        if (growSize < kMinSize) {
388            growSize = kMinSize;
389        }
390        size_t newSize = oldSize + growSize;
391        // Note that realloc could memcpy more than we need. It seems to be a win anyway. TODO:
392        // encapsulate this.
393        fPoints = reinterpret_cast<SkPoint*>(sk_realloc_throw(fPoints, newSize));
394        size_t oldVerbSize = fVerbCnt * sizeof(uint8_t);
395        void* newVerbsDst = reinterpret_cast<void*>(
396                                reinterpret_cast<intptr_t>(fPoints) + newSize - oldVerbSize);
397        void* oldVerbsSrc = reinterpret_cast<void*>(
398                                reinterpret_cast<intptr_t>(fPoints) + oldSize - oldVerbSize);
399        memmove(newVerbsDst, oldVerbsSrc, oldVerbSize);
400        fVerbs = reinterpret_cast<uint8_t*>(reinterpret_cast<intptr_t>(fPoints) + newSize);
401        fFreeSpace += growSize;
402        SkDEBUGCODE(this->validate();)
403    }
404
405    /**
406     * Private, non-const-ptr version of the public function verbsMemBegin().
407     */
408    uint8_t* verbsMemWritable() {
409        SkDEBUGCODE(this->validate();)
410        return fVerbs - fVerbCnt;
411    }
412
413    /**
414     * Gets the total amount of space allocated for verbs, points, and reserve.
415     */
416    size_t currSize() const {
417        return reinterpret_cast<intptr_t>(fVerbs) - reinterpret_cast<intptr_t>(fPoints);
418    }
419
420    /**
421     * Called the first time someone calls CreateEmpty to actually create the singleton.
422     */
423    friend SkPathRef* sk_create_empty_pathref();
424
425    void setIsOval(bool isOval) { fIsOval = isOval; }
426
427    SkPoint* getPoints() {
428        SkDEBUGCODE(this->validate();)
429        fIsOval = false;
430        return fPoints;
431    }
432
433    enum {
434        kMinSize = 256,
435    };
436
437    mutable SkRect   fBounds;
438    mutable uint8_t  fBoundsIsDirty;
439    mutable SkBool8  fIsFinite;    // only meaningful if bounds are valid
440
441    SkBool8  fIsOval;
442    uint8_t  fSegmentMask;
443
444    SkPoint*            fPoints; // points to begining of the allocation
445    uint8_t*            fVerbs; // points just past the end of the allocation (verbs grow backwards)
446    int                 fVerbCnt;
447    int                 fPointCnt;
448    size_t              fFreeSpace; // redundant but saves computation
449    SkTDArray<SkScalar> fConicWeights;
450
451    enum {
452        kEmptyGenID = 1, // GenID reserved for path ref with zero points and zero verbs.
453    };
454    mutable uint32_t    fGenerationID;
455    SkDEBUGCODE(int32_t fEditorsAttached;) // assert that only one editor in use at any time.
456
457    friend class PathRefTest_Private;
458    typedef SkRefCnt INHERITED;
459};
460
461#endif
462