SkPoint.h revision 0bb18bb264b26afca45452910437c09445e23a3c
1
2/*
3 * Copyright 2006 The Android Open Source Project
4 *
5 * Use of this source code is governed by a BSD-style license that can be
6 * found in the LICENSE file.
7 */
8
9
10#ifndef SkPoint_DEFINED
11#define SkPoint_DEFINED
12
13#include "SkMath.h"
14#include "SkScalar.h"
15
16/** \struct SkIPoint
17
18    SkIPoint holds two 32 bit integer coordinates
19*/
20struct SkIPoint {
21    int32_t fX, fY;
22
23    static SkIPoint Make(int32_t x, int32_t y) {
24        SkIPoint pt;
25        pt.set(x, y);
26        return pt;
27    }
28
29    int32_t x() const { return fX; }
30    int32_t y() const { return fY; }
31    void setX(int32_t x) { fX = x; }
32    void setY(int32_t y) { fY = y; }
33
34    /**
35     *  Returns true iff fX and fY are both zero.
36     */
37    bool isZero() const { return (fX | fY) == 0; }
38
39    /**
40     *  Set both fX and fY to zero. Same as set(0, 0)
41     */
42    void setZero() { fX = fY = 0; }
43
44    /** Set the x and y values of the point. */
45    void set(int32_t x, int32_t y) { fX = x; fY = y; }
46
47    /** Rotate the point clockwise, writing the new point into dst
48        It is legal for dst == this
49    */
50    void rotateCW(SkIPoint* dst) const;
51
52    /** Rotate the point clockwise, writing the new point back into the point
53    */
54
55    void rotateCW() { this->rotateCW(this); }
56
57    /** Rotate the point counter-clockwise, writing the new point into dst.
58        It is legal for dst == this
59    */
60    void rotateCCW(SkIPoint* dst) const;
61
62    /** Rotate the point counter-clockwise, writing the new point back into
63        the point
64    */
65    void rotateCCW() { this->rotateCCW(this); }
66
67    /** Negate the X and Y coordinates of the point.
68    */
69    void negate() { fX = -fX; fY = -fY; }
70
71    /** Return a new point whose X and Y coordinates are the negative of the
72        original point's
73    */
74    SkIPoint operator-() const {
75        SkIPoint neg;
76        neg.fX = -fX;
77        neg.fY = -fY;
78        return neg;
79    }
80
81    /** Add v's coordinates to this point's */
82    void operator+=(const SkIPoint& v) {
83        fX += v.fX;
84        fY += v.fY;
85    }
86
87    /** Subtract v's coordinates from this point's */
88    void operator-=(const SkIPoint& v) {
89        fX -= v.fX;
90        fY -= v.fY;
91    }
92
93    /** Returns true if the point's coordinates equal (x,y) */
94    bool equals(int32_t x, int32_t y) const {
95        return fX == x && fY == y;
96    }
97
98    friend bool operator==(const SkIPoint& a, const SkIPoint& b) {
99        return a.fX == b.fX && a.fY == b.fY;
100    }
101
102    friend bool operator!=(const SkIPoint& a, const SkIPoint& b) {
103        return a.fX != b.fX || a.fY != b.fY;
104    }
105
106    /** Returns a new point whose coordinates are the difference between
107        a and b (i.e. a - b)
108    */
109    friend SkIPoint operator-(const SkIPoint& a, const SkIPoint& b) {
110        SkIPoint v;
111        v.set(a.fX - b.fX, a.fY - b.fY);
112        return v;
113    }
114
115    /** Returns a new point whose coordinates are the sum of a and b (a + b)
116    */
117    friend SkIPoint operator+(const SkIPoint& a, const SkIPoint& b) {
118        SkIPoint v;
119        v.set(a.fX + b.fX, a.fY + b.fY);
120        return v;
121    }
122
123    /** Returns the dot product of a and b, treating them as 2D vectors
124    */
125    static int32_t DotProduct(const SkIPoint& a, const SkIPoint& b) {
126        return a.fX * b.fX + a.fY * b.fY;
127    }
128
129    /** Returns the cross product of a and b, treating them as 2D vectors
130    */
131    static int32_t CrossProduct(const SkIPoint& a, const SkIPoint& b) {
132        return a.fX * b.fY - a.fY * b.fX;
133    }
134};
135
136struct SK_API SkPoint {
137    SkScalar    fX, fY;
138
139    static SkPoint Make(SkScalar x, SkScalar y) {
140        SkPoint pt;
141        pt.set(x, y);
142        return pt;
143    }
144
145    SkScalar x() const { return fX; }
146    SkScalar y() const { return fY; }
147
148    /**
149     *  Returns true iff fX and fY are both zero.
150     */
151    bool isZero() const { return (0 == fX) & (0 == fY); }
152
153    /** Set the point's X and Y coordinates */
154    void set(SkScalar x, SkScalar y) { fX = x; fY = y; }
155
156    /** Set the point's X and Y coordinates by automatically promoting (x,y) to
157        SkScalar values.
158    */
159    void iset(int32_t x, int32_t y) {
160        fX = SkIntToScalar(x);
161        fY = SkIntToScalar(y);
162    }
163
164    /** Set the point's X and Y coordinates by automatically promoting p's
165        coordinates to SkScalar values.
166    */
167    void iset(const SkIPoint& p) {
168        fX = SkIntToScalar(p.fX);
169        fY = SkIntToScalar(p.fY);
170    }
171
172    void setAbs(const SkPoint& pt) {
173        fX = SkScalarAbs(pt.fX);
174        fY = SkScalarAbs(pt.fY);
175    }
176
177    // counter-clockwise fan
178    void setIRectFan(int l, int t, int r, int b) {
179        SkPoint* v = this;
180        v[0].set(SkIntToScalar(l), SkIntToScalar(t));
181        v[1].set(SkIntToScalar(l), SkIntToScalar(b));
182        v[2].set(SkIntToScalar(r), SkIntToScalar(b));
183        v[3].set(SkIntToScalar(r), SkIntToScalar(t));
184    }
185    void setIRectFan(int l, int t, int r, int b, size_t stride);
186
187    // counter-clockwise fan
188    void setRectFan(SkScalar l, SkScalar t, SkScalar r, SkScalar b) {
189        SkPoint* v = this;
190        v[0].set(l, t);
191        v[1].set(l, b);
192        v[2].set(r, b);
193        v[3].set(r, t);
194    }
195    void setRectFan(SkScalar l, SkScalar t, SkScalar r, SkScalar b, size_t stride);
196
197    static void Offset(SkPoint points[], int count, const SkPoint& offset) {
198        Offset(points, count, offset.fX, offset.fY);
199    }
200
201    static void Offset(SkPoint points[], int count, SkScalar dx, SkScalar dy) {
202        for (int i = 0; i < count; ++i) {
203            points[i].offset(dx, dy);
204        }
205    }
206
207    void offset(SkScalar dx, SkScalar dy) {
208        fX += dx;
209        fY += dy;
210    }
211
212    /** Return the euclidian distance from (0,0) to the point
213    */
214    SkScalar length() const { return SkPoint::Length(fX, fY); }
215    SkScalar distanceToOrigin() const { return this->length(); }
216
217    /**
218     *  Return true if the computed length of the vector is >= the internal
219     *  tolerance (used to avoid dividing by tiny values).
220     */
221    static bool CanNormalize(SkScalar dx, SkScalar dy)
222#ifdef SK_SCALAR_IS_FLOAT
223    // Simple enough (and performance critical sometimes) so we inline it.
224    { return (dx*dx + dy*dy) > (SK_ScalarNearlyZero * SK_ScalarNearlyZero); }
225#else
226    ;
227#endif
228
229    bool canNormalize() const {
230        return CanNormalize(fX, fY);
231    }
232
233    /** Set the point (vector) to be unit-length in the same direction as it
234        already points.  If the point has a degenerate length (i.e. nearly 0)
235        then return false and do nothing; otherwise return true.
236    */
237    bool normalize();
238
239    /** Set the point (vector) to be unit-length in the same direction as the
240        x,y params. If the vector (x,y) has a degenerate length (i.e. nearly 0)
241        then return false and do nothing, otherwise return true.
242    */
243    bool setNormalize(SkScalar x, SkScalar y);
244
245    /** Scale the point (vector) to have the specified length, and return that
246        length. If the original length is degenerately small (nearly zero),
247        do nothing and return false, otherwise return true.
248    */
249    bool setLength(SkScalar length);
250
251    /** Set the point (vector) to have the specified length in the same
252     direction as (x,y). If the vector (x,y) has a degenerate length
253     (i.e. nearly 0) then return false and do nothing, otherwise return true.
254    */
255    bool setLength(SkScalar x, SkScalar y, SkScalar length);
256
257    /** Scale the point's coordinates by scale, writing the answer into dst.
258        It is legal for dst == this.
259    */
260    void scale(SkScalar scale, SkPoint* dst) const;
261
262    /** Scale the point's coordinates by scale, writing the answer back into
263        the point.
264    */
265    void scale(SkScalar value) { this->scale(value, this); }
266
267    /** Rotate the point clockwise by 90 degrees, writing the answer into dst.
268        It is legal for dst == this.
269    */
270    void rotateCW(SkPoint* dst) const;
271
272    /** Rotate the point clockwise by 90 degrees, writing the answer back into
273        the point.
274    */
275    void rotateCW() { this->rotateCW(this); }
276
277    /** Rotate the point counter-clockwise by 90 degrees, writing the answer
278        into dst. It is legal for dst == this.
279    */
280    void rotateCCW(SkPoint* dst) const;
281
282    /** Rotate the point counter-clockwise by 90 degrees, writing the answer
283        back into the point.
284    */
285    void rotateCCW() { this->rotateCCW(this); }
286
287    /** Negate the point's coordinates
288    */
289    void negate() {
290        fX = -fX;
291        fY = -fY;
292    }
293
294    /** Returns a new point whose coordinates are the negative of the point's
295    */
296    SkPoint operator-() const {
297        SkPoint neg;
298        neg.fX = -fX;
299        neg.fY = -fY;
300        return neg;
301    }
302
303    /** Add v's coordinates to the point's
304    */
305    void operator+=(const SkPoint& v) {
306        fX += v.fX;
307        fY += v.fY;
308    }
309
310    /** Subtract v's coordinates from the point's
311    */
312    void operator-=(const SkPoint& v) {
313        fX -= v.fX;
314        fY -= v.fY;
315    }
316
317    /**
318     *  Returns true if both X and Y are finite (not infinity or NaN)
319     */
320    bool isFinite() const {
321#ifdef SK_SCALAR_IS_FLOAT
322        SkScalar accum = 0;
323        accum *= fX;
324        accum *= fY;
325
326        // accum is either NaN or it is finite (zero).
327        SkASSERT(0 == accum || !(accum == accum));
328
329        // value==value will be true iff value is not NaN
330        // TODO: is it faster to say !accum or accum==accum?
331        return accum == accum;
332#else
333        // use bit-or for speed, since we don't care about short-circuting the
334        // tests, and we expect the common case will be that we need to check all.
335        int isNaN = (SK_FixedNaN == fX) | (SK_FixedNaN == fX));
336        return !isNaN;
337#endif
338    }
339
340    /** Returns true if the point's coordinates equal (x,y)
341    */
342    bool equals(SkScalar x, SkScalar y) const { return fX == x && fY == y; }
343
344    friend bool operator==(const SkPoint& a, const SkPoint& b) {
345        return a.fX == b.fX && a.fY == b.fY;
346    }
347
348    friend bool operator!=(const SkPoint& a, const SkPoint& b) {
349        return a.fX != b.fX || a.fY != b.fY;
350    }
351
352    /** Return true if this point and the given point are far enough apart
353        such that a vector between them would be non-degenerate.
354
355        WARNING: Unlike the deprecated version of equalsWithinTolerance(),
356        this method does not use componentwise comparison.  Instead, it
357        uses a comparison designed to match judgments elsewhere regarding
358        degeneracy ("points A and B are so close that the vector between them
359        is essentially zero").
360    */
361    bool equalsWithinTolerance(const SkPoint& p) const {
362        return !CanNormalize(fX - p.fX, fY - p.fY);
363    }
364
365    /** DEPRECATED: Return true if this and the given point are componentwise
366        within tolerance "tol".
367
368        WARNING: There is no guarantee that the result will reflect judgments
369        elsewhere regarding degeneracy ("points A and B are so close that the
370        vector between them is essentially zero").
371    */
372    bool equalsWithinTolerance(const SkPoint& p, SkScalar tol) const {
373        return SkScalarNearlyZero(fX - p.fX, tol)
374               && SkScalarNearlyZero(fY - p.fY, tol);
375    }
376
377    /** Returns a new point whose coordinates are the difference between
378        a's and b's (a - b)
379    */
380    friend SkPoint operator-(const SkPoint& a, const SkPoint& b) {
381        SkPoint v;
382        v.set(a.fX - b.fX, a.fY - b.fY);
383        return v;
384    }
385
386    /** Returns a new point whose coordinates are the sum of a's and b's (a + b)
387    */
388    friend SkPoint operator+(const SkPoint& a, const SkPoint& b) {
389        SkPoint v;
390        v.set(a.fX + b.fX, a.fY + b.fY);
391        return v;
392    }
393
394    /** Returns the euclidian distance from (0,0) to (x,y)
395    */
396    static SkScalar Length(SkScalar x, SkScalar y);
397
398    /** Normalize pt, returning its previous length. If the prev length is too
399        small (degenerate), return 0 and leave pt unchanged. This uses the same
400        tolerance as CanNormalize.
401
402        Note that this method may be significantly more expensive than
403        the non-static normalize(), because it has to return the previous length
404        of the point.  If you don't need the previous length, call the
405        non-static normalize() method instead.
406     */
407    static SkScalar Normalize(SkPoint* pt);
408
409    /** Returns the euclidian distance between a and b
410    */
411    static SkScalar Distance(const SkPoint& a, const SkPoint& b) {
412        return Length(a.fX - b.fX, a.fY - b.fY);
413    }
414
415    /** Returns the dot product of a and b, treating them as 2D vectors
416    */
417    static SkScalar DotProduct(const SkPoint& a, const SkPoint& b) {
418        return SkScalarMul(a.fX, b.fX) + SkScalarMul(a.fY, b.fY);
419    }
420
421    /** Returns the cross product of a and b, treating them as 2D vectors
422    */
423    static SkScalar CrossProduct(const SkPoint& a, const SkPoint& b) {
424        return SkScalarMul(a.fX, b.fY) - SkScalarMul(a.fY, b.fX);
425    }
426
427    SkScalar cross(const SkPoint& vec) const {
428        return CrossProduct(*this, vec);
429    }
430
431    SkScalar dot(const SkPoint& vec) const {
432        return DotProduct(*this, vec);
433    }
434
435    SkScalar lengthSqd() const {
436        return DotProduct(*this, *this);
437    }
438
439    SkScalar distanceToSqd(const SkPoint& pt) const {
440        SkScalar dx = fX - pt.fX;
441        SkScalar dy = fY - pt.fY;
442        return SkScalarMul(dx, dx) + SkScalarMul(dy, dy);
443    }
444
445    /**
446     * The side of a point relative to a line. If the line is from a to b then
447     * the values are consistent with the sign of (b-a) cross (pt-a)
448     */
449    enum Side {
450        kLeft_Side  = -1,
451        kOn_Side    =  0,
452        kRight_Side =  1
453    };
454
455    /**
456     * Returns the squared distance to the infinite line between two pts. Also
457     * optionally returns the side of the line that the pt falls on (looking
458     * along line from a to b)
459     */
460    SkScalar distanceToLineBetweenSqd(const SkPoint& a,
461                                      const SkPoint& b,
462                                      Side* side = NULL) const;
463
464    /**
465     * Returns the distance to the infinite line between two pts. Also
466     * optionally returns the side of the line that the pt falls on (looking
467     * along the line from a to b)
468     */
469    SkScalar distanceToLineBetween(const SkPoint& a,
470                                   const SkPoint& b,
471                                   Side* side = NULL) const {
472        return SkScalarSqrt(this->distanceToLineBetweenSqd(a, b, side));
473    }
474
475    /**
476     * Returns the squared distance to the line segment between pts a and b
477     */
478    SkScalar distanceToLineSegmentBetweenSqd(const SkPoint& a,
479                                             const SkPoint& b) const;
480
481    /**
482     * Returns the distance to the line segment between pts a and b.
483     */
484    SkScalar distanceToLineSegmentBetween(const SkPoint& a,
485                                          const SkPoint& b) const {
486        return SkScalarSqrt(this->distanceToLineSegmentBetweenSqd(a, b));
487    }
488
489    /**
490     * Make this vector be orthogonal to vec. Looking down vec the
491     * new vector will point in direction indicated by side (which
492     * must be kLeft_Side or kRight_Side).
493     */
494    void setOrthog(const SkPoint& vec, Side side = kLeft_Side) {
495        // vec could be this
496        SkScalar tmp = vec.fX;
497        if (kRight_Side == side) {
498            fX = -vec.fY;
499            fY = tmp;
500        } else {
501            SkASSERT(kLeft_Side == side);
502            fX = vec.fY;
503            fY = -tmp;
504        }
505    }
506};
507
508typedef SkPoint SkVector;
509
510#endif
511