SkGeometry.cpp revision b0889a5aa610552bf306edc8d9a35d2d601acdb9
1
2/*
3 * Copyright 2006 The Android Open Source Project
4 *
5 * Use of this source code is governed by a BSD-style license that can be
6 * found in the LICENSE file.
7 */
8
9
10#include "SkGeometry.h"
11#include "Sk64.h"
12#include "SkMatrix.h"
13
14bool SkXRayCrossesLine(const SkXRay& pt, const SkPoint pts[2], bool* ambiguous) {
15    if (ambiguous) {
16        *ambiguous = false;
17    }
18    // Determine quick discards.
19    // Consider query line going exactly through point 0 to not
20    // intersect, for symmetry with SkXRayCrossesMonotonicCubic.
21    if (pt.fY == pts[0].fY) {
22        if (ambiguous) {
23            *ambiguous = true;
24        }
25        return false;
26    }
27    if (pt.fY < pts[0].fY && pt.fY < pts[1].fY)
28        return false;
29    if (pt.fY > pts[0].fY && pt.fY > pts[1].fY)
30        return false;
31    if (pt.fX > pts[0].fX && pt.fX > pts[1].fX)
32        return false;
33    // Determine degenerate cases
34    if (SkScalarNearlyZero(pts[0].fY - pts[1].fY))
35        return false;
36    if (SkScalarNearlyZero(pts[0].fX - pts[1].fX)) {
37        // We've already determined the query point lies within the
38        // vertical range of the line segment.
39        if (pt.fX <= pts[0].fX) {
40            if (ambiguous) {
41                *ambiguous = (pt.fY == pts[1].fY);
42            }
43            return true;
44        }
45        return false;
46    }
47    // Ambiguity check
48    if (pt.fY == pts[1].fY) {
49        if (pt.fX <= pts[1].fX) {
50            if (ambiguous) {
51                *ambiguous = true;
52            }
53            return true;
54        }
55        return false;
56    }
57    // Full line segment evaluation
58    SkScalar delta_y = pts[1].fY - pts[0].fY;
59    SkScalar delta_x = pts[1].fX - pts[0].fX;
60    SkScalar slope = SkScalarDiv(delta_y, delta_x);
61    SkScalar b = pts[0].fY - SkScalarMul(slope, pts[0].fX);
62    // Solve for x coordinate at y = pt.fY
63    SkScalar x = SkScalarDiv(pt.fY - b, slope);
64    return pt.fX <= x;
65}
66
67/** If defined, this makes eval_quad and eval_cubic do more setup (sometimes
68    involving integer multiplies by 2 or 3, but fewer calls to SkScalarMul.
69    May also introduce overflow of fixed when we compute our setup.
70*/
71#ifdef SK_SCALAR_IS_FIXED
72    #define DIRECT_EVAL_OF_POLYNOMIALS
73#endif
74
75////////////////////////////////////////////////////////////////////////
76
77#ifdef SK_SCALAR_IS_FIXED
78    static int is_not_monotonic(int a, int b, int c, int d)
79    {
80        return (((a - b) | (b - c) | (c - d)) & ((b - a) | (c - b) | (d - c))) >> 31;
81    }
82
83    static int is_not_monotonic(int a, int b, int c)
84    {
85        return (((a - b) | (b - c)) & ((b - a) | (c - b))) >> 31;
86    }
87#else
88    static int is_not_monotonic(float a, float b, float c)
89    {
90        float ab = a - b;
91        float bc = b - c;
92        if (ab < 0)
93            bc = -bc;
94        return ab == 0 || bc < 0;
95    }
96#endif
97
98////////////////////////////////////////////////////////////////////////
99
100static bool is_unit_interval(SkScalar x)
101{
102    return x > 0 && x < SK_Scalar1;
103}
104
105static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio)
106{
107    SkASSERT(ratio);
108
109    if (numer < 0)
110    {
111        numer = -numer;
112        denom = -denom;
113    }
114
115    if (denom == 0 || numer == 0 || numer >= denom)
116        return 0;
117
118    SkScalar r = SkScalarDiv(numer, denom);
119    if (SkScalarIsNaN(r)) {
120        return 0;
121    }
122    SkASSERT(r >= 0 && r < SK_Scalar1);
123    if (r == 0) // catch underflow if numer <<<< denom
124        return 0;
125    *ratio = r;
126    return 1;
127}
128
129/** From Numerical Recipes in C.
130
131    Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C])
132    x1 = Q / A
133    x2 = C / Q
134*/
135int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2])
136{
137    SkASSERT(roots);
138
139    if (A == 0)
140        return valid_unit_divide(-C, B, roots);
141
142    SkScalar* r = roots;
143
144#ifdef SK_SCALAR_IS_FLOAT
145    float R = B*B - 4*A*C;
146    if (R < 0 || SkScalarIsNaN(R)) {  // complex roots
147        return 0;
148    }
149    R = sk_float_sqrt(R);
150#else
151    Sk64    RR, tmp;
152
153    RR.setMul(B,B);
154    tmp.setMul(A,C);
155    tmp.shiftLeft(2);
156    RR.sub(tmp);
157    if (RR.isNeg())
158        return 0;
159    SkFixed R = RR.getSqrt();
160#endif
161
162    SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2;
163    r += valid_unit_divide(Q, A, r);
164    r += valid_unit_divide(C, Q, r);
165    if (r - roots == 2)
166    {
167        if (roots[0] > roots[1])
168            SkTSwap<SkScalar>(roots[0], roots[1]);
169        else if (roots[0] == roots[1])  // nearly-equal?
170            r -= 1; // skip the double root
171    }
172    return (int)(r - roots);
173}
174
175#ifdef SK_SCALAR_IS_FIXED
176/** Trim A/B/C down so that they are all <= 32bits
177    and then call SkFindUnitQuadRoots()
178*/
179static int Sk64FindFixedQuadRoots(const Sk64& A, const Sk64& B, const Sk64& C, SkFixed roots[2])
180{
181    int na = A.shiftToMake32();
182    int nb = B.shiftToMake32();
183    int nc = C.shiftToMake32();
184
185    int shift = SkMax32(na, SkMax32(nb, nc));
186    SkASSERT(shift >= 0);
187
188    return SkFindUnitQuadRoots(A.getShiftRight(shift), B.getShiftRight(shift), C.getShiftRight(shift), roots);
189}
190#endif
191
192/////////////////////////////////////////////////////////////////////////////////////
193/////////////////////////////////////////////////////////////////////////////////////
194
195static SkScalar eval_quad(const SkScalar src[], SkScalar t)
196{
197    SkASSERT(src);
198    SkASSERT(t >= 0 && t <= SK_Scalar1);
199
200#ifdef DIRECT_EVAL_OF_POLYNOMIALS
201    SkScalar    C = src[0];
202    SkScalar    A = src[4] - 2 * src[2] + C;
203    SkScalar    B = 2 * (src[2] - C);
204    return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
205#else
206    SkScalar    ab = SkScalarInterp(src[0], src[2], t);
207    SkScalar    bc = SkScalarInterp(src[2], src[4], t);
208    return SkScalarInterp(ab, bc, t);
209#endif
210}
211
212static SkScalar eval_quad_derivative(const SkScalar src[], SkScalar t)
213{
214    SkScalar A = src[4] - 2 * src[2] + src[0];
215    SkScalar B = src[2] - src[0];
216
217    return 2 * SkScalarMulAdd(A, t, B);
218}
219
220static SkScalar eval_quad_derivative_at_half(const SkScalar src[])
221{
222    SkScalar A = src[4] - 2 * src[2] + src[0];
223    SkScalar B = src[2] - src[0];
224    return A + 2 * B;
225}
226
227void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent)
228{
229    SkASSERT(src);
230    SkASSERT(t >= 0 && t <= SK_Scalar1);
231
232    if (pt)
233        pt->set(eval_quad(&src[0].fX, t), eval_quad(&src[0].fY, t));
234    if (tangent)
235        tangent->set(eval_quad_derivative(&src[0].fX, t),
236                     eval_quad_derivative(&src[0].fY, t));
237}
238
239void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt, SkVector* tangent)
240{
241    SkASSERT(src);
242
243    if (pt)
244    {
245        SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
246        SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
247        SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
248        SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
249        pt->set(SkScalarAve(x01, x12), SkScalarAve(y01, y12));
250    }
251    if (tangent)
252        tangent->set(eval_quad_derivative_at_half(&src[0].fX),
253                     eval_quad_derivative_at_half(&src[0].fY));
254}
255
256static void interp_quad_coords(const SkScalar* src, SkScalar* dst, SkScalar t)
257{
258    SkScalar    ab = SkScalarInterp(src[0], src[2], t);
259    SkScalar    bc = SkScalarInterp(src[2], src[4], t);
260
261    dst[0] = src[0];
262    dst[2] = ab;
263    dst[4] = SkScalarInterp(ab, bc, t);
264    dst[6] = bc;
265    dst[8] = src[4];
266}
267
268void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t)
269{
270    SkASSERT(t > 0 && t < SK_Scalar1);
271
272    interp_quad_coords(&src[0].fX, &dst[0].fX, t);
273    interp_quad_coords(&src[0].fY, &dst[0].fY, t);
274}
275
276void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5])
277{
278    SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
279    SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
280    SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
281    SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
282
283    dst[0] = src[0];
284    dst[1].set(x01, y01);
285    dst[2].set(SkScalarAve(x01, x12), SkScalarAve(y01, y12));
286    dst[3].set(x12, y12);
287    dst[4] = src[2];
288}
289
290/** Quad'(t) = At + B, where
291    A = 2(a - 2b + c)
292    B = 2(b - a)
293    Solve for t, only if it fits between 0 < t < 1
294*/
295int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1])
296{
297    /*  At + B == 0
298        t = -B / A
299    */
300#ifdef SK_SCALAR_IS_FIXED
301    return is_not_monotonic(a, b, c) && valid_unit_divide(a - b, a - b - b + c, tValue);
302#else
303    return valid_unit_divide(a - b, a - b - b + c, tValue);
304#endif
305}
306
307static inline void flatten_double_quad_extrema(SkScalar coords[14])
308{
309    coords[2] = coords[6] = coords[4];
310}
311
312/*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
313 stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
314 */
315int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5])
316{
317    SkASSERT(src);
318    SkASSERT(dst);
319
320#if 0
321    static bool once = true;
322    if (once)
323    {
324        once = false;
325        SkPoint s[3] = { 0, 26398, 0, 26331, 0, 20621428 };
326        SkPoint d[6];
327
328        int n = SkChopQuadAtYExtrema(s, d);
329        SkDebugf("chop=%d, Y=[%x %x %x %x %x %x]\n", n, d[0].fY, d[1].fY, d[2].fY, d[3].fY, d[4].fY, d[5].fY);
330    }
331#endif
332
333    SkScalar a = src[0].fY;
334    SkScalar b = src[1].fY;
335    SkScalar c = src[2].fY;
336
337    if (is_not_monotonic(a, b, c))
338    {
339        SkScalar    tValue;
340        if (valid_unit_divide(a - b, a - b - b + c, &tValue))
341        {
342            SkChopQuadAt(src, dst, tValue);
343            flatten_double_quad_extrema(&dst[0].fY);
344            return 1;
345        }
346        // if we get here, we need to force dst to be monotonic, even though
347        // we couldn't compute a unit_divide value (probably underflow).
348        b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
349    }
350    dst[0].set(src[0].fX, a);
351    dst[1].set(src[1].fX, b);
352    dst[2].set(src[2].fX, c);
353    return 0;
354}
355
356/*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
357    stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
358 */
359int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5])
360{
361    SkASSERT(src);
362    SkASSERT(dst);
363
364    SkScalar a = src[0].fX;
365    SkScalar b = src[1].fX;
366    SkScalar c = src[2].fX;
367
368    if (is_not_monotonic(a, b, c)) {
369        SkScalar tValue;
370        if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
371            SkChopQuadAt(src, dst, tValue);
372            flatten_double_quad_extrema(&dst[0].fX);
373            return 1;
374        }
375        // if we get here, we need to force dst to be monotonic, even though
376        // we couldn't compute a unit_divide value (probably underflow).
377        b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
378    }
379    dst[0].set(a, src[0].fY);
380    dst[1].set(b, src[1].fY);
381    dst[2].set(c, src[2].fY);
382    return 0;
383}
384
385//  F(t)    = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2
386//  F'(t)   = 2 (b - a) + 2 (a - 2b + c) t
387//  F''(t)  = 2 (a - 2b + c)
388//
389//  A = 2 (b - a)
390//  B = 2 (a - 2b + c)
391//
392//  Maximum curvature for a quadratic means solving
393//  Fx' Fx'' + Fy' Fy'' = 0
394//
395//  t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2)
396//
397float SkFindQuadMaxCurvature(const SkPoint src[3]) {
398    SkScalar    Ax = src[1].fX - src[0].fX;
399    SkScalar    Ay = src[1].fY - src[0].fY;
400    SkScalar    Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX;
401    SkScalar    By = src[0].fY - src[1].fY - src[1].fY + src[2].fY;
402    SkScalar    t = 0;  // 0 means don't chop
403
404#ifdef SK_SCALAR_IS_FLOAT
405    (void)valid_unit_divide(-(Ax * Bx + Ay * By), Bx * Bx + By * By, &t);
406#else
407    // !!! should I use SkFloat here? seems like it
408    Sk64    numer, denom, tmp;
409
410    numer.setMul(Ax, -Bx);
411    tmp.setMul(Ay, -By);
412    numer.add(tmp);
413
414    if (numer.isPos())  // do nothing if numer <= 0
415    {
416        denom.setMul(Bx, Bx);
417        tmp.setMul(By, By);
418        denom.add(tmp);
419        SkASSERT(!denom.isNeg());
420        if (numer < denom)
421        {
422            t = numer.getFixedDiv(denom);
423            SkASSERT(t >= 0 && t <= SK_Fixed1);     // assert that we're numerically stable (ha!)
424            if ((unsigned)t >= SK_Fixed1)           // runtime check for numerical stability
425                t = 0;  // ignore the chop
426        }
427    }
428#endif
429    return t;
430}
431
432int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5])
433{
434    SkScalar t = SkFindQuadMaxCurvature(src);
435    if (t == 0) {
436        memcpy(dst, src, 3 * sizeof(SkPoint));
437        return 1;
438    } else {
439        SkChopQuadAt(src, dst, t);
440        return 2;
441    }
442}
443
444#ifdef SK_SCALAR_IS_FLOAT
445    #define SK_ScalarTwoThirds  (0.666666666f)
446#else
447    #define SK_ScalarTwoThirds  ((SkFixed)(43691))
448#endif
449
450void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]) {
451    const SkScalar scale = SK_ScalarTwoThirds;
452    dst[0] = src[0];
453    dst[1].set(src[0].fX + SkScalarMul(src[1].fX - src[0].fX, scale),
454               src[0].fY + SkScalarMul(src[1].fY - src[0].fY, scale));
455    dst[2].set(src[2].fX + SkScalarMul(src[1].fX - src[2].fX, scale),
456               src[2].fY + SkScalarMul(src[1].fY - src[2].fY, scale));
457    dst[3] = src[2];
458}
459
460////////////////////////////////////////////////////////////////////////////////////////
461///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS /////
462////////////////////////////////////////////////////////////////////////////////////////
463
464static void get_cubic_coeff(const SkScalar pt[], SkScalar coeff[4])
465{
466    coeff[0] = pt[6] + 3*(pt[2] - pt[4]) - pt[0];
467    coeff[1] = 3*(pt[4] - pt[2] - pt[2] + pt[0]);
468    coeff[2] = 3*(pt[2] - pt[0]);
469    coeff[3] = pt[0];
470}
471
472void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4])
473{
474    SkASSERT(pts);
475
476    if (cx)
477        get_cubic_coeff(&pts[0].fX, cx);
478    if (cy)
479        get_cubic_coeff(&pts[0].fY, cy);
480}
481
482static SkScalar eval_cubic(const SkScalar src[], SkScalar t)
483{
484    SkASSERT(src);
485    SkASSERT(t >= 0 && t <= SK_Scalar1);
486
487    if (t == 0)
488        return src[0];
489
490#ifdef DIRECT_EVAL_OF_POLYNOMIALS
491    SkScalar D = src[0];
492    SkScalar A = src[6] + 3*(src[2] - src[4]) - D;
493    SkScalar B = 3*(src[4] - src[2] - src[2] + D);
494    SkScalar C = 3*(src[2] - D);
495
496    return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D);
497#else
498    SkScalar    ab = SkScalarInterp(src[0], src[2], t);
499    SkScalar    bc = SkScalarInterp(src[2], src[4], t);
500    SkScalar    cd = SkScalarInterp(src[4], src[6], t);
501    SkScalar    abc = SkScalarInterp(ab, bc, t);
502    SkScalar    bcd = SkScalarInterp(bc, cd, t);
503    return SkScalarInterp(abc, bcd, t);
504#endif
505}
506
507/** return At^2 + Bt + C
508*/
509static SkScalar eval_quadratic(SkScalar A, SkScalar B, SkScalar C, SkScalar t)
510{
511    SkASSERT(t >= 0 && t <= SK_Scalar1);
512
513    return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
514}
515
516static SkScalar eval_cubic_derivative(const SkScalar src[], SkScalar t)
517{
518    SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
519    SkScalar B = 2*(src[4] - 2 * src[2] + src[0]);
520    SkScalar C = src[2] - src[0];
521
522    return eval_quadratic(A, B, C, t);
523}
524
525static SkScalar eval_cubic_2ndDerivative(const SkScalar src[], SkScalar t)
526{
527    SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
528    SkScalar B = src[4] - 2 * src[2] + src[0];
529
530    return SkScalarMulAdd(A, t, B);
531}
532
533void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc, SkVector* tangent, SkVector* curvature)
534{
535    SkASSERT(src);
536    SkASSERT(t >= 0 && t <= SK_Scalar1);
537
538    if (loc)
539        loc->set(eval_cubic(&src[0].fX, t), eval_cubic(&src[0].fY, t));
540    if (tangent)
541        tangent->set(eval_cubic_derivative(&src[0].fX, t),
542                     eval_cubic_derivative(&src[0].fY, t));
543    if (curvature)
544        curvature->set(eval_cubic_2ndDerivative(&src[0].fX, t),
545                       eval_cubic_2ndDerivative(&src[0].fY, t));
546}
547
548/** Cubic'(t) = At^2 + Bt + C, where
549    A = 3(-a + 3(b - c) + d)
550    B = 6(a - 2b + c)
551    C = 3(b - a)
552    Solve for t, keeping only those that fit betwee 0 < t < 1
553*/
554int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, SkScalar tValues[2])
555{
556#ifdef SK_SCALAR_IS_FIXED
557    if (!is_not_monotonic(a, b, c, d))
558        return 0;
559#endif
560
561    // we divide A,B,C by 3 to simplify
562    SkScalar A = d - a + 3*(b - c);
563    SkScalar B = 2*(a - b - b + c);
564    SkScalar C = b - a;
565
566    return SkFindUnitQuadRoots(A, B, C, tValues);
567}
568
569static void interp_cubic_coords(const SkScalar* src, SkScalar* dst, SkScalar t)
570{
571    SkScalar    ab = SkScalarInterp(src[0], src[2], t);
572    SkScalar    bc = SkScalarInterp(src[2], src[4], t);
573    SkScalar    cd = SkScalarInterp(src[4], src[6], t);
574    SkScalar    abc = SkScalarInterp(ab, bc, t);
575    SkScalar    bcd = SkScalarInterp(bc, cd, t);
576    SkScalar    abcd = SkScalarInterp(abc, bcd, t);
577
578    dst[0] = src[0];
579    dst[2] = ab;
580    dst[4] = abc;
581    dst[6] = abcd;
582    dst[8] = bcd;
583    dst[10] = cd;
584    dst[12] = src[6];
585}
586
587void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t)
588{
589    SkASSERT(t > 0 && t < SK_Scalar1);
590
591    interp_cubic_coords(&src[0].fX, &dst[0].fX, t);
592    interp_cubic_coords(&src[0].fY, &dst[0].fY, t);
593}
594
595/*  http://code.google.com/p/skia/issues/detail?id=32
596
597    This test code would fail when we didn't check the return result of
598    valid_unit_divide in SkChopCubicAt(... tValues[], int roots). The reason is
599    that after the first chop, the parameters to valid_unit_divide are equal
600    (thanks to finite float precision and rounding in the subtracts). Thus
601    even though the 2nd tValue looks < 1.0, after we renormalize it, we end
602    up with 1.0, hence the need to check and just return the last cubic as
603    a degenerate clump of 4 points in the sampe place.
604
605    static void test_cubic() {
606        SkPoint src[4] = {
607            { 556.25000, 523.03003 },
608            { 556.23999, 522.96002 },
609            { 556.21997, 522.89001 },
610            { 556.21997, 522.82001 }
611        };
612        SkPoint dst[10];
613        SkScalar tval[] = { 0.33333334f, 0.99999994f };
614        SkChopCubicAt(src, dst, tval, 2);
615    }
616 */
617
618void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar tValues[], int roots)
619{
620#ifdef SK_DEBUG
621    {
622        for (int i = 0; i < roots - 1; i++)
623        {
624            SkASSERT(is_unit_interval(tValues[i]));
625            SkASSERT(is_unit_interval(tValues[i+1]));
626            SkASSERT(tValues[i] < tValues[i+1]);
627        }
628    }
629#endif
630
631    if (dst)
632    {
633        if (roots == 0) // nothing to chop
634            memcpy(dst, src, 4*sizeof(SkPoint));
635        else
636        {
637            SkScalar    t = tValues[0];
638            SkPoint     tmp[4];
639
640            for (int i = 0; i < roots; i++)
641            {
642                SkChopCubicAt(src, dst, t);
643                if (i == roots - 1)
644                    break;
645
646                dst += 3;
647                // have src point to the remaining cubic (after the chop)
648                memcpy(tmp, dst, 4 * sizeof(SkPoint));
649                src = tmp;
650
651                // watch out in case the renormalized t isn't in range
652                if (!valid_unit_divide(tValues[i+1] - tValues[i],
653                                       SK_Scalar1 - tValues[i], &t)) {
654                    // if we can't, just create a degenerate cubic
655                    dst[4] = dst[5] = dst[6] = src[3];
656                    break;
657                }
658            }
659        }
660    }
661}
662
663void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7])
664{
665    SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
666    SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
667    SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
668    SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
669    SkScalar x23 = SkScalarAve(src[2].fX, src[3].fX);
670    SkScalar y23 = SkScalarAve(src[2].fY, src[3].fY);
671
672    SkScalar x012 = SkScalarAve(x01, x12);
673    SkScalar y012 = SkScalarAve(y01, y12);
674    SkScalar x123 = SkScalarAve(x12, x23);
675    SkScalar y123 = SkScalarAve(y12, y23);
676
677    dst[0] = src[0];
678    dst[1].set(x01, y01);
679    dst[2].set(x012, y012);
680    dst[3].set(SkScalarAve(x012, x123), SkScalarAve(y012, y123));
681    dst[4].set(x123, y123);
682    dst[5].set(x23, y23);
683    dst[6] = src[3];
684}
685
686static void flatten_double_cubic_extrema(SkScalar coords[14])
687{
688    coords[4] = coords[8] = coords[6];
689}
690
691/** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
692    the resulting beziers are monotonic in Y. This is called by the scan converter.
693    Depending on what is returned, dst[] is treated as follows
694    0   dst[0..3] is the original cubic
695    1   dst[0..3] and dst[3..6] are the two new cubics
696    2   dst[0..3], dst[3..6], dst[6..9] are the three new cubics
697    If dst == null, it is ignored and only the count is returned.
698*/
699int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]) {
700    SkScalar    tValues[2];
701    int         roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY,
702                                           src[3].fY, tValues);
703
704    SkChopCubicAt(src, dst, tValues, roots);
705    if (dst && roots > 0) {
706        // we do some cleanup to ensure our Y extrema are flat
707        flatten_double_cubic_extrema(&dst[0].fY);
708        if (roots == 2) {
709            flatten_double_cubic_extrema(&dst[3].fY);
710        }
711    }
712    return roots;
713}
714
715int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]) {
716    SkScalar    tValues[2];
717    int         roots = SkFindCubicExtrema(src[0].fX, src[1].fX, src[2].fX,
718                                           src[3].fX, tValues);
719
720    SkChopCubicAt(src, dst, tValues, roots);
721    if (dst && roots > 0) {
722        // we do some cleanup to ensure our Y extrema are flat
723        flatten_double_cubic_extrema(&dst[0].fX);
724        if (roots == 2) {
725            flatten_double_cubic_extrema(&dst[3].fX);
726        }
727    }
728    return roots;
729}
730
731/** http://www.faculty.idc.ac.il/arik/quality/appendixA.html
732
733    Inflection means that curvature is zero.
734    Curvature is [F' x F''] / [F'^3]
735    So we solve F'x X F''y - F'y X F''y == 0
736    After some canceling of the cubic term, we get
737    A = b - a
738    B = c - 2b + a
739    C = d - 3c + 3b - a
740    (BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0
741*/
742int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[])
743{
744    SkScalar    Ax = src[1].fX - src[0].fX;
745    SkScalar    Ay = src[1].fY - src[0].fY;
746    SkScalar    Bx = src[2].fX - 2 * src[1].fX + src[0].fX;
747    SkScalar    By = src[2].fY - 2 * src[1].fY + src[0].fY;
748    SkScalar    Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX;
749    SkScalar    Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY;
750    int         count;
751
752#ifdef SK_SCALAR_IS_FLOAT
753    count = SkFindUnitQuadRoots(Bx*Cy - By*Cx, Ax*Cy - Ay*Cx, Ax*By - Ay*Bx, tValues);
754#else
755    Sk64    A, B, C, tmp;
756
757    A.setMul(Bx, Cy);
758    tmp.setMul(By, Cx);
759    A.sub(tmp);
760
761    B.setMul(Ax, Cy);
762    tmp.setMul(Ay, Cx);
763    B.sub(tmp);
764
765    C.setMul(Ax, By);
766    tmp.setMul(Ay, Bx);
767    C.sub(tmp);
768
769    count = Sk64FindFixedQuadRoots(A, B, C, tValues);
770#endif
771
772    return count;
773}
774
775int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10])
776{
777    SkScalar    tValues[2];
778    int         count = SkFindCubicInflections(src, tValues);
779
780    if (dst)
781    {
782        if (count == 0)
783            memcpy(dst, src, 4 * sizeof(SkPoint));
784        else
785            SkChopCubicAt(src, dst, tValues, count);
786    }
787    return count + 1;
788}
789
790template <typename T> void bubble_sort(T array[], int count)
791{
792    for (int i = count - 1; i > 0; --i)
793        for (int j = i; j > 0; --j)
794            if (array[j] < array[j-1])
795            {
796                T   tmp(array[j]);
797                array[j] = array[j-1];
798                array[j-1] = tmp;
799            }
800}
801
802#include "SkFP.h"
803
804// newton refinement
805#if 0
806static SkScalar refine_cubic_root(const SkFP coeff[4], SkScalar root)
807{
808    //  x1 = x0 - f(t) / f'(t)
809
810    SkFP    T = SkScalarToFloat(root);
811    SkFP    N, D;
812
813    // f' = 3*coeff[0]*T^2 + 2*coeff[1]*T + coeff[2]
814    D = SkFPMul(SkFPMul(coeff[0], SkFPMul(T,T)), 3);
815    D = SkFPAdd(D, SkFPMulInt(SkFPMul(coeff[1], T), 2));
816    D = SkFPAdd(D, coeff[2]);
817
818    if (D == 0)
819        return root;
820
821    // f = coeff[0]*T^3 + coeff[1]*T^2 + coeff[2]*T + coeff[3]
822    N = SkFPMul(SkFPMul(SkFPMul(T, T), T), coeff[0]);
823    N = SkFPAdd(N, SkFPMul(SkFPMul(T, T), coeff[1]));
824    N = SkFPAdd(N, SkFPMul(T, coeff[2]));
825    N = SkFPAdd(N, coeff[3]);
826
827    if (N)
828    {
829        SkScalar delta = SkFPToScalar(SkFPDiv(N, D));
830
831        if (delta)
832            root -= delta;
833    }
834    return root;
835}
836#endif
837
838/**
839 *  Given an array and count, remove all pair-wise duplicates from the array,
840 *  keeping the existing sorting, and return the new count
841 */
842static int collaps_duplicates(float array[], int count) {
843    for (int n = count; n > 1; --n) {
844        if (array[0] == array[1]) {
845            for (int i = 1; i < n; ++i) {
846                array[i - 1] = array[i];
847            }
848            count -= 1;
849        } else {
850            array += 1;
851        }
852    }
853    return count;
854}
855
856#ifdef SK_DEBUG
857
858#define TEST_COLLAPS_ENTRY(array)   array, SK_ARRAY_COUNT(array)
859
860static void test_collaps_duplicates() {
861    static bool gOnce;
862    if (gOnce) { return; }
863    gOnce = true;
864    const float src0[] = { 0 };
865    const float src1[] = { 0, 0 };
866    const float src2[] = { 0, 1 };
867    const float src3[] = { 0, 0, 0 };
868    const float src4[] = { 0, 0, 1 };
869    const float src5[] = { 0, 1, 1 };
870    const float src6[] = { 0, 1, 2 };
871    const struct {
872        const float* fData;
873        int fCount;
874        int fCollapsedCount;
875    } data[] = {
876        { TEST_COLLAPS_ENTRY(src0), 1 },
877        { TEST_COLLAPS_ENTRY(src1), 1 },
878        { TEST_COLLAPS_ENTRY(src2), 2 },
879        { TEST_COLLAPS_ENTRY(src3), 1 },
880        { TEST_COLLAPS_ENTRY(src4), 2 },
881        { TEST_COLLAPS_ENTRY(src5), 2 },
882        { TEST_COLLAPS_ENTRY(src6), 3 },
883    };
884    for (size_t i = 0; i < SK_ARRAY_COUNT(data); ++i) {
885        float dst[3];
886        memcpy(dst, data[i].fData, data[i].fCount * sizeof(dst[0]));
887        int count = collaps_duplicates(dst, data[i].fCount);
888        SkASSERT(data[i].fCollapsedCount == count);
889        for (int j = 1; j < count; ++j) {
890            SkASSERT(dst[j-1] < dst[j]);
891        }
892    }
893}
894#endif
895
896#if defined _WIN32 && _MSC_VER >= 1300  && defined SK_SCALAR_IS_FIXED // disable warning : unreachable code if building fixed point for windows desktop
897#pragma warning ( disable : 4702 )
898#endif
899
900/*  Solve coeff(t) == 0, returning the number of roots that
901    lie withing 0 < t < 1.
902    coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3]
903
904    Eliminates repeated roots (so that all tValues are distinct, and are always
905    in increasing order.
906*/
907static int solve_cubic_polynomial(const SkFP coeff[4], SkScalar tValues[3])
908{
909#ifndef SK_SCALAR_IS_FLOAT
910    return 0;   // this is not yet implemented for software float
911#endif
912
913    if (SkScalarNearlyZero(coeff[0]))   // we're just a quadratic
914    {
915        return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues);
916    }
917
918    SkFP    a, b, c, Q, R;
919
920    {
921        SkASSERT(coeff[0] != 0);
922
923        SkFP inva = SkFPInvert(coeff[0]);
924        a = SkFPMul(coeff[1], inva);
925        b = SkFPMul(coeff[2], inva);
926        c = SkFPMul(coeff[3], inva);
927    }
928    Q = SkFPDivInt(SkFPSub(SkFPMul(a,a), SkFPMulInt(b, 3)), 9);
929//  R = (2*a*a*a - 9*a*b + 27*c) / 54;
930    R = SkFPMulInt(SkFPMul(SkFPMul(a, a), a), 2);
931    R = SkFPSub(R, SkFPMulInt(SkFPMul(a, b), 9));
932    R = SkFPAdd(R, SkFPMulInt(c, 27));
933    R = SkFPDivInt(R, 54);
934
935    SkFP Q3 = SkFPMul(SkFPMul(Q, Q), Q);
936    SkFP R2MinusQ3 = SkFPSub(SkFPMul(R,R), Q3);
937    SkFP adiv3 = SkFPDivInt(a, 3);
938
939    SkScalar*   roots = tValues;
940    SkScalar    r;
941
942    if (SkFPLT(R2MinusQ3, 0))   // we have 3 real roots
943    {
944#ifdef SK_SCALAR_IS_FLOAT
945        float theta = sk_float_acos(R / sk_float_sqrt(Q3));
946        float neg2RootQ = -2 * sk_float_sqrt(Q);
947
948        r = neg2RootQ * sk_float_cos(theta/3) - adiv3;
949        if (is_unit_interval(r))
950            *roots++ = r;
951
952        r = neg2RootQ * sk_float_cos((theta + 2*SK_ScalarPI)/3) - adiv3;
953        if (is_unit_interval(r))
954            *roots++ = r;
955
956        r = neg2RootQ * sk_float_cos((theta - 2*SK_ScalarPI)/3) - adiv3;
957        if (is_unit_interval(r))
958            *roots++ = r;
959
960        SkDEBUGCODE(test_collaps_duplicates();)
961
962        // now sort the roots
963        int count = (int)(roots - tValues);
964        SkASSERT((unsigned)count <= 3);
965        bubble_sort(tValues, count);
966        count = collaps_duplicates(tValues, count);
967        roots = tValues + count;    // so we compute the proper count below
968#endif
969    }
970    else                // we have 1 real root
971    {
972        SkFP A = SkFPAdd(SkFPAbs(R), SkFPSqrt(R2MinusQ3));
973        A = SkFPCubeRoot(A);
974        if (SkFPGT(R, 0))
975            A = SkFPNeg(A);
976
977        if (A != 0)
978            A = SkFPAdd(A, SkFPDiv(Q, A));
979        r = SkFPToScalar(SkFPSub(A, adiv3));
980        if (is_unit_interval(r))
981            *roots++ = r;
982    }
983
984    return (int)(roots - tValues);
985}
986
987/*  Looking for F' dot F'' == 0
988
989    A = b - a
990    B = c - 2b + a
991    C = d - 3c + 3b - a
992
993    F' = 3Ct^2 + 6Bt + 3A
994    F'' = 6Ct + 6B
995
996    F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
997*/
998static void formulate_F1DotF2(const SkScalar src[], SkFP coeff[4])
999{
1000    SkScalar    a = src[2] - src[0];
1001    SkScalar    b = src[4] - 2 * src[2] + src[0];
1002    SkScalar    c = src[6] + 3 * (src[2] - src[4]) - src[0];
1003
1004    SkFP    A = SkScalarToFP(a);
1005    SkFP    B = SkScalarToFP(b);
1006    SkFP    C = SkScalarToFP(c);
1007
1008    coeff[0] = SkFPMul(C, C);
1009    coeff[1] = SkFPMulInt(SkFPMul(B, C), 3);
1010    coeff[2] = SkFPMulInt(SkFPMul(B, B), 2);
1011    coeff[2] = SkFPAdd(coeff[2], SkFPMul(C, A));
1012    coeff[3] = SkFPMul(A, B);
1013}
1014
1015// EXPERIMENTAL: can set this to zero to accept all t-values 0 < t < 1
1016//#define kMinTValueForChopping (SK_Scalar1 / 256)
1017#define kMinTValueForChopping   0
1018
1019/*  Looking for F' dot F'' == 0
1020
1021    A = b - a
1022    B = c - 2b + a
1023    C = d - 3c + 3b - a
1024
1025    F' = 3Ct^2 + 6Bt + 3A
1026    F'' = 6Ct + 6B
1027
1028    F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
1029*/
1030int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3])
1031{
1032    SkFP    coeffX[4], coeffY[4];
1033    int     i;
1034
1035    formulate_F1DotF2(&src[0].fX, coeffX);
1036    formulate_F1DotF2(&src[0].fY, coeffY);
1037
1038    for (i = 0; i < 4; i++)
1039        coeffX[i] = SkFPAdd(coeffX[i],coeffY[i]);
1040
1041    SkScalar    t[3];
1042    int         count = solve_cubic_polynomial(coeffX, t);
1043    int         maxCount = 0;
1044
1045    // now remove extrema where the curvature is zero (mins)
1046    // !!!! need a test for this !!!!
1047    for (i = 0; i < count; i++)
1048    {
1049        // if (not_min_curvature())
1050        if (t[i] > kMinTValueForChopping && t[i] < SK_Scalar1 - kMinTValueForChopping)
1051            tValues[maxCount++] = t[i];
1052    }
1053    return maxCount;
1054}
1055
1056int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], SkScalar tValues[3])
1057{
1058    SkScalar    t_storage[3];
1059
1060    if (tValues == NULL)
1061        tValues = t_storage;
1062
1063    int count = SkFindCubicMaxCurvature(src, tValues);
1064
1065    if (dst) {
1066        if (count == 0)
1067            memcpy(dst, src, 4 * sizeof(SkPoint));
1068        else
1069            SkChopCubicAt(src, dst, tValues, count);
1070    }
1071    return count + 1;
1072}
1073
1074bool SkXRayCrossesMonotonicCubic(const SkXRay& pt, const SkPoint cubic[4], bool* ambiguous) {
1075    if (ambiguous) {
1076        *ambiguous = false;
1077    }
1078
1079    // Find the minimum and maximum y of the extrema, which are the
1080    // first and last points since this cubic is monotonic
1081    SkScalar min_y = SkMinScalar(cubic[0].fY, cubic[3].fY);
1082    SkScalar max_y = SkMaxScalar(cubic[0].fY, cubic[3].fY);
1083
1084    if (pt.fY == cubic[0].fY
1085        || pt.fY < min_y
1086        || pt.fY > max_y) {
1087        // The query line definitely does not cross the curve
1088        if (ambiguous) {
1089            *ambiguous = (pt.fY == cubic[0].fY);
1090        }
1091        return false;
1092    }
1093
1094    bool pt_at_extremum = (pt.fY == cubic[3].fY);
1095
1096    SkScalar min_x =
1097        SkMinScalar(
1098            SkMinScalar(
1099                SkMinScalar(cubic[0].fX, cubic[1].fX),
1100                cubic[2].fX),
1101            cubic[3].fX);
1102    if (pt.fX < min_x) {
1103        // The query line definitely crosses the curve
1104        if (ambiguous) {
1105            *ambiguous = pt_at_extremum;
1106        }
1107        return true;
1108    }
1109
1110    SkScalar max_x =
1111        SkMaxScalar(
1112            SkMaxScalar(
1113                SkMaxScalar(cubic[0].fX, cubic[1].fX),
1114                cubic[2].fX),
1115            cubic[3].fX);
1116    if (pt.fX > max_x) {
1117        // The query line definitely does not cross the curve
1118        return false;
1119    }
1120
1121    // Do a binary search to find the parameter value which makes y as
1122    // close as possible to the query point. See whether the query
1123    // line's origin is to the left of the associated x coordinate.
1124
1125    // kMaxIter is chosen as the number of mantissa bits for a float,
1126    // since there's no way we are going to get more precision by
1127    // iterating more times than that.
1128    const int kMaxIter = 23;
1129    SkPoint eval;
1130    int iter = 0;
1131    SkScalar upper_t;
1132    SkScalar lower_t;
1133    // Need to invert direction of t parameter if cubic goes up
1134    // instead of down
1135    if (cubic[3].fY > cubic[0].fY) {
1136        upper_t = SK_Scalar1;
1137        lower_t = SkFloatToScalar(0);
1138    } else {
1139        upper_t = SkFloatToScalar(0);
1140        lower_t = SK_Scalar1;
1141    }
1142    do {
1143        SkScalar t = SkScalarAve(upper_t, lower_t);
1144        SkEvalCubicAt(cubic, t, &eval, NULL, NULL);
1145        if (pt.fY > eval.fY) {
1146            lower_t = t;
1147        } else {
1148            upper_t = t;
1149        }
1150    } while (++iter < kMaxIter
1151             && !SkScalarNearlyZero(eval.fY - pt.fY));
1152    if (pt.fX <= eval.fX) {
1153        if (ambiguous) {
1154            *ambiguous = pt_at_extremum;
1155        }
1156        return true;
1157    }
1158    return false;
1159}
1160
1161int SkNumXRayCrossingsForCubic(const SkXRay& pt, const SkPoint cubic[4], bool* ambiguous) {
1162    int num_crossings = 0;
1163    SkPoint monotonic_cubics[10];
1164    int num_monotonic_cubics = SkChopCubicAtYExtrema(cubic, monotonic_cubics);
1165    if (ambiguous) {
1166        *ambiguous = false;
1167    }
1168    bool locally_ambiguous;
1169    if (SkXRayCrossesMonotonicCubic(pt, &monotonic_cubics[0], &locally_ambiguous))
1170        ++num_crossings;
1171    if (ambiguous) {
1172        *ambiguous |= locally_ambiguous;
1173    }
1174    if (num_monotonic_cubics > 0)
1175        if (SkXRayCrossesMonotonicCubic(pt, &monotonic_cubics[3], &locally_ambiguous))
1176            ++num_crossings;
1177    if (ambiguous) {
1178        *ambiguous |= locally_ambiguous;
1179    }
1180    if (num_monotonic_cubics > 1)
1181        if (SkXRayCrossesMonotonicCubic(pt, &monotonic_cubics[6], &locally_ambiguous))
1182            ++num_crossings;
1183    if (ambiguous) {
1184        *ambiguous |= locally_ambiguous;
1185    }
1186    return num_crossings;
1187}
1188////////////////////////////////////////////////////////////////////////////////
1189
1190/*  Find t value for quadratic [a, b, c] = d.
1191    Return 0 if there is no solution within [0, 1)
1192*/
1193static SkScalar quad_solve(SkScalar a, SkScalar b, SkScalar c, SkScalar d)
1194{
1195    // At^2 + Bt + C = d
1196    SkScalar A = a - 2 * b + c;
1197    SkScalar B = 2 * (b - a);
1198    SkScalar C = a - d;
1199
1200    SkScalar    roots[2];
1201    int         count = SkFindUnitQuadRoots(A, B, C, roots);
1202
1203    SkASSERT(count <= 1);
1204    return count == 1 ? roots[0] : 0;
1205}
1206
1207/*  given a quad-curve and a point (x,y), chop the quad at that point and place
1208    the new off-curve point and endpoint into 'dest'.
1209    Should only return false if the computed pos is the start of the curve
1210    (i.e. root == 0)
1211*/
1212static bool truncate_last_curve(const SkPoint quad[3], SkScalar x, SkScalar y, SkPoint* dest)
1213{
1214    const SkScalar* base;
1215    SkScalar        value;
1216
1217    if (SkScalarAbs(x) < SkScalarAbs(y)) {
1218        base = &quad[0].fX;
1219        value = x;
1220    } else {
1221        base = &quad[0].fY;
1222        value = y;
1223    }
1224
1225    // note: this returns 0 if it thinks value is out of range, meaning the
1226    // root might return something outside of [0, 1)
1227    SkScalar t = quad_solve(base[0], base[2], base[4], value);
1228
1229    if (t > 0)
1230    {
1231        SkPoint tmp[5];
1232        SkChopQuadAt(quad, tmp, t);
1233        dest[0] = tmp[1];
1234        dest[1].set(x, y);
1235        return true;
1236    } else {
1237        /*  t == 0 means either the value triggered a root outside of [0, 1)
1238            For our purposes, we can ignore the <= 0 roots, but we want to
1239            catch the >= 1 roots (which given our caller, will basically mean
1240            a root of 1, give-or-take numerical instability). If we are in the
1241            >= 1 case, return the existing offCurve point.
1242
1243            The test below checks to see if we are close to the "end" of the
1244            curve (near base[4]). Rather than specifying a tolerance, I just
1245            check to see if value is on to the right/left of the middle point
1246            (depending on the direction/sign of the end points).
1247        */
1248        if ((base[0] < base[4] && value > base[2]) ||
1249            (base[0] > base[4] && value < base[2]))   // should root have been 1
1250        {
1251            dest[0] = quad[1];
1252            dest[1].set(x, y);
1253            return true;
1254        }
1255    }
1256    return false;
1257}
1258
1259#ifdef SK_SCALAR_IS_FLOAT
1260
1261// Due to floating point issues (i.e., 1.0f - SK_ScalarRoot2Over2 !=
1262// SK_ScalarRoot2Over2 - SK_ScalarTanPIOver8), the "correct" off curve
1263// control points cause the quadratic circle approximation to be concave.
1264// SK_OffEps is used to pull in the off-curve control points a bit
1265// to make the quadratic approximation convex.
1266// Pulling the off-curve controls points in is preferable to pushing some
1267// of the on-curve points off.
1268#define SK_OffEps 0.0001f
1269#else
1270#define SK_OffEps 0
1271#endif
1272
1273
1274static const SkPoint gQuadCirclePts[kSkBuildQuadArcStorage] = {
1275    { SK_Scalar1,                      0                                  },
1276    { SK_Scalar1 - SK_OffEps,          SK_ScalarTanPIOver8 - SK_OffEps    },
1277    { SK_ScalarRoot2Over2,             SK_ScalarRoot2Over2                },
1278    { SK_ScalarTanPIOver8 - SK_OffEps, SK_Scalar1 - SK_OffEps             },
1279
1280    { 0,                               SK_Scalar1                         },
1281    { -SK_ScalarTanPIOver8 + SK_OffEps,SK_Scalar1 - SK_OffEps             },
1282    { -SK_ScalarRoot2Over2,            SK_ScalarRoot2Over2                },
1283    { -SK_Scalar1 + SK_OffEps,         SK_ScalarTanPIOver8 - SK_OffEps    },
1284
1285    { -SK_Scalar1,                     0                                  },
1286    { -SK_Scalar1 + SK_OffEps,         -SK_ScalarTanPIOver8 + SK_OffEps   },
1287    { -SK_ScalarRoot2Over2,            -SK_ScalarRoot2Over2               },
1288    { -SK_ScalarTanPIOver8 + SK_OffEps,-SK_Scalar1 + SK_OffEps            },
1289
1290    { 0,                               -SK_Scalar1                        },
1291    { SK_ScalarTanPIOver8 - SK_OffEps, -SK_Scalar1 + SK_OffEps            },
1292    { SK_ScalarRoot2Over2,             -SK_ScalarRoot2Over2               },
1293    { SK_Scalar1 - SK_OffEps,          -SK_ScalarTanPIOver8 + SK_OffEps   },
1294
1295    { SK_Scalar1,                      0                                  }
1296};
1297
1298int SkBuildQuadArc(const SkVector& uStart, const SkVector& uStop,
1299                   SkRotationDirection dir, const SkMatrix* userMatrix,
1300                   SkPoint quadPoints[])
1301{
1302    // rotate by x,y so that uStart is (1.0)
1303    SkScalar x = SkPoint::DotProduct(uStart, uStop);
1304    SkScalar y = SkPoint::CrossProduct(uStart, uStop);
1305
1306    SkScalar absX = SkScalarAbs(x);
1307    SkScalar absY = SkScalarAbs(y);
1308
1309    int pointCount;
1310
1311    // check for (effectively) coincident vectors
1312    // this can happen if our angle is nearly 0 or nearly 180 (y == 0)
1313    // ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
1314    if (absY <= SK_ScalarNearlyZero && x > 0 &&
1315        ((y >= 0 && kCW_SkRotationDirection == dir) ||
1316         (y <= 0 && kCCW_SkRotationDirection == dir))) {
1317
1318        // just return the start-point
1319        quadPoints[0].set(SK_Scalar1, 0);
1320        pointCount = 1;
1321    } else {
1322        if (dir == kCCW_SkRotationDirection)
1323            y = -y;
1324
1325        // what octant (quadratic curve) is [xy] in?
1326        int oct = 0;
1327        bool sameSign = true;
1328
1329        if (0 == y)
1330        {
1331            oct = 4;        // 180
1332            SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero);
1333        }
1334        else if (0 == x)
1335        {
1336            SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero);
1337            if (y > 0)
1338                oct = 2;    // 90
1339            else
1340                oct = 6;    // 270
1341        }
1342        else
1343        {
1344            if (y < 0)
1345                oct += 4;
1346            if ((x < 0) != (y < 0))
1347            {
1348                oct += 2;
1349                sameSign = false;
1350            }
1351            if ((absX < absY) == sameSign)
1352                oct += 1;
1353        }
1354
1355        int wholeCount = oct << 1;
1356        memcpy(quadPoints, gQuadCirclePts, (wholeCount + 1) * sizeof(SkPoint));
1357
1358        const SkPoint* arc = &gQuadCirclePts[wholeCount];
1359        if (truncate_last_curve(arc, x, y, &quadPoints[wholeCount + 1]))
1360        {
1361            wholeCount += 2;
1362        }
1363        pointCount = wholeCount + 1;
1364    }
1365
1366    // now handle counter-clockwise and the initial unitStart rotation
1367    SkMatrix    matrix;
1368    matrix.setSinCos(uStart.fY, uStart.fX);
1369    if (dir == kCCW_SkRotationDirection) {
1370        matrix.preScale(SK_Scalar1, -SK_Scalar1);
1371    }
1372    if (userMatrix) {
1373        matrix.postConcat(*userMatrix);
1374    }
1375    matrix.mapPoints(quadPoints, pointCount);
1376    return pointCount;
1377}
1378
1379///////////////////////////////////////////////////////////////////////////////
1380
1381// F = (A (1 - t)^2 + C t^2 + 2 B (1 - t) t w)
1382//     ------------------------------------------
1383//         ((1 - t)^2 + t^2 + 2 (1 - t) t w)
1384//
1385//   = {t^2 (P0 + P2 - 2 P1 w), t (-2 P0 + 2 P1 w), P0}
1386//     ------------------------------------------------
1387//             {t^2 (2 - 2 w), t (-2 + 2 w), 1}
1388//
1389
1390// Take the parametric specification for the conic (either X or Y) and return
1391// in coeff[] the coefficients for the simple quadratic polynomial
1392//    coeff[0] for t^2
1393//    coeff[1] for t
1394//    coeff[2] for constant term
1395//
1396static SkScalar conic_eval_pos(const SkScalar src[], SkScalar w, SkScalar t) {
1397    SkASSERT(src);
1398    SkASSERT(t >= 0 && t <= SK_Scalar1);
1399
1400    SkScalar    src2w = SkScalarMul(src[2], w);
1401    SkScalar    C = src[0];
1402    SkScalar    A = src[4] - 2 * src2w + C;
1403    SkScalar    B = 2 * (src2w - C);
1404    SkScalar numer = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
1405
1406    B = 2 * (w - SK_Scalar1);
1407    C = SK_Scalar1;
1408    A = -B;
1409    SkScalar denom = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
1410
1411    return SkScalarDiv(numer, denom);
1412}
1413
1414// F' = 2 (C t (1 + t (-1 + w)) - A (-1 + t) (t (-1 + w) - w) + B (1 - 2 t) w)
1415//
1416//  t^2 : (2 P0 - 2 P2 - 2 P0 w + 2 P2 w)
1417//  t^1 : (-2 P0 + 2 P2 + 4 P0 w - 4 P1 w)
1418//  t^0 : -2 P0 w + 2 P1 w
1419//
1420//  We disregard magnitude, so we can freely ignore the denominator of F', and
1421//  divide the numerator by 2
1422//
1423//    coeff[0] for t^2
1424//    coeff[1] for t^1
1425//    coeff[2] for t^0
1426//
1427static void conic_deriv_coeff(const SkScalar src[], SkScalar w, SkScalar coeff[3]) {
1428    const SkScalar P20 = src[4] - src[0];
1429    const SkScalar P10 = src[2] - src[0];
1430    const SkScalar wP10 = w * P10;
1431    coeff[0] = w * P20 - P20;
1432    coeff[1] = P20 - 2 * wP10;
1433    coeff[2] = wP10;
1434}
1435
1436static SkScalar conic_eval_tan(const SkScalar coord[], SkScalar w, SkScalar t) {
1437    SkScalar coeff[3];
1438    conic_deriv_coeff(coord, w, coeff);
1439    return t * (t * coeff[0] + coeff[1]) + coeff[2];
1440}
1441
1442static bool conic_find_extrema(const SkScalar src[], SkScalar w, SkScalar* t) {
1443    SkScalar coeff[3];
1444    conic_deriv_coeff(src, w, coeff);
1445
1446    SkScalar tValues[2];
1447    int roots = SkFindUnitQuadRoots(coeff[0], coeff[1], coeff[2], tValues);
1448    SkASSERT(0 == roots || 1 == roots);
1449
1450    if (1 == roots) {
1451        *t = tValues[0];
1452        return true;
1453    }
1454    return false;
1455}
1456
1457struct SkP3D {
1458    SkScalar fX, fY, fZ;
1459
1460    void set(SkScalar x, SkScalar y, SkScalar z) {
1461        fX = x; fY = y; fZ = z;
1462    }
1463
1464    void projectDown(SkPoint* dst) const {
1465        dst->set(fX / fZ, fY / fZ);
1466    }
1467};
1468
1469// we just return the middle 3 points, since the first and last are dups of src
1470//
1471static void p3d_interp(const SkScalar src[3], SkScalar dst[3], SkScalar t) {
1472    SkScalar ab = SkScalarInterp(src[0], src[3], t);
1473    SkScalar bc = SkScalarInterp(src[3], src[6], t);
1474    dst[0] = ab;
1475    dst[3] = SkScalarInterp(ab, bc, t);
1476    dst[6] = bc;
1477}
1478
1479static void ratquad_mapTo3D(const SkPoint src[3], SkScalar w, SkP3D dst[]) {
1480    dst[0].set(src[0].fX * 1, src[0].fY * 1, 1);
1481    dst[1].set(src[1].fX * w, src[1].fY * w, w);
1482    dst[2].set(src[2].fX * 1, src[2].fY * 1, 1);
1483}
1484
1485void SkConic::evalAt(SkScalar t, SkPoint* pt, SkVector* tangent) const {
1486    SkASSERT(t >= 0 && t <= SK_Scalar1);
1487
1488    if (pt) {
1489        pt->set(conic_eval_pos(&fPts[0].fX, fW, t),
1490                conic_eval_pos(&fPts[0].fY, fW, t));
1491    }
1492    if (tangent) {
1493        tangent->set(conic_eval_tan(&fPts[0].fX, fW, t),
1494                     conic_eval_tan(&fPts[0].fY, fW, t));
1495    }
1496}
1497
1498void SkConic::chopAt(SkScalar t, SkConic dst[2]) const {
1499    SkP3D tmp[3], tmp2[3];
1500
1501    ratquad_mapTo3D(fPts, fW, tmp);
1502
1503    p3d_interp(&tmp[0].fX, &tmp2[0].fX, t);
1504    p3d_interp(&tmp[0].fY, &tmp2[0].fY, t);
1505    p3d_interp(&tmp[0].fZ, &tmp2[0].fZ, t);
1506
1507    dst[0].fPts[0] = fPts[0];
1508    tmp2[0].projectDown(&dst[0].fPts[1]);
1509    tmp2[1].projectDown(&dst[0].fPts[2]); dst[1].fPts[0] = dst[0].fPts[2];
1510    tmp2[2].projectDown(&dst[1].fPts[1]);
1511    dst[1].fPts[2] = fPts[2];
1512
1513    // to put in "standard form", where w0 and w2 are both 1, we compute the
1514    // new w1 as sqrt(w1*w1/w0*w2)
1515    // or
1516    // w1 /= sqrt(w0*w2)
1517    //
1518    // However, in our case, we know that for dst[0], w0 == 1, and for dst[1], w2 == 1
1519    //
1520    SkScalar root = SkScalarSqrt(tmp2[1].fZ);
1521    dst[0].fW = tmp2[0].fZ / root;
1522    dst[1].fW = tmp2[2].fZ / root;
1523}
1524
1525static SkScalar subdivide_w_value(SkScalar w) {
1526    return SkScalarSqrt(SK_ScalarHalf + w * SK_ScalarHalf);
1527}
1528
1529void SkConic::chop(SkConic dst[2]) const {
1530    SkScalar scale = SkScalarInvert(SK_Scalar1 + fW);
1531    SkScalar p1x = fW * fPts[1].fX;
1532    SkScalar p1y = fW * fPts[1].fY;
1533    SkScalar mx = (fPts[0].fX + 2 * p1x + fPts[2].fX) * scale * SK_ScalarHalf;
1534    SkScalar my = (fPts[0].fY + 2 * p1y + fPts[2].fY) * scale * SK_ScalarHalf;
1535
1536    dst[0].fPts[0] = fPts[0];
1537    dst[0].fPts[1].set((fPts[0].fX + p1x) * scale,
1538                       (fPts[0].fY + p1y) * scale);
1539    dst[0].fPts[2].set(mx, my);
1540
1541    dst[1].fPts[0].set(mx, my);
1542    dst[1].fPts[1].set((p1x + fPts[2].fX) * scale,
1543                       (p1y + fPts[2].fY) * scale);
1544    dst[1].fPts[2] = fPts[2];
1545
1546    dst[0].fW = dst[1].fW = subdivide_w_value(fW);
1547}
1548
1549/*
1550 *  "High order approximation of conic sections by quadratic splines"
1551 *      by Michael Floater, 1993
1552 */
1553#define AS_QUAD_ERROR_SETUP                                         \
1554    SkScalar a = fW - 1;                                            \
1555    SkScalar k = a / (4 * (2 + a));                                 \
1556    SkScalar x = k * (fPts[0].fX - 2 * fPts[1].fX + fPts[2].fX);    \
1557    SkScalar y = k * (fPts[0].fY - 2 * fPts[1].fY + fPts[2].fY);
1558
1559void SkConic::computeAsQuadError(SkVector* err) const {
1560    AS_QUAD_ERROR_SETUP
1561    err->set(x, y);
1562}
1563
1564bool SkConic::asQuadTol(SkScalar tol) const {
1565    AS_QUAD_ERROR_SETUP
1566    return (x * x + y * y) <= tol * tol;
1567}
1568
1569int SkConic::computeQuadPOW2(SkScalar tol) const {
1570    AS_QUAD_ERROR_SETUP
1571    SkScalar error = SkScalarSqrt(x * x + y * y) - tol;
1572
1573    if (error <= 0) {
1574        return 0;
1575    }
1576    uint32_t ierr = (uint32_t)error;
1577    return (34 - SkCLZ(ierr)) >> 1;
1578}
1579
1580static SkPoint* subdivide(const SkConic& src, SkPoint pts[], int level) {
1581    SkASSERT(level >= 0);
1582
1583    if (0 == level) {
1584        memcpy(pts, &src.fPts[1], 2 * sizeof(SkPoint));
1585        return pts + 2;
1586    } else {
1587        SkConic dst[2];
1588        src.chop(dst);
1589        --level;
1590        pts = subdivide(dst[0], pts, level);
1591        return subdivide(dst[1], pts, level);
1592    }
1593}
1594
1595int SkConic::chopIntoQuadsPOW2(SkPoint pts[], int pow2) const {
1596    SkASSERT(pow2 >= 0);
1597    *pts = fPts[0];
1598    SkDEBUGCODE(SkPoint* endPts =) subdivide(*this, pts + 1, pow2);
1599    SkASSERT(endPts - pts == (2 * (1 << pow2) + 1));
1600    return 1 << pow2;
1601}
1602
1603bool SkConic::findXExtrema(SkScalar* t) const {
1604    return conic_find_extrema(&fPts[0].fX, fW, t);
1605}
1606
1607bool SkConic::findYExtrema(SkScalar* t) const {
1608    return conic_find_extrema(&fPts[0].fY, fW, t);
1609}
1610
1611bool SkConic::chopAtXExtrema(SkConic dst[2]) const {
1612    SkScalar t;
1613    if (this->findXExtrema(&t)) {
1614        this->chopAt(t, dst);
1615        // now clean-up the middle, since we know t was meant to be at
1616        // an X-extrema
1617        SkScalar value = dst[0].fPts[2].fX;
1618        dst[0].fPts[1].fX = value;
1619        dst[1].fPts[0].fX = value;
1620        dst[1].fPts[1].fX = value;
1621        return true;
1622    }
1623    return false;
1624}
1625
1626bool SkConic::chopAtYExtrema(SkConic dst[2]) const {
1627    SkScalar t;
1628    if (this->findYExtrema(&t)) {
1629        this->chopAt(t, dst);
1630        // now clean-up the middle, since we know t was meant to be at
1631        // an Y-extrema
1632        SkScalar value = dst[0].fPts[2].fY;
1633        dst[0].fPts[1].fY = value;
1634        dst[1].fPts[0].fY = value;
1635        dst[1].fPts[1].fY = value;
1636        return true;
1637    }
1638    return false;
1639}
1640
1641void SkConic::computeTightBounds(SkRect* bounds) const {
1642    SkPoint pts[4];
1643    pts[0] = fPts[0];
1644    pts[1] = fPts[2];
1645    int count = 2;
1646
1647    SkScalar t;
1648    if (this->findXExtrema(&t)) {
1649        this->evalAt(t, &pts[count++]);
1650    }
1651    if (this->findYExtrema(&t)) {
1652        this->evalAt(t, &pts[count++]);
1653    }
1654    bounds->set(pts, count);
1655}
1656
1657void SkConic::computeFastBounds(SkRect* bounds) const {
1658    bounds->set(fPts, 3);
1659}
1660